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We prove decomposition formulae for an arbitrary representation in terms of basis 
representations for the classical compact Lie groups. Using these decomposition formulae, simple 
rules are obtained for the product of two arbitrary representations and for the restriction of a 
representation to a classical subgroup. 

PACS numbers: 02.20.Qs 

I. INTRODUCTION 

E. Cartan I has classified all simple compact Lie groups 
into four infinite sequences of classical groups SU(n + 1), 
SO(2n + 1), SpIn), and SO(2n) of rank n and in addition five 
exceptional groups, E6, E7 , Es, F4, and G2• Weyl2 has shown 
that every finite-dimensional irreducible representation of a 
classical group is in one-to-one correspondence with a com
plex-valued function on the group, called the group charac
ter-or simply character-of the representation. If A (g) is a 
representation, then the character X..t is the trace of A (g): 

X..t(g) = tr A (g). (Ll) 

It has the following properties: 

X..t(hgh -1) = X..t(g), 

X..t"/L(g) = X..t(g) + X/L(g), 

X..t"/L(g) = X..t(g)X/L(g)· 

(1.2) 

(l.3a) 

(l.3b) 

The set of all characters forms a basis for the regular class 
functions on the group. Weyl2 has also shown that the char
acter functions of a classical group of rank n are classified by 
n nonnegative integers. In addition, for the orthogonal 
groups, there are the so-called double-valued or spinor re
presentations, which are specified by n half-odd integers. 
Since the character functions are invariant under conjuga
tion-property (1.2)-they may be completely reconstruct
ed from their value on a Cartan subgroup. Weyl'sfirst for
mula gives the character in terms of n angles ¢I' ¢2' ... , ¢n' 
which parametrize the Cartan subgroup in the standard 
fashion. 2

•
3 We record Weyl's first formulae2 here for later 

reference. We shall henceforth suppress the argument of the 
character function. 

(A) SU(n): 

_ 1~',oo.,i"1 (1 ) 
XU;.h ... ·.!") - 10 10 .4a 

IE ',oo.,E"1 

Here we use the definition I~', ... , i"1 = det(E), with Eij = EY 
where E; = /1'" I? = n - i, I; =/; + I? and the integers/; 
obey II>iz>A>"'>/" and (II + 1'/2 + I, ... ,/" + I) 
==(/1'/2""'/" ). 
alThis work is supported in part through funds provided by the U. S. De

partment of Energy (DOE) under contract DE-AC02-76ER03069. 

(B) SO(2n + 1): 

_ lEI, - E-I',oo.,E
I
• - E-I·I 

XU,.!, .... .!.) - I? _ I? I~ _ I~ (I.4b) 
IE - E ,oo.,E - E I 

Here the I? are half-integers given by I? = n - i + ! and Ii 
= 1: + I? with/; either all integers or all half-odd-integers 

and/l>iz> .. ·>ln >0. 
(C) SpIn): 

_ lEI, - E-I',oo.,i· - E-I·I 
XU,.!, .. .!.) - I? _I? l~ _/~ (I.4c) 

IE - E ,oo.,E - E I 

Here the I? are integers and are given by I? = n - i + 1 and 
Ii = /; + I; with/; integer and/!>iz>"'>ln >0. 

(D) SO(2n): 

_ lEI, + E-I',oo.,i· + E-I·I 
XU,.!, ... .!.) - I? _ I? 10 _10' (I.4d) 

IE + E ,oo.,E • + E ·1 

Here the I? are integers defined by I? = n - i and Ii = /; 
+ I? with/; either all integers or all half-integers and 

11>/2>"'> If,, I> O. When/" = 0, the right-hand side of 
(1.4d) is divided by a factor of2. 

The ordered set (fI,iz, 00',1,,) is called the signature! and 
is also equal to the highest weight vector. To every irreduci
ble representation corresponds one and only one signature 
(/1'/2,00',/,,) such that/l>iz>oo.>/", and this signature is 
called dominant. 

Using algebraic manipulations, one can rewrite expres
sions (I.4a-d) in terms of a set of characters of generating 
representations instead of in terms of the exponential func
tions E;. Weyl's second formula2

•
3 gives the characters in 

terms of the so-called symmetric representations. For SU(n), 
Weyl's second formula reads 

XU,.h .... .!.) = detI, 

~ij = Xd'-i+f,. 

(1.5a) 

(1.5b) 

d k has signature (k, 0, 0, 00" 0) when k;>O, and is defined to 
vanish when k < O. 

Similar formulae exist for the other three series of clas
sical groups.2 Weyl's second formula is quite useful: It pro
vides a practical algorithm for the decomposition ofthe ten-
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sor product of two representations into irreducible 
representations.3 Indeed, from (1.5) it is clear that the tensor 
product of two arbitrary representations A and It can be ex
pressed in terms of products of A with symmetric representa
tions. The latter products may be evaluated using a set of 
rules deduced from Weyl's first formula. 2

•
3 

In the present paper, we shall show that, for the classi
cal groups the character of an arbitrary representation may 
also be expressed as a determinant only involving the so
called basis representations in an elementary way. For a 
group of rank n, there are precisely n basis representations 
whose signatures are listed below.3 (Henceforth, we identify 
a representation with its dominant signature.) 

(A) SU(n + 1): dp = (1,1, ... ,1,0, ... ,0) andp = 1, ... ,n; 
-.--

p (1.6a) 

(B) SO(2n + 1): dp ' p = 1, ... ,n - 1 and the spinor re-

(C) Spin): 

(D) SO(2n): 

presentation s = (!, ... ,!); (1.6b) 

dp ' p = 1, ... ,n; (1.6c) 

dp ' p = l,n - 2, and the two spinor 
representations s+ = (!, ... ,!,!) (1.6d) 

s- = (!, ... ,!, - !). 
Our formulae give all characters in terms of only a finite 
number of generators4

: {Xd
p 

J
p

= I.n for SU(n + 1) and SpIn), 

{Xdp' Xs J p= I.n _ I for SO(2n + 1) and 
{Xdp' Xs+, Xs- J p = I.n _ 2 for SO(2n). The proof of these rela
tions, henceforth called decomposition/ormulae, is the main 
objective of the present paper, and is given in Secs. II, III, IV, 
and V, respectively for SU(n), SO(2n + 1), Sp(n), and SO(2n). 
For each of these groups, we shall first determine rules for 
the product of a basis representation with an arbitrary repre
sentation and then prove the decomposition formulae, essen
tially by explicit calculation of the determinant. 

The case ofSU(n) is simplest, and will be developed in 
much detail; the case of SO(2n + I) requires several impor
tant modifications, which we shall fully describe. For Spin), 
only the final results will be given, and, for SO(2n), special 
attention will be devoted to subtleties like double characters. 
Finally, in the last section we shall discuss three applica
tions. First, we show that our decomposition formulae pro
vide rules for the tensor mUltiplication of two arbitrary re
presentations of any of the classical groups, just as Weyl's 
second formula did.2 These rules are only slightly more com
plicated for the groups SpIn) or SO(n) than for the group 
SU(n), and may present an interesting alternative to the rath
er involved rules discussed in standard references.5 Second, 
we prove a relation between the dimensions of the represen
tations ofSp(n) and these of the spinor representations of 
SO(2n + 1). Finally, we show that our decomposition for
mulae yield a simple algorithm for the calculation of the 
restriction of a representation to a classical subgroup of the 
original group. Thus branching rules for nonmaximal sub
groups can be obtained. Let us also remark that the simple 
rules for products and branching of representations could be 
easily implemented in a computer program. 

The extension of our formulae to the case of exceptional 
groups is presently under investigation. 
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II. THE SPECIAL UNITARY GROUPS SU(n) 

Multiplication of a basis representation with an 
arbitrary representation 

The weight diagram3 for the basis representations is de
duced from Weyl's first formula (1.4a) 

(2.1) 

The character of the tensor product of dp with a representa
tion A = (f1> /2' ... In ) is found using (1.3): 

(2.2) 

The integers Ii are defined in terms of the h by Ii = h + J? 
Note that X,t and Xd are invariant under the action of 

p 

the Weyl group/·3 which permutes the angles ¢>i' Using this 
invariance for X d .. ,t, we find 

p 

I J Ii, I,p I., 
f"-I, ••• ,E , ... ,E , ••• ,E 

so that 

Xdp",t = .. 2: .Xu ...... ./i.+I ..... ./ip+I .... ./.)· 
't <12<"'<lp 

(2.3) 

(2.4a) 

In (2.4a), a character corresponding to a signature 
which is not dominant must be omitted. Expression (2.4a), 
together with the one-to-one correspondence between domi
nant characters and irreducible representations, implies the 
following formula for the representations: 

dp ®A = 2: (fl'· .. ./;. + 1,· .. ,h
p 
+ 1, .. ·Jn)·(2.4b) 

i.<i2 <···<ip 

Here again, nondominant signatures are deleted. 

The decomposition formula for the symmetric 
representations 

Before attacking the full problem, we shall first prove a 
decomposition formula for the symmetric representation d k 

ofSU(n) [defined in (1.5)]. 
Theorem 1. Let M k be the following determinant6 

d l 0 0 ® 

d2 d l 1 0 
Mk= d3 d2 d l 0 (2.5) . . . 

dk dk _ 1 d l 

Then we have M k = d k. 

In formula (2.5) it is understood that d k = 0 if k > nor 
k<O. 

Proof Upon multiplication by the determinant 

0 0 0 ® 
-d l 1 0 0 

1= d 2 -d l 0 , (2.6) 
. . . 

(-!t-Id k - I 

E.O'Hoker 2 



                                                                                                                                    

making use of the well-known3 duality relation 

n-I {I ifk=O 
~ (-l)"d ®d k

-
p = 

£.. p 0 otherwise p=o ' 
(2.7) 

it is clear that M k = d k, as announced. 
We now give also a different proof, the method of which 

will generalize to the case of an arbitrary representation of 
SU(n) as well as to the other classical groups. The expansion 
of the determinant in (2.5) along the first column yields a sum 
of products of a basis representation dj with a minor ~ j' The 
crucial remark is that this minor ~ j is of the same form as the 
original determinant: ~ j = M k - j. Thus we have 

k 

Mk = L da ®M k- a( - W- I. (2.8) 
a=1 

We can prove (2.5) by induction. Suppose that M k = d k for 
all k<p - 1 and clearly M I = d I; then we wish to prove that 
MP = d P• The induction hypothesis together with (2.8) 
yields 

k 

Mk = L da ®d k- a( - It- I. 
a=1 

Using (2Ab), we see that 

da®dk-a=Ba +Ba+l' 

where 

o 

or 

p = ®det(g) with gij = d j _ j +k 

and let k be defined by r l + r 2 + ... + rk_ I 

<i<rl + r2 + .. , + rk • Then we havep =A. 

(2.9) 

(2.10) 

d"_l 

o 

(2.15) 

Observe that in formula (2.14) we have rj times the re
presentation d; on the diagonal. The off-diagonal elements of 
the determinant are obtained by incrementing (resp. decre
menting) the index i by one unit when moving to the left 
(resp. to the right). 

Proof In analogy with Theorem 1, the expansion of the 
determinant (2.14) along the first column yields a sum of 
products of a basis representation and a minor, which is of 
the same form as the original determinant p. We proceed 
with a proof by induction on the first coordinate of the signa
ture fi. Suppose '" = A for all Ii. <p - 1; then we want to 
prove that p = A for 0/1 representations such thatfl = p. 
Clearly, we have p = A for Ii. = 1. As a consequence of the 
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Ba = (~ - a t hl,: ... , ~O, ... ,O) (2.11) 
a 

and B k + I = 0 since it corresponds to a nondominant signa-
ture. Hence we have 

k 

Mk= L( -It-I(Ba +Ba+d (2.12) 
a 

so that M k = B I = (k, 0, ... , 0) = d k as announced. Upon 
replacing M j by d j in (2.8) we get precisely (2.7). This finishes 
the proof of Theorem 1. 

Combination of(2.5) and (1.5) shows that every repre
sentation can be written as a function of basis representa
tions dp alone. We shall now prove a much more convenient 
formula for the decomposition in terms of basis representa
tions. 

The general decomposition formula 

Let Ii be a representation with dominant signature (fl' 
f2' ... J" ); the nonnegative projection numbers r; are obtained 
from the projection of the highest weight vector onto the 
roots3

: 

ri =/; -/;+1> i= 1, ... ,n -1. (2.13) 

We shall now prove the following general decomposition 
formula for the unitary groupS6.7: 

Theorem 2: Let 

® 

(2.14) 

I 
induction hypothesis, we see that every minor corresponds 
to one and only one irreducible representation. Indeed, the 
minor associated with d l has signature (fi - I,/;, ... ,f,,), the 
minor associated with d2 has signature (fl - 2,/;, ... J,,); this 
pattern continues until one encounters the element d" in the 
first column which has minor (/;,/;,h, ... ,/,,). Ifr2=F0, then 
at least one d2 is present on the diagonal, and the next ele
mentin thefirstcolumnisd" +2 with minor(/; - I,/; - I, 
h, .. ·,f,,)· Upon increasing the index of the element in the 
first column by 1, the second entry in the signature of the 
minor decreases by I. It is remarkable that each minor in the 
expansion of determinant (2.14) is again an irreducible repre
sentation with a signature such that its first entry is always 
smaller than fl' Thus we must prove that the expansion of 
the determinant, for a representation with dominant signa
ture (fi,/;, ... ,J,,), with all minors replaced by their actual 
value precisely yields p = A. 

Using the signature notation, the above described ex
pansion becomes 

E.O'Hoker 3 



                                                                                                                                    

Jl = ED i da ® (fl - a,j2,. .. ,jn)( - W - I 
a=1 

ED i dr, + I + a ® (/2 - 1,j2 - a,J;,···,jn) 
a=1 

X( -It+r,-I ED ••• 

",,-1 
ED L dr,+ ... +rn_2+a+n-2 

a=1 

® (/; - 1,j3 - 1,···,jn _I - l,jn - a) 
X( _1)"+···+rn- 2+a-2. (2.16) 

All signatures appearing in (2.16) are dominant by construc
tion. 

Formula (2.16) may, however, be simplified through the 
use of nondominant signatures-henceforth called signa
tures as opposed to dominant signatures. We shall generalize 
(1.4a) to signatures (f1,j2' ... ,jn), which need not be domi
nant, by defining their character as 

I ','2 '"I - E,E , ... ,E 
XII,.!, .... .!") - ,0 ,0 ,0 

IE ',E Z, ... ,E "I 
(2.17) 

even when I is not dominant. Of course, every signature is 
either related to a dominant signature by permutation of 
columns in (2.16) or must vanish.8 Thus we have, e.g., XIZ,4.I) 

= - XI3.3.1) but XIZ.3.1) = O. Using the definition of (non 
dominant) signatures, (2.16) may be rewritten 

Jl = Ell i du ® (fl - a,jz, ... ,jnH - I)U-I 
a=l 

r, 

Ell !dr,+I+u®(f2-a-1,j2, ... ,jnH-l)"+u 
a=l 

r, 

Ell L dr, + r, + 2 + u ® (f3 - a - 2,j2,j3,· .. ,jn) 
a=l 

X ( - 1),' + r, + u + I 

Ell···. (2.18) 

A shift in the summation variable produces 

Jl = Gl i du ® (fl - a,j2, .. ·,jnH - W- I 
a=l 

'I + "2+ I 

Gl L du ® (fl - a,j2,· .. ,jn H - I)U - I 

a = r t + 2 

'I +'2 + r~ + 2 

Gl L du ® (fl - a,j2, .. ·,jn H - l)u - I Gl ••• 
a = r l + r2 + 3 

'. + r2 + ... + ",,_1 + n - 2 

Ell L da ® (fl - a,j2,j3, .. ·,jn) 
a = '1 + r2 + ... + rn _ 2 + n - 1 

(2.19) 

The signature vanishes at values of a which are missing from 
the summation, through the use of (2.17). Hence we have, 
e. g., 

(II - r l - 1,j2,j3, .. ·,jn) = (f2 - 1,j2,j3, .. ·,jn) = O. 
(2.20) 

Using the above property, we obtain our final formula: 
f,+n-2 

Jl=® L da ®(fI-a,j2,···,jnH- l t- l
• (2.21) 

a=l 

We shall now prove that Jl = A, by explicit calculation of Jl. 
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First we need the generalization (2.4) to nondominant signa
tures: 

dp ® (fl,/z, .. ·,jn) 

= Gl.L . (fl'''''/;, + 1, ... ,/;p + 1, ... ,jn). (2.22) 
ll<l~<"'<lp 

In (2.21), all terms may be kept since the nondominant signa
tures automatically vanish when (f1,j2, ... ,jn) is dominant. 
By permutation of columns in (2.2) and (2.17), it is also clear 
that formula (2.22) holds even whenlis not dominant. 

The explicit calculation of all terms in the tensor pro
ducts in (2.21) is unnecessary, and we shall introduce the 
following convenient shorthand 

(fl' I Iz,· .. ,jn JP+ ) 

with 

= Gl ~ (fl""'/; + I, ... ,/; + 1, ... ,jn) (2.23) ~ , p 

1 <il <f2,·· < ip 

(2.24a) 

(f1,1 Iz, .. ·,jn JP+ ) = 0 when p <0 or p> n - 1. 
(2.24b) 

Then the tensor products in (2.21) can be computed using 
(2.23) and (2.24): 

da ® (fl - a,j2, .. ·,jn) = (fl - a + 1,1 Iz, ... ,jn la+- I) 

+ (fl - a,1 Iz, .. ·,jn la+ ) 

(2.25) 
so that 

f,+n-2 
Jl=Gl L (-W- I(fI-a+l,!f2, .. ·,jnl a+- I) 

a=l 
f,+n-Z 

Gl L (- W-I(fl - a,!fz, .. ·,jn la+ ). (2.26) 
a=l 

A shift in the summation variable of the second sum yields 

Jl = (f1,jZ,j3,· .. ,jn) 

Gl ( - 1 y, + n - I( _ n + 2, !f2, ... ,jn V~+ n - 2). (2.27) 

Since II;;;' 1, the second bracket vanishes with the use of 
(2.24b) and since (f1,jZ, ... ,jn) is dominant, we have proven 
thatJl = A. 

Example: The representation A with signature 
(4,2,1,0,0) ofSU(5) is decomposed as follows: 

d l 0 0 

(4,2,1,0,0) = 
d2 dl 0 

d4 d3 d2 dl 

0 1 d4 d3 

One can, e. g., check the dimensions by taking the character 
of both sides of (2.27) and computing the determinant at the 
identity element. With the use of tables of dimensions,9 we 
find 

5 

10 
700= 

5 

o 

5 

10 

o 

10 

o 
o 
5 

5 10 
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III. THE ORTHOGONAL GROUPS SO(2n + 1) 

The decomposition formulae for the spinor representa
tion are different and will be treated separately from the for
mulae for single valued representations. Furthermore, it will 
appear natural to express the decomposition formulae in 
terms of the basis representations of(1.6b)plus the represen
tation dn = (1,1, ... ,1). Later we shall prove that the latter 
representation is simply expressed in terms of the former 
ones. 

Multiplication of a basis representation with an 
arbitrary representation 

The weight diagram of the representations dp is de
duced from Weyl's first formula (l.4b): 

I I -I, I -II €' _ € , ••• ,€ n _ € n 

Xdp = I~ -/~ 1~ -/~' 
I€ -€ , ... ,€ -€ I 

(3.1) 

where I? = n - i +~, Ii = I? ifi>p and Ii = I? + 1 ifi<p. 
We shall obtain a more convenient expression for this weight 
diagram by introducing the function 

.Ifp = l€n+€-n, ... ,€n-p+I +€-n+p-I,€n-p-I 

+ -n+p+1 +-111 € , ... ,€ € , . (3.2) 

After division of numerator and denominator in (3.1) by the 
common factor "7 ~ I (€f!2 - €i- 112), X d can be rewritten as 

p 

follows. 

(3.3) 

The function .Ifp can be easily evaluated using the binomial 
coefficients C ~ : 

[pl2l 
.Ifp = L C~_p+2aR (p - 2a).Ifo, (3.4) 

a~O 

with 

(3.5) 

The function R (q) may be thought of as the character of the 
representation dq of a unitary group with €i replaced with €i 

+ €i- I. Combination offormulae (3.3)-(3.5) gives us the 
weight diagram of dp : 

[p12l 

Xd
p 

= L C~_p+2aR (p - 2a) 
a=O 

[(p-I)/2l 

+ L C~_p+I+2aR(p-I-2a). (3.6) 
a~O 

For the spinor representation, the weight diagram is com
puted directly from (l.4b) 

X - " "u,12"u,12 c an12 
s - £- e. «=2 ···~n • 

u j = ±1 
(3.7) 

The functions R (q), X d and X s are invariant under the action 
p 

of the Weyl group which permutes the tPi and changes their 
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sign. Again we generalize the dominant signatures in (l.4b) 
to (nondominant) or generalized signatures, defined through 
the same formula (l.4b) but where the signature (fl' ... In) 
need not be dominant. Every generalized signature is again 
either related to a dominant signature or must vanish. An 
important special case is 

XU"f"OO'.[n _ " - I) = - XU'.[""'.[n _ ,,0) (3.8) 

for (/IJ2' .. ·In _ 1,0) dominant. 
With the help of the weight diagram computed pre

viously, we can evaluate the tensor product of dp and s with a 
representation A. = (/IJ2, ... In)' First we need the product 
of R (q) with X A' obtained using the invariance under the ac
tion of the Weyl group: 

R (q)x A = L L Xu" "h, + a",oo"h
q 

+ ai .. · . .[.)' 
i,<i-:!< ... <iq U'j= ± 1 

(3.9) 

Formula (3.9) also holds for (/1,J2' ... ,In) not dominant. The 
product of dp and A. is gotten by combining (3.6) and (3.9). 
The tensor product of the spin or representation with A. is 
deduced from (3,7) in an analogous fashion. 

XsX A = L Xu, + a,/2.[, + a,/2,00·.[n + a n12)' 
0',= ± 1 

(3,10) 

As an example of these multiplication rules, we com
pute the following product for SO(9): 

(1,1,0,0) ® (3,1,0,0) 

= (4,{ 1,0,01 I) + (3,{ 1,0,01 2) + (2,{ 1,0,01 I) + ... 
= (4,2,0,0) + (4,1,1,0) + (4,0,0,0) + (3,2,1,0) 

+ (3,1,1,1) + (2,2,0,0) + 2(3,1,0,0) 

+ (2,1,1,0) + (2,0,0,0). 

The decomposition formula for nonsplnor 
representations 

It is not hard to generalize formula (2.14) to the case of 
the group SO(2n + I). The explicit form of the weight dia
gram in (3.6) suggests that we should take the linear combi
nations 

as elementary building blocks in a determinantal expression 
like (2.14). Examination of a few simple special cases shows 
that this is basically correct, provided one modifies (2.14) in a 
way which we shall now specify. Let A. be a representation 
with dominant signature (/1' ... In) and define the integers 

r, =h - h+ 1> i = 1,2, ... ,n - I, rn =/", (3.12) 

as well as the sequence of direct sums and differences of basis 
representations 

n<k<2n, Dk =D2n _ k , 

k> 2n or k < 0, Dk = 0. (3.13) 
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Theorem 3: Let 

Il= 

or in components 

Il = ® det(.@), 

.@;j = D;_j+k ffiDi+j+k-1_2/,' 

D" ffiD,,_3 
D,,+lffiD,,_2 

r l + r2 + ... + rk _ l <i<,rl + r2 + ... + rk • (3.15) 

Thenll =,1.. 
Proof The proof again proceeds by induction offl' Sup

pose Il = A. for all A. such thatfl tqJ - 1; then we wish to 
prove that Il = A. for all A. such thatfl = p. The expansion of 
the determinant along the first column yields tensor pro
ducts of representations D; _ I + k ffi D; + k _ 2f, with minors. 
These minors are of the same form as the original determi
nant, and by the recurrence hypothesis equal to irreducible 
representation of which the first entry in the signature never 
exceedsfl - 1. The resulting formula for Il is the same as 
(2.16) but withda replacedwithDa ffiDa+I_2/,' Thedefini
tion of (generalized) signatures for the SO(2n + 1) again 
leads to a drastic simplification, analogous to the one that 
leads to (2.21) and we finally get 

f,+,,-I 
Il = L (D a ffi D a + I - 2/, ) 

a=l 

® (/1 - a./2""'/n)( - W - I. (3.16) 

We prove that Il = A. by explicit calculation of Il· As for the 
unitaries, the tensor products in (3.16) need not be worked 
out explicitly and we introduce the following shorthand: 

(/1' [f2""'/" jP± ) 

=ffi 

(/1' [f2""'/" 1 o± ) = (/1'/;""'/,,), 

(/1,1 f2'···./" JP± ) = 0 if P <0 or p>n - 1. 

(3.17a) 

(3.17b) 

(3.17c) 

We first evaluate the product of the functions R (p) with an 
arbitrary character using (3.9): 

R (P)XII,./, .... ./n) = XII, + 1,1 1, .... ./nIP±-I) 

+ XU;.I f,.···./ni'±) 

+ XII, - 1.( .t; •... ./nJP±- I). (3.18) 

The weight diagram of Dp is computed using (3.5) and is 
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I 

o 
o 

o 

D,,_I ffiD,,_2 
D" ffiD,,_1 

given by 

(3.14) 

(3.19) 

for allp;;;.O. Next, we compute the tensor products occurring 
in (3.16) and make use of the shorthand introduced in (3.17)
(3.18) 

Da ® (/1 - a,f2, .. ·,f,,) 

with 

[a/2J 

= L C~_a+2f3(B~_lffiB~ ffiB~!\), 
f3=0 

= 

B~ =(/I-a,[f2, ... ,/"Ja±-2
f3

), 

C'['/f3-(f 'f f.Ja-2 f3 -2/ ,+I) 
Jl a-I - a, l 2'··" n ± . 

We compute Il in two steps: 
I, +,,-1 

III = L Da ®(/I-a'/2''''./'')( _l)a-1 
a=l 

I, + " - I [a/2) 

L L C~-a+2f3 
a= I f3=0 

(3.20a) 

(3.20b) 

(3.21a) 

(3.21b) 

(3.22) 

Upon performing the appropriate shifts in the summation 
variables, we find 

j, +" - 2 [(a + 1)/2) 

III = L L C~_a_1 +2f3B~( - W 
a=O f3=0 

f, + " - I [a12) 

eLL C~_a+2f3B~( - W 
a= I fJ=O 

I, +" [(a + 1)/2) 
ffi L L C~=~_I+2f3B~( - W· (3.23) 

a=2 fJ= I 

For a odd we have 

B ~a + 1)12) = (/1 - a, {f2""./" I ± I) = 0 (3.24) 

so that the summation over f3 in the second term may be 
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extended from [a12] to [(a + I )12]. Then we rearrange 
expression (3.23) as follows: 

PI =BgeB?enB: ~B? ~(n + I}B: 
[If, + n)/2J 

~ L eLI, + 2IJB 1. + n _ II - 1)" + n 
!J=O 

[If, + n)/2J 

~ L c!J_t ,\ 2IJB1. + n-I ( - I)" +n- I 

!J=I 
[If, + n + 1)/2J 

~ L C!J_t,l_ 1+ 2!JB 1. + n ( - 1)" + n 

!J=I 
1,+n-2 [(a+I)/2J 

~ L L (C~-a-I+2IJ-C~-a+2IJ 
a=2 !J=O 

+ C~=~+2IJ}B~( - It· (3.25) 

The double sum in (3.25) vanishes due to Pascal's equality on 
binomial coefficients. Using (3.24) again for the term B: and 
Pascal's equality, 

[(f, + n)/21 

PI =Bg ~ L C{3_/, +2{3B7, + n-I (- IV' +n 

{3=O 

[(f, + n + 1)/2J 
" C{3-1 B{3 ( IV,+n ~ L -/,-1+2{3 /,+n - . 

{3=1 

(3.26) 

The same sequence of manipulations may be applied to the 
expression for P2, 

I, +n-I 
P2 = L Da + I - 2/, ® (II - a,/2,· .. ,ln)( - It - 1, 

a=1 

(3.27a) 

and it yields 
[(n +1, + 1)/2J 

P2 = L ( - IV' + nC{3_J;'~ 2{3-1 %f=;.~ - 1 
!J=/, 

[In +/.I/2J 

~ L (- 1)" + nC{3_J;'~ 2ti%f=;.~ + I (3.27b) 
ti=/, 

Using the properties of the binomial coefficients, we see that 
the sums in (3.26) actually only start at f3 = II instead of at 
f3 = 0 or f3 = 1. Taking this remark into account, we obtain 
the following result for p: 

DI Do 0 
D2 DI Do 

DI Do 0 

D3 D2 DI 

P =PI ~P2 
[(f, + n)/2J 

=Bg~ L C ti
_ I ,+2IJ(B1.+n_1 

fJ=l, 

~%1.~~+I)( _1)',+n 
[if, + n + 1)/2J 

~ L C fJ_t ,I+ 2IJ _I(B1.+n 
fJ=l, 

~ %1.~~ - Il( - 1)" + n. (3.28) 

From the definition of Band % in (3.20) and making use of 
the properties of generalized signatures we see that 
%fJ-I, + I 

I, + n 

= (- n,1/2, ... ,/n J'±+n- 2IJ -I) 
=(_l)n-I({/2- I ,h-1,"''/n _lj/±+n-2fJ- 1,_I). 

With the help of (3.8) this reduces to 
%{3-/, + 1 

f, + n 

= (- lrO/2 - 1'/3 - l, ... ,/n - 1 j/±+n-2fJ- 1,0) 

= - (I - n, ( 12"",/n l'± + n - 2fJ + I). (3.29a) 

Comparison with the definition of B yields 
%fJ-/, + 1_ BfJ 

f,+n - - f.+n-l' 

and similarly we have 

%ti-f, - BfJ /,+n-I - - /,+n' (3.29b) 
As a consequence, the two sums in (3.28) cancel exactly, and 
we get 

P = Bg = (/1'/2'''''/n)' 
as announced in Theorem 3. 

(3.30) 

The decomposition formula for spinor representations 

Examination of some simple examples again suggests 
that the correct building blocks for the decomposition for
mula are the Dk introduced in (3.13). The correct modifica
tion of(3.14) is then easily found, and will now be given. Let 
A be a spinor representation of SO(2n + 1), with signature 
(11'/2' .. ·'/n), and define the integers 

r;=/;-/;+I' i=I, ... ,n-l, rn=ln-~' (3.31) 

Theorem 4: Let 

(3.32) 

Dn+ 1eDn_ 3 DneDn_ 2 

or in components 

P =s®det~, 
(3.33) 
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I 
and kis defined bY'1 +'2 + ... + 'k-l <i<,rl +'2 + ... 
+ r k' Then P = A. Please note the difference in sign between 
(3.15) and (3.33) as well as the difference in index in the sec
ond term. 
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Outline olthe proof The proof proceeds by induction on 
II as before. The definitions of generalized signatures and 
braces { I of (3.17) are extended to spinor representations 
and I" is again computed directly using the expansion of de
terminant (3.32) along the first column. Proceeding along 
the lines of the proof of Theorem 3, we find that we must 
calculate 

I. +n-I 

I" = L (Da eD -2/. +a) ® (/1 - a,/2,···,/nH - It-I. 
a=1 

(3.34) 

The tensor products are evaluated with the help of the 
weight diagram of dp in (3.5) and collected with the brace 
notation (3.17). After simplifications analogous to those 
made in the proof of Theorem 3, we find 

(3.35) 

as announced. 
In both Theorems 3 and 4, we have decomposed all 

representations ofSO(2n + 1) in terms of d l , d2, ••• , dn ands, 
even though d n is not on the list of basis representations in 
(1.6b). We have done so becaused l , d 2 , ••• , dn andsform the 
natural set in terms of which the decomposition formulae are 
simplest. In addition, this presents no loss of generality since 
d n itself is expressed in terms ofthe set of basis representa
tions (1.6b) by a simple formula, which we shall now derive. 
From (3.10), we deduce 

s®s= E!) L (17I ,172,···,17n )· (3.36) 
Uj= 0,1 

Cancelling nondominant signatures leaves us with 

(3.37) 

so that 
n-I 

dn = s®s6 L dp • (3.38) 
p=O 

IV. THE SYMPLECTIC GROUP Sp(n) 

The representation theory for the symplectic group is 
much simpler than that for SO(2n + 1), since there are no 
spinor representations. Moreover, the decomposition for
muale as well as their proof are very similar to the case of 
SO(2n + 1). For this reason, we just quote the results for the 
decomposition formula; the reader should have no problem 
reconstructing the proof. 

Multiplication of a basis representation with an 
arbitrary representation 

The weight diagram ofthe representation dp with signa
ture (1,1, ... ,1,0, ... ,0) (forp = 1, ... , n) is deduced from (l.4c) -----p 

and can be conveniently expressed as 

Xd
p 

= (dp - d p _ 2 )1do' (4.1) 

The function d p has been defined in (3.2), and the resulting 
weight diagram of dp is found with the help of (3.4) 
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[pI2] 

Xd
p 

= L C~_p+2aR (p - 2a) 
a=O 

[lp-2)/2] 

L C~_p+ 1 +2a R (p - 2 - 2a). (4.2) 
a=O 

Here R is the function defined in (3.4b), and the product of R 
with the character of a representation with signature 
(/1'/2""'/n) is given by 

(4.3) 

The tensor product of dp with the representation A is then 
simply obtained combining (4.2) and (4.3). 

The decomposition formula 

Let A be a representation with signature (/1'/2' ... ,J,,). 
Define the integers ri by 

ri=J:-J:+I' i=1, ... ,n-1, rn=ln (4.4) 

as well as the sequence of reducible representations 

O<k<n, 

n<k<2n, 
k>2n or 
k<O, 

Theorem 5: Define 

1"= 

or in components 

I" = ® det fiJ 

DneDn_ 4 

Dn+ leDn_ 1 

fiJ ij =Di-i+keDi-i+k-2-2f, 

if k odd, 

if keven, 

Dn_ 1 eDn_ 3 

DneDn_ 2 

(4.5) 

(4.6) 

(4.7) 

and k is defined by r l + r2 + ... + rk_1 <i<rl + r2 + ... 
+ rl • Then I" =,1. 

V. THE ORTHOGONAL GROUP SO(2n) 

According to whether!n = ° or #0, the characters of 
the group SO(2n) defined in (l.4d) correspond to irreducible 
or reducible representations. When!n = 0, the representa
tions is non-self-associate, and the character is simple. When 
!n #0, the representation is self-associate, reducible into two 
associate irreducible representations of the same dimension, 
and the character is said to be a double character. We shall 
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show how to construct the tensor product of an arbitrary 
representation Ii with a basis representation (whether self
associate or not) and if the basis representation is reducible, 
we shall also show how to find the product of its irreducible 
associate components with Ii. A decomposition formula will 
be proven for both self-associate and non-self-associate re
presentations. We have not found a decomposition formula 
for the irreducible components of a self-associate representa
tion. 

Multiplication of a generating representation with an 
arbitrary representation 

We shall need the following generating representations 

dp = (1,1, ... ,1,0, ... ,0), 
-..

p 

p = 1, ... ,n - 1, 

dn=d,;f!Jd n-, s=s+f!JS-. 

The representations ± are associate to each other, whereas 
sand dn are self-associate. When n is odd, ± are actually 
complex conjugates, whereas, for n even, both + and -
are real. We first determine the weight diagrams of dp and S 

and then indicate how those of S ± and d n± may be gotten. 
From Weyl'sftrst formula (l.4d) and using the defini

tion of the function d p in (3.2), we see that 

Xd
p 

= dp/do. (5.2) 

With the help of (3.4b), Xd may be expressed in terms of R: 
p 

[p/2J 

Xd
p 

= .2 C~_p+2aR (p - la). (5.3) 
a=O 

The double character of the spinor representation is given by 

Xs = .2 €f,/2~2/2"'E~n/2. (5.4) 
Ui= ± 1 

The quantity u defined as 
n 

U = II U i (5.5) 
i=l 

may take the values ± 1 in (5.4). The characters of s+ (resp. 
s-) are also defined by (5.4), but now U must be restricted to 
be 1 (resp. - 1). The expression for the character of d n± is 
more complicated, and we shall not give it here. It may be 
deduced from the relation 

(5.6) 

For representations within = 0 and self-associate re
presentations, a generalized signature may be defined: 

_ lEI, + E -/', ... ,Eln + E -/nl 
X(f"t,···,fn) - 10 10 (5.7) 

IE' + E- ',. .• ,11 
even if(!J,h, ... ,/,,) is not dominant. For the two irreducible 
associate representations into which a self-associate repre
sentation decomposes, similar generalized signatures may be 
defined, but we shall not need these here. 

Tensor multiplication is effected using formulae (5.3)
(5.4); the product of R with the character of an arbitrary 
representation Ii with signature (!J'/2, .. .fn) is given by 

R(q)X" 

and the product ofXs andx" is 

XsX" = .2 F(u)X([,+u,/2, ... ,fn+ u/ 2)· (5.9) 
a j = ± I 

The integers G (u) and F (u) are present to obtain the correct 
counting of self-associate and non-self-associate representa
tions. They are determined from (3.4b) and (5.7) using the 
invariance under the action of the Weyl group: first we make 
(/1'/2'''''/n) dominant. For the integer G we have 

G(u) = 1 ifiq =l=n or Un =1= - 1, 

G(u) = 1 if Un = - 1 and/,. > 1, 

G(u) = 2 if Un = - 1 and!n = 1, 

G(u) = 0 if Un = - 1 and!n = O. 

For the integer F(u) we have 

F(u) = 1 if Un = 1, 

F(u) = 1 if Un = - 1 and!n =I=~, 

F(u) = 2 if Un = - 1 and/,. =~. 

(5.10) 

(5.11) 

Products with the representationss+ or s- are obtained 
by making the appropriate restrictions on u given in (5.9). 

As an example of these multiplication rules, one may 
compute the following product for SO(lO).1O [We use the 
definition R (q) = tr p(q).] 

(1,1,1,1,0) ® (3,2,2,2,1) = 1P(4) + 3p(2) + IOp(O)] ® (3,2,2,2,1), 

9 

p(4) ® (3,2,2,2,1) = (4, {2,2,2,1 }3± ) f!J (3,{2,2,2,1}~ ) f!J (2, [2,2,2,1} 3± ) 

= (4,3,3,3,1) + (4,3,3,2,2) + 2(4,3,3,2,0) + 2(4,3,2,1,0) 

+ (4,3,3,1,1) - (4,3,2,2,1) + (4,3,1,1,1) - 2(4,2,2,2,2) - 4(4,2,2,2,0) + 2(4,2,1,1,0) 

- (4,2,2,1,1) + (4,1,1,1,1) + (3,3,3,3,2) + 2(3,3,3,3,0) + 2(3,3,3,1,0) - (3,3,2,2,2) 

- 2(3,3,2,2,0) + 2(3,3,1,1,0) - 2(3,2,2,1,0) + 2(3,1,1,1,0) - 2(2,2,2,2,2) - 4(2,2,2,2,0) 

- (2,2,2,1,1) + (2,1,1,1,1) + 2(2,2,1,1,0), 

p(2) ® (3,2,2,2,1) = (4,[2,2,2,1} 1) + (3,[2,2,2,1 }2) + (2,[2,2,2,1} 1) 

= (4,3,2,2,1) + (4,2,2,1,1) + (4,2,2,2,2) + 2(4,2,2,2,0) 

+ (3,3,3,2,1) + (3,3,2,1,1) + (3,3,2,2,2) + 2(3,3,2,2,0) + 2(3,2,2,1,0) 

- (3,2,2,2,1) + (2,2,2,2,2) + (2,2,2,1,1) + 2(2,2,2,2,0) - (3,2,2,2,1) + (3,2,1,1,1). 
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Putting all together, we obtain 

(1,1,1,1,0) ® (3,2,2,2,1) = (4,3,3,3,1) + (4,3,3,2,2) + 2(4,3,3,2,0) + 2(4,3,2,1,0) 

+ (4,3,3,1,1) + 2(4,3,2,2,1) + (4,3,1,1,1) + (4,2,2,2,2) + 2(4,2,2,2,0) + 2(4,2,1,1,0) 

+ 2(4,2,2,1,1) + (4,1,1,1,1) + (3,3,3,3,2) + 2(3,3,3,3,0) + 2(3,3,3,1,0) + 2(3,3,2,2,2) 

+ 4(3,3,2,2,0) + 2(3,3,1,1,0) + 4(3,2,2,1,0) + 2(3,1,1,1,0) + (2,2,2,2,2) + 2(2,2,2,2,0) 

+ 2(2,2,2,1,1) + (2,1,1,1,1) + 3(3,3,2,1,1) + 4(3,2,2,2,1) + 3(3,3,3,2,1) + 2(2,2,1,1,0) 

+ 3(3,2,1,1,1). (5.12) 

With the help of the tables of dimensions of representations,9 we may check that dimensions work out correctly: 

210X 50688 = 945 945 + 660 660 + 1698840 + 1048576 

+ 882 882 + 2X 848925 + 242 550 + 90090 + 274 560 + 143000 

+ 2X 199 017 + 17325 + 84942 + 165 165 + 210 210 + 128700 

+ 2X 189189 + 73 710 + 2X72 765 + 8085 + 2772 + 8910 

+ 2X6930 + 1050 + 3X 128700 + 4X50 688 + 3X219 648 + 5940 

+ 3X23 040. 

The decomposition formula for nonspinor 
representations simple and double characters 

Let A be a representation with (dominant) signature 
(f1'/2""'/n)1O and define the sequence of representations 

O<.k<.n, 

n<.k<.2n, 

Ok =dk 

Ok =d2n - k, 

k>2n or k <0, Ok = O. 

(5.13) 

Note that all nonzero representations in this sequence are 
irreducible and that dn is self-associate. We shall now prove 
the following decomposition theorem in the case of non
spinor representations. 

Theorem 6: Let 

fL = ® det.,@' , 
(5.14) 

!iJ jj = (OJ _ j+ k Ell OJ + j+ k _ 2f,)I( 1 + OJ,f, ) 

and let k be defined by II - Ik < i<JI - Ik + I' Then fL = A. 
Proof As for the other three classical groups, the proof 

proceeds by induction on/l . Expansion of determinant (5.14) 
along the first column and the use of generalized signatures 
reduce the calculation of fL to the evaluation of the following 
expression: 

I, + n-I 

fL= I (Oa EllOa_2/,+2) 
a=l 

® (fl - a'/2""'/n)( - l)a - I. (5.15) 

To work out the products in (5.15), we use (5.8) and rearrange 
different contributions to the product of R (q) and X.Ie with the 
help of the brace notation introduced in (3.17). 

p(q) ® (fl - a,/l,···,/n) 

= (fl - a + 1,[ 12""'/n jq±- I) 

Ell (fl - a, [/2""'/n j q± ) 

Ell G(fl - a - 1,[ 12""'/n jq±-I), 

where G is determined by the rules of (5.10): 

10 

G = 0 if a = II + n - 1, 

G = 2 if a = II + n - 2, 

G = 1 if otherwise. 
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(5.16a) 

(5.16b) 

I 
Then we make use of (5.3) and obtain 

oa ® (fl - a,/2,···,/n) 
[aI2] 

= I C~_a+2fJ(B~_1 EIlB~ EIlGB~tl), (5.17a) 
p=o 

where G is defined in (5.16b): 

oa - 2/, + 2 ® (fl - a,/2,···,/n) 
[a12] -I, + I 

I c ~ - a + 21, - 2 + 2P 
p=o 

X(B~:~' -I EIlB~+I, -I Ell GB~t1). (5.17b) 

Here we have made use of the quantity 

B~ = (fl -a,[/l'/3""'/n ja±-2fJ). (5.18) 

Shifts in summation variables, the use of Pascal's equality, 
and the explicit definition of G lead to 

fL =fLI EIlfLl' 
[If, + n)12] 

fL I = B g Ell I c P_ I, + 2pB ~ + n _ I ( - tV, + n 
p=o 

[If, + n)/2] 
e I CP_f,I+2fJB~+n_I(_tV,+n, (5.19a) 

p=o 
[I -I, + n)12] + I 

fL2 = I C~_2+2pB~~~=U _ly,+n 
p=o 

II -I, + n)/2] + I 
e " c P - I BP+I,-I(_pf,+n L 1,-2+2P I,+n-I r· 

p=o 
(5.19b) 

Making the substitution P-P - 11 + 1 in (5.19a) and using 
the properties of the binomial coefficients, it can be shown 
that the four P summations in (5.19) precisely cancel, leaving 
only fL = B g = (fl""'/n) = A as announced. 

The decomposition formula for splnor representations 

Finally we shall exhibit a decomposition formula in the 
case of the (always self-associate) spinor representations. The 
proof is completely analogous to the proofs of Theorems 4 
and 6 and will not be given here. We define the same se
quence of representations Ok in (5.13), let A be a representa
tion with signature (fl""'/n)' 
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Theorem 7: Let 

p, = 8 det ~ 8 S, 

~iJ =8t-J+ke6i+J+k-2f.-iO 15.20) 

and let k be defined by 11 - Ik <i<J"1 - Ik+ l' Then p, = A.. 
Please note the difference in sign and the difference in indices 
between 15.20) and 15.14). 

Weyl's second formula, respectively for the unitary and or
thogonal groups. The knowledge of the product of a sym
metric representation with an arbitrary representation then 
suffices to perform the product of two arbitrary representa
tions. This method is very attractive for the unitary groups, 3 

but appears quite involved for the orthogonal groups. 5 

With the Theorems 2-7, we dispose of decomposition 
formulae in terms of the basis representations. In proving 
these relations, we have also shown how to perform the ten
sor product of any of these basis representations with an 
arbitrary representation. Thus, we dispose of an algorithm 
that allows us to compute the tensor product of two arbitrary 
representations, and the rules of this algorithm seem rather 
convenient, even though the calculations remain lengthy. 

VI. APPLICATIONS 

A. Multiplication of arbitrary representations 

Several algorithms exist in the literature for the decom
position into irreducible representations of the tensor pro
duct of two irreducible representations.2

,3,5 If the weight dia
gram of one of the representations is known, Weyl's first 
formula can be used to obtain the irreducible components.2

•
3 

However, the determination of the weight diagram is a noto
riously difficult problem. Zelobenk0 3 and Murnaghan5 use 

To demonstrate the practicality of these rules, we shall 
work out an example of intermediate difficulty: the tensor 
product in Sp(4) of the representations a and fJ with signa
tures 12,1,1,0) and 13,2,2,1). To do so, we use Theorem 5 for 
a: 

I 

IDI Do I" 12,1,1,0)813,2,2,1)= D -D D -D 813,2,2,1) 
,..4 #1,0 #\,3 1 A A. 

= Dl 81D3 - D1) 8 13,2,2,1) -ID4 - Do) 8 13,2,2,1), 

ID3 -Dtl813,2,2,1) = 14,3,3,1) + 14,3,1,1) + 14,3,2,2) + 14,3,2,0) 

+ 14,2,1,0) + 14,2,2,1) + 14,1,1,1) + 13,3,3,2) + 13,3,3,0) + 13,3,1,0) 

+ 13,2,2,2) + 13,2,2,0) + 13,1,1,0) + 12,2,1,0) + 12,2,2,1) + 12,1,1,1) 

+ 213,3,2,1) + 213,2,1,1), 

ID4 - Do) 8 13,2,2,1) = 14,3,3,2) + 14,3,3,0) + 14,3,1,0) + 14,2,2,2) 

+ 14,2,2,0) + 14,1,1,0) + 12,2,2,2) + 12,2,2,0) + 12,1,1,0) + 214,3,2,1) 

+ 214,2,1,1) + 213,3,3,1) + 213,3,1,1) + 213,3,2,2) + 213,3,2,0) + 213,2,1,0) 

+ 213,1,1,1) + 313,2,2,1) + 212,2,1,1). 

Putting all together, we obtain 

12,1,1,0)813,2,2,1) = 15,3,3,1) + 14,4,3,1) + 15,3,1,1) + 14,4,1,1) 

+ 514,3,2,1) + 15,3,2,2) + 14,4,2,2) + 214,3,3,2) + 15,3,2,0) 

+ 14,4,2,0) + 214,3,3,0) + 314,3,1,0) + 15,2,1,0) + 3(4,2,2,0) 

+ (4,2,0,0) + (5,2,2,1) + 4(4,2,1,1) + 2(4,2,2,2) + (5,1,1,1) 

+ 2(4,1,1,0) + 13,3,3,3) + 3(3,3,3,1) + 4(3,3,2,0) + (3,3,0,0) 

+ (2,2,2,2) + 3(3,3,2,2) + 2(2,2,2,0) + 5(3,2,1,0) + 5(3,2,2,1) 

+ 2(2,1,1,0) + (3,1,0,0) + 313,1,1,1) + (2,2,0,0) + (1,1,1,1) 

+ 4(3,3,1,1) + 3(2,2,1,1). 

It is also useful to check the dimensions using the tables9
: 

315X6237 = 213 444 + 122850 + 96 228 + 41250 + 5X65 536 

+ 142 155 + 67 760 + 2X56 628 + 146250 + 66 528 + 2X42 042 

+ 3X29 106 + 36 864 + 3X 16 848 + 4914 + 63 063 + 4X 14 300 

+ 2X 13728 + 9009 + 2X3696 + 4719 + 3X 12 012 + 4X 10010 

+ 2184 + 594 + 3 X 9009 + 2X825 + 5 X 4096 + 5X6237 

+ 2X315 + 594 + 3X 1155 + 308 + 42 + 4X7020 + 3X792. 

I A 

B. A relation between the dimensions of the 
repre .. ntatlons of Sp(n) and splnor representations of 
SO{2n+ 1) 

(3.32) and the difference in definition for Dk andDk. In parti-
cular, the value of the characters ofDk andDk attheidentity 
of the group can be shown to be equal. Indeed, upon using 
formulae (3.4H3.6) and (3.13) on one hand and formulae 
(4.2) and (4.5) on the other, we find that 

Formulae (3.32) and (4.6) have the same formal struc
ture except for the overall tensor product with the spinors in 
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[kl2l 

X (e) =1" (e) = ~ C a 2k-2ack-2a 
Dk Dk L.t n - k + 2a n (6.1) 

a=O 

Substitution of(6.1) into (3.32) and (4.6) yields the following 
result. Let A be an arbitrary representation of Sp(n) with 
dominant signature (l1,/z, ... ,jn)' let A be the representation 
ofSO(2n + 1) with signature (II + ~,f2 + !, ... ,fn + !), and 
let s be the fundamental spinor of SO(2n + 1) with signature 
(~,!, ... ,!). Then we have 

dim A = dims dimA. (6.2) 

In fact, it is also clear from (3.5) and (3.13) that, in thecanoni
cal basis, a more general relation holds 

1'A (h) = 1's(h )1'.«h), (6.3) 

where h is an element of the Cartan subgroup, parametrized 
by the angles r/ll' ... , r/ln . 

C. Restriction of a representation to a subgroup 

Let G be any of the four classical groups, and let Go be 
any of its classical nontrivial subgroups. We wish to deter
mine the irreducible components of the restriction of the 
representation A of G to Go. If, by classical methods, we can 
derive the restriction of the basis representations of G to the 
subgroup Go, then we can calculate the restriction of any 
representation by Theorems 2-7. 

We shall treat the following simple example: 

G = SU(2n), Go = SO(2n). 

The restriction of the basis representations ofSU(2n) to 
SO(2n) are irreducible and given byll 

dtlsol2n) = c5f, k = 1, ... ,2n, (6.4) 

wherec5k is defined by (5.13). The restriction ofa representa
tion ofSU(2n) is then given by determinant (2.14) in which 
d t is replaced by c5f. It is usually not necessary to fully work 
out the products in this new determinant, as often irreduci
ble representations ofSO(2n) may be recognized in it. Con
sider, e. g., the restriction of the representation (2,2,2,1,1,0,0) 
of SU(8) to SO(8), 

I
dA d11 Ic5

D 

c5
D

I 
(2,2,2,1,1,0,0,0)A I SOI8) = d:

6 
c5 ~2 c5 ~3 ' dt SOI8) 

c5 f ® c5 f = (2,2,2,0) + (2,2,1,1) + (2,2,0,0) + 2(2,1,1,0) 

+ (2,0,0,0) + (1,1,1,1) + 2(1,1,0,0) + (0,0,0,0), 

c5 f ® c5 f = (2,2,0,0) + (2,1,1,0) + (2,0,0,0) + (1,1,1,1) 

+ (0,0,0,0) + (1,1,0,0), 

(2,2,2,1,1,0,0,0)A I SOI8) = (2,2,2,0)D + (2,2,1,I)D 
+ (2,I,I,0)D + (I,I,O,O)D' (6.5) 

Using the tables,9 we can easily check that the dimensions 
work out: 

2352A = 840D + 567D + 567D + 350D + 28D. (6.6) 

In a completely analogous fashion, the restrictions of 
the basis representation ofSU(2n + 1) to SO(2n + 1) are also 
irreducible, and can be used to calculate the restrictions of 
arbitrary representations to SO(2n + 1). 

The restrictions of the basis representations ofSU(2n )to 
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SpIn) are reducible and can be easily derived using conven
tional methods: 

d t ISPln) = D f, (6.7) 

where Dk has been defined in (4.5). We shall illustrate this 
restriction with an extremely simple example, the decompo
sition of the representation a ofSU(6) with signature 
(2,2,1, I ,0) to Sp(3): 

aI SP(3 ) = I~~ ~~ I" = I~~ ~!I" 
5 4 Sp13) 1 2 

Working out these products, one finds 

(2,2, 1, 1,0,0)A I Sp(3) = (2,2,0)e ~ (2,1,I)e ~ 2( 1,1 ,Ole ® (O,O,O)e 
(6.8) 

with dimensions 

189A = 90e + 70e + 2X 14e + Ie· 

The peculiar property of this algorithm is that we only need 
to know the restrictions of afinite number of representations 
to compute that of all representations. The procedure can be 
easily generalized to arbitrary classical groups G and Go. 

Note added in manuscript: The problem of decompos
ing a given representation into a finite set of basis representa
tions has also been discussed by A. J. Feingold, Proc. Am. 
Math. Soc. 70, 109 (1978). I thank Professor J. Patera for 
drawing my attention to this work. 
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The Caudrey-Dodd-Gibbon equation is found to possess the Painleve property. Investigation of 
the Backlund transformations for this equation obtains the Kuperschmidt equation. A certain 
transformation between the Kuperschmidt and Caudrey-Dodd-Gibbon equation is obtained. 
This transformation is employed to define a class of p.d.e. 's that identically possesses the Painleve 
property. For equations within this class Backlund transformations and rational solutions are 
investigated. In particular, the sequences of higher order KdV, Caudrey-Dobb-Gibbon, and 
Kuperschmidt equations are shown to possess the Painleve property. 

PACS numbers: 02.30. + g 

1. INTRODUCTION 

In Ref. 1 the Painleve property for partial differential 
equations was defined. Briefly, we say that a partial differen
tial equation has the Painleve property when the solutions of 
the p.d.e. are "single-valued" about the movable, singularity 
manifold and the singularity manifold is "noncharacteris
tic." To be precise, if the singularity manifold is determined 
by 

(Ll) 
and u = u(Zt, ... ,zn) is a solution of the p.d.e., then we require 
that 

'" u = rpa L uj rpi, (1.2) 
j=O 

where uo#O, rp = rp (Zt, ... ,zn)' uj = uj(Zt,. .. ,zn) are analytic 
functions of (Zj) in a neighborhood of the manifold (1.1), and 
a is an integer. The requirement that the manifold (1.1) be 
noncharacteristic insures that the expansion (1.2) will be well 
defined, in the sense of the Cauchy-Kowalevsky theorem. 
Substitution of(1.2) into the p.d.e. determines the value(s) of 
a, and defines the recursion relations for uj , j = 0,1,2, .... 
When the anzatz (1.2) is correct, the p.d.e. is said to possess 
the Painleve property and is conjectured to be integrable. 
The "Painleve conjecture," as originally formulated by 
Ablowitz et al., 2 states that when all the ordinary differential 
equations obtained by exact similarity transforms from a 
given partial differential equation have the Painleve proper
ty, then the partial differential equation is "integrable." The 
above definition of the "Painleve property" allows this con
jecture to be stated directly for the partial differential equa
tion. 

In Ref. 3 Backlund transformations were obtained by 
truncating the expansion (1.2) at the "constant" level term. 
That is, we set 

U = Uo rp - N + U t rp - N + t + ... + UN (1.3) 

and find, from the recursion relations for uj ' an overdeter-

aj This work supported by Department of Energy Contract DOE DE-AC03-
81ERI0923 and AFOSR Grant No. AFOSR 83-0095. 

mined system of equations for (rp,uj,j = O,I, ... ,N), where UN 
will satisfy the (original) p.d.e. Upon solving the overdeter
mined system, it was found, for those equations considered, 
that rp satisfied an equation formulated in terms of the 
Schwarzian derivative: 

[rp;xJ = ~ (rpxx) _ ~ (rpxx)2. 
ax rpx 2 rpx 

The invariance of (1.4) under the Moebius group 

a¢+b 
rp = c¢+d' [ rp;x J = [¢;x J 

motivates the substitution 

(1.4) 

(1.5) 

rp = Vt /V2, (1.6) 

by which the Lax pairs may be found.3 

Investigation of a certain class of equations formulated 
in terms of the Schwarzian derivatives revealed that these 
equations have the Painleve property about movable, singu
larity manifolds of order - 1. However, the occurrence of 
an additional type of movable singularity prevents this class 
of equations from identically possessing the Painleve proper
ty. Hence, nonintegrable behavior can arise.2 

In this paper a restriction (symmetry) is imposed that 
allows one to conclude that, when an equation is formulated 
in terms of the Schwarzian derivative and has this "symme
try," the equation identically possesses the Painleve proper
ty. Within this class of equations are found the KdV, Cau
drey-Dodd-Gibbon and Kuperschmidt equations. Further
more, the "symmetry" property and invariance under the 
Moebius group allow effective Backlund transforms to be 
defined for these equations. In particular, rational or alge
braic [in (x,t)] solutions can be generated iteratively. 

In the next section, the Painleve property and Backlund 
transformation for the KdV equation are reviewed for later 
reference. 

In Sec. 3 the Painleve property and Backlund trans
forms for the Caudrey-Dodd-Gibbon equation are present
ed. From these considerations the Kuperschmidt equation is 
found. The transformation between the Caudrey-Dodd
Gibbon and Kuperschmidt equations can be regarded as a 
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certain "symmetry" under which these equations are 
"dual." 

In Sec. 4, the "symmetry" discovered in Sec. 3 is em
ployed to define a class of p.d.e.'s that possess the Painleve 
property. The KdV equation is shown to be contained in this 
class of equations and self-dual w.r.t. this symmetry. Then, 
the sequences of higher order KdV, Caudrey-Dodd-Gib
bon, and Kuperschmidt equations are found to be within this 
identically Painleve class of equations and Backlund trans
formations are obtained for these sequences of equations. 

In Sec. 5 rational [in (x,t )] solutions are constructed for 
several equations. In Appendix A the Lax pair for the Cau
drey-Dodd-Gibbon equation is derived. In Appendix B 
further considerations relating to the seventh-order equa
tions are presented. 

2. THE KORTEWEG-DE VRIES EQUATION 

The KdV equation 

Ut + UUx + Uxxx = 0 (2.1) 

possesses the Painleve property. I The expansion about the 
singularity manifold has the form 

00 

-2 ~ j U = ffJ ~ uj ffJ . (2.2) 
j=O 

The "resonances" occur at 

j = - 1,4,6, (2.3) 

and (ffJ,U4,U6) are arbitrary functions of (x,t ) in the expansion 
(2.2). We now assume the following "Backlund" transforma
tion: 

(2.4) 

and find the following overdetermined system of equations, 

(i) Uo = - 12ffJ;, 
(ii) u1 =I2ffJxx' 
(iii) ffJx ffJt + ffJ ; U2 + 4ffJx ffJxxx - 3ffJ!x = 0, (2.5) 

(iv) ffJxt + ffJxx U2 + ffJxxxx = 0, 

(v) u2t + U2U2x + U2xxx = 0, 

iP 
U = 12 -2 In ffJ + u2 ax 

and, by eliminating U2 in (2.5 iii,iv), 

ffJ,IffJx + { ffJ;X I = A, 
where 

(2.6) 

(2.7) 

(2.8) 

is the Schwarzian derivative of ffJ. Equation (2.7) is invariant 
under the Moebius group: 

at/J + b 
ffJ = et/J + d' 

{ ffJ;X J = {r/r,x J • 

The substitution2 

14 

ffJ = V1/V2' where (Vl,V2)satisfy 

Vxx = av, Vt = bvx + cv, 
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(2.9) 

(2.10) 

(2.11) 

readily obtains the Lax pair: 

a= -i(u2 +A), 

b = - u2/3 + j A, 

c = ux /6. 

As noted in Ref. 2, Eq. (2.7) has an expansion 
00 

ffJ = ",-I L ffJdl 
j=O 

about a singularity manifold 

f/;(x,t) =0. 

The resonances occur at 

(2.12) 

(2.13) 

(2.14) 

j = - 1,0,1 (2.15) 

and the compatability conditions atj = 0 and 1 are satisfied 
identically. Thus, Eq. (2.7) has the Painleve property about 
singularities of the form (2.13). However, we note that the 
vanishing of ffJx in (2.7) introduces the possibility of new, 
movable, singularities. This point will be resolved in Sec. 4. 

The most general form of the Backlund transform de
fined by the expression 

ffJ = ffJoit/J + ffJl (2.16) 

can be shown to be equivalent to the Moebius transforma
tion (2.9). Again, an "effective" Backlund transformation for 
equation (2.7) will be defined in Sec. 4. 

3. THE CAUDREY-DODD-GIBBON EQUATION 

The Caudrey-Dodd-Gibbon equation4,s 

u, + ~ (uxxxx + 30uuxx + 6Ou3
) = 0 ax (3.1) 

possesses the Painleve property. The expansion about the 
singularity manifold is of the form 

00 

U = ffJ -2 L Uj ffJj. 
j=O 

There are found to be two solution branches. 
Branch i: Uo = - ffJ ;: The resonances occur at 

j = - 1,2,3,6,10. 

Branch ii: Uo = - 2ffJ ;: The resonances occur at 

(3.2) 

(3.3) 

j = - 2, - 1,5,6,12. (3.4) 

Both branches of the solution possess the Painleve property. 
The Backlund transformation defined for the "branch 

i" form of the solution is 

(3.5) 

The resulting overdetermined system of equations for 
(ffJ,uO'U 1,U2) is found to be 

(i) Uo = - ffJ ;, 

(ii) U 1 = ffJxx' 

(iii) ~ + 6 ffJxxxxx _ 15 ffJxxffJ;= 
ffJ x ffJ z ffJ x 

+ 30 {U2xx + 4 (ffJ: - 3 :~ ) U2 + 6ui} 

John Weiss 
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=0, 

(v) U2t + ~ (U2xxxx + 30U2U2xx + 6Ou~ ) = o. 
ax 

Using (3.6), Eq. (3.5) is 

a2 

U = -2 In rp + U 2• 
ax 

We note that if 

then 

and 

rp = lit/!, 

~ 
U2 = - In t/! + U 

ax2 

1 rp~ 1 ~xx 
W=u2+ --- =u+ --. 

4 rp; 4 ¢; 

To employ this invariance, we let 

1 rp~ 
u2 = W- ---

4 rp; 

and find 

(i) .!f.!..- + 6~ {rp;.xJ + 19{rp;xJ2 
rpx ax2 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

+30[Wxx +6W2+4{rp;xJW] =0, (3.14) 

(ii) ~(.!f.!..- + ~2 {rp;xJ + ~ (rp;.xJ 2
) 

ax rpx ax 2 

+30W~{rp;xJ=0, (3.15) 
ax 

where {rp;x J is the Schwarzian derivative. To simplify these 
expressions, we let 

{} = {rp;xJ + 6W 

and find 

(i) .!f.!..- + a
2
2 {rp;xJ + 4{rp;.xJ2 

rpx ax 

+ 5({}xx + {}2 + 2{rp;xJ{}) = 0, 

(ii) ~ (~ + ~ {rp;.x} + 4{rp;.x} 2) 
ax rpx ax2 

+ 5{}~ {rp;.x J = O. 
ax 

From the consistency of (3.17) and (3.18) 

{}2 2 
{}{}xx - _x + _{}3 + {rp;.x}{} 2 = c. 

2 3 

Herein, we shall consider only the trivial solution 

{}= C= 0, 

.!f.!..- + ~2 (rp;xj + 4{rp;xJ2 = 0, 
rpx ax 
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(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

U
2 

= - 1. rpxxx. (3.22) 
6 rpx 

It can be shown that Eqs. (3.21) and (3.22) imply that U2 

satisfies the Caudrey-Dodd-Gibbon equation. Actually, as 
is explained in Appendix A, (3.21) and (3.22) constitute a Lax 
pair for the Caudrey-Dodd-Gibbon equation. 

We now let 

rp = vllv2, where (V I,V2) satisfy (3.23) 

Vxx = - ~av, Vt = bvx + cv. (3.24) 

Equations (3.21), (3.23), and (3.24) imply that 

at + ~ (axxxx + ~ a; + 30aaxx + 6003
) = o. 

ax 2 
(3.25) 

Equation (3.25) is known as the Kuperschmidt equa
tion.6 Analysis reveals that it possesses the Painleve proper
ty. The expansion about the singularity manifold is ofthe 
form 

00 

a = t/!-2 r aj t/!j. (3.26) 
j=O 

Again, there are two branches. 
Branch i: aD = - ¢;/2: The resonances occur at 

j = - 1,3,5,6,7. (3.27) 

Branch ii: aD = - 4¢;: The resonances occur at 

j= -7, - 1,6,10,12. (3.28) 

We define the Backlund transformation about branch i: 

a = aol~ + alit/! + a2 

and find that 

a2 = - ! {t/!;.x I - + ~, 
A + ~2 {t/!;.xl + 1. {t/!;.x12 = o. 
t/!x ax 4 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

We note that on account of the resonance structure, 
(3.27), (3.29)-(3.32) is not an overdetermined system. 

Letting 

t/! = WIIW2, where (WI' W2) satisfy (3.33) 

Wxx = - 6uW, Wt = bWx + cW, (3.34) 

it is found that u satisfies Eq. (3.1). 
Furthermore, if 

v = rpxxl{{Jx = - !t/!xxlt/!x, (3.35) 

where rp satisfies Eq. (3.21) and t/! satisfies Eq. (3.32), then 

Vt + ~ (vxxxx + 5vxvxx - 5v2vxx - 5vv; + VS
) = O. (3.36) 

ax 
The above implies the nonlinear transformation found 

in Ref. 6. For our purposes we note that (3.35) provides the 
transformation: 

(3.37) 

Equation (3.37) indicates that Eqs. (3.21) and (3.32) 
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identically possess the Painleve property. Each equation has 
the Painleve property about "poles" or order - V and, 
aboutthe possible movable singularities (where tP x = 0 or tp x 

= 0), the transformation (3.37) provides the appropriate re-
presentation ofthe solution. For instance, (3.37) refers the 
behavior of tp at points where tp x = 0 to the expansion of tP at 
points where tP x -- 00 (the poles of tP). And, as is explained in 
the next section, this allows us to conclude that tp is single
valued at these points. 

4. AN INTEGRABLE CLASS OF PARTIAL 
DIFFERENTIAL EQUATIONS 

An equation 

tpJtpx + B ({ tp;x j) = 0, (4.1) 

where B ({ tp;x ) ) is a constant coefficient multinomial in 
(a i 1 a~) {tp;x}, will identically possess the Painleve property 
when there exists a transformation 

(4.2) 

where m is rational and negative and tP satisfies an equation 
of the form (4.1). The form ofEq. (4.1) is sufficient to guaran
tee the existence of "meromorphic" expansions about the 
"poles" of order - 1. That is, 

00 

tp = {} -I L tpi{}i, (4.3) 
j=O 

where the resonances occur at} = - 1,0,1, ... ,n + 1 and n is 
the order ofthe highest derivative (of the Schwarzian) ap
pearing in B. The transformation (4.2) provides a representa
tion of the solution in a neighborhood ofthe points where 
tpx = 0 (tPx = 0) by associating these points with the behav
ior of solutions of the "dual" equation in a neighborhood of 
their singularities. 

To see the validity of the expansion (4.3), we observe 
that for singularities of the form (4.3) the expansion for the 
Schwarzian derivative begins at the constant level (is nonsin
gular). And, consequently, the (n) derivatives of the Schwar
zian merely "shift" the recursion relations to the appropriate 
higher coefficient, tp n + 2' adding one resonance for each der
ivative. For particular equations ofthe form (4.1) higher or
der poles (tp - m ) can occur. We shall find that these singular
ities can be "reduced" to (4.3) through the invariance of(4.1) 
under the "symmetry" (4.2) and the Moebius group. 

Consider forms of B ({ tp;x ) ) that are linear in the highest 
order derivative of the Schwarzian and order the terms de
fining B ({ tp;x}) into expressions that are homogeneous of the 
same degree under the change of variable 

X~-IX, (4.4) 

{tp;X} = .i... (tpxx) _ ..!.. (tp:x ) ~2{ tp;x}. (4.5) 
ax tpx 2 tp x 

These are 

16 

(i) [tp;x j, 

(ii) a [ j ax tp;X, 

(1'1'1') ~ [ j 1 [ }2 -2 tp;x + /I. tp;x , 
ax 
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(4.6) 

a3 a 
(iv) -3 {tp;xj +A {tp;xj- {tp;x}, ax ax 

a4 ~ 
(v) ax4 {tp;x} +a{tp;x} ax2 {tp;xj 

+p(! {tp;x}Y +A {tp;XJ3, 

etc. 
We consider equations (4.6i,ii,iii,v). Therefore, let 

(4.7) 

and 

tpx = 1/1:. (4.8) 

Then 

{ j tPxxx (m2 ) rfxx tp;x =m-- - - +m -
tPx 2 rfx 

(4.9) 

and 

m_l.m -I_I. +.i... _I.m (m tPxxx _ (m2 + m) rfxx) = O. 
'f'x 'f'xt ax 'f'x tPx 2 rfx 

Direct calculation obtains 

m ! (tPt + tPxxx - ~~: - AtPx) 

+ (2m _ m
3 

_ 3m) tP!x =0. 
2 2 rfx 

For Eq. (4.11) to be of the form (4.1), 

2m - m3/2 - 3ml2 = 0 

or 

m =0, ± 1. 

Then, if 

tpx = tPx- l
, 

tP will satisfy 

tPt1tPx + (tP;xj =A, 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

assuming the constant of integration introduced in expres
sion (4.11) is to vanish. For instance, we can assume that all 
solutions approach time-independent constants when x ap
proaches - 00. 

Thus, Eqs. (4.11), (4.14), and (4.15) define a Biicklund 
transformation that will be employed, with the invariance 
under the Moebius group, in Sec. 5 to generate rational solu
tions. Equation (4.7) is directly related to the KdV equation 
(Sec. 2). 

Next, it can be readily shown that the equation 

!I!.!...- + ~ (tp;X j = 0 
tpx ax 

(4.16) 

does not have a transformation 

tpx = 1/1: 
that remains within the class (4.1). This equation, studied in 
Ref. 3, is transformable to an equation with complex reson-
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ances (self-similar natural boundary)7 and is thought to be 
nonintegrable. 

It is useful to observe that, by Eq. (4.9), a transformation 
of type (4.2) does not change the degree of homogeneity (4.4) 
of the expressions in (4.6). Thus, if a transformation exists, it 
can only effect the value of the coefficients in (4.6). 

Equations of the form 

!fr. + ~ I~;xl +A 1~;x12 = 0 (4.17) 
~x ax2 

have a transformation 

~x = 1/1: 
that preserves the formulation (4.1) when 

(i) m = - 1, A = ~, 
(ii) m = - 2, A = i, 
(iii) m = -~, A = 4. 

(4.18) 

(4.19) 

Equation (4. 19i) is (essentially) the first higher-order 
(fifth degree) KdV equation.2 Equation (4. 19i,ii) are (ob
tained from) the Kuperschmidt and Caudrey-Dodd-Gib
bon equations, respectively (see Sec. 3). Then, the Kupersch
midt equation and Caudrey-Dodd-Gibbon equation are, in 
a sense, "dual" under the transformation 

rPx = ~ x- 2. (4.20) 

The KdV equation (4.7) and fifth-degree higher-order KdV 
equation (4. 19i) are then "self-dual." 

We note that the property of possessing a transforma
tion within the class (4.1) is additive (by construction) for 
expressions with the same value of exponent m. 

Thus, by (4. 19i) and (4.14) the equation 

!fr. + ?2 I~;xl + 2
3 1~;x12 + A I~;xl = 0 (4.21) 

~x cJx 

has, for any A, an (auto) Backlund transform 
.1,- I 

~x = 'f'x • (4.22) 

Finally, the equation 

!fr. + ~ I~;xl + al~;xl ~ I~;xl 
~x ax4 ax2 

+p(! {~;xlr +A 1~;x13 (4.23) 

has a transformation 

~=I/I: ~~ 
preserving the form ofEq. (4.23) when 

(i) m = - 1, a = 5, P =~, A =~, 

(ii) m = - 2, a =~, P =~, A = i, (4.25) 

(iii) m = -!, a = 12, P = 6, A = ¥. 
These are higher order KdV, Kuperschmidt, and Caudrey
Dodd-Gibbon equations, respectively. Further information 
concerning Eq. (4.23) is contained in Appendix B. 

We now consider the sequence of higher-order KdV 
equations determined by the "Lenard recursion relation"g 

17 

a _ b n + I = b n + 2ub n + u b n ax xxx x x' 
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(4.26) 

where 

U t + ~bn+l(u)=O 
ax (4.27) 

for n = 1,2,3, ... are the sequence of higher-order KdVequa
tions and 

bO = 1, 

b l =U, 

b 2 = Uxx + ~U2, 
b 3 = Uxxx" + 5uuxx + ~u; + ~U3. (4.28) 

Now inspection ofEqs. (4.7), (4.17), and (4.23) leads us 
to formulate the following. 

Theorem 1: The sequence of higher-order KdV equa
tions 

(4.29) 

for n = 0,1,2, ... has the following Backlund transformation: 

~ 
u = 4 -2 In ~ + U2, (4.30) ax 
U2 = _ ~ (~xx) _ ~ (~;u;)2, (4.31) 

ax ~x 2 ~x 

~ + b n+ 1!I~;x}) = O. (4.32) 
~" 

Furthermore, 

W = I~;xl (4.33) 

(and u2 ) satisfies Eqs. (4.29) and (4.32) is invariant under the 
transformation 

~" = rP,,- I. (4.34) 

Note: To simplify the statement of the above results, we 
require the sequence of bn to be defined by precisely Eq. 
(4.26). "Scalings" in the argument "u" ofEq. (4.26) is essen
tial for the definition of Eq. (4.32), but not for Eq. (4.29). 

Proof: We prove the above by the following observa
tions: For each n, let 

V= ~x"/~,,. (4.35) 

Then Eq. (4.32) obtains the "higher-order modified KdV 
equation" 

Vt + ! (! + V) b n+ I(V" - ! V2) = 0, (4.36) 

where 

W = I~;xl = V" - !V2
• 

From Eqs. (4.36) and (4.37) we find that 

( a3 a ) Wt + -3 +2w- +Wx bn+l(w) =0, ax ax 
or, using Eq. (4.26), 

Wt + ~bn+2(W)=0. ax 

(4.37) 

(4.38) 

(4.39) 

This equation (4.32) implies that w is a solution of Eq. 
(4.29). From Eqs. (4.31) and (4.35) 

(4.40) 
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Now, if 

then 

(4.41) 

(4.42) 

(4.43) 

Hence, both U2 and liJ will be solutions of Eq. (4.29) if Eq. 
(4.32) is invariant under (4.41), or equivalently, ifEq. (4.36) is 
invariant under (4.42). 

To see this, we let 

a 
D= -, (4.44) ax 
Mv = D(D + V), (4.45) 

Lv =D-I(D- V)Mv, (4.46) 

and find that the Lenard relationship (4.26) becomes 

b n+2(Vx -!V2)=Lv bn + l (Vx _!V2
) (4.47) 

while Eq. (4.36) is 

V, + Mv b n + I( VX - ! V2) = 0. (4.48) 

The condition of in variance of (4.48) under (4.42) reads 

Mv b n + I( VX - ! V2) + M _ vb n + I( - Vx - ! V2) = 0. 
(4.49) 

We verify (4.49) by induction. Previous calculations 
demonstrate (4.49) for n = 0,1. We assume (4.49) with 
n = 0,1,2, ... ,m - 1. Then with n = m and, using (4.47), Eq. 
(4.49) is 

MvLvbm(Vx -!V2)+M_vL_vbm(- Vx _!V2)=0. 
(4.50) 

However, from (4.46), 

MvLv = IvMv, 

where 

Iv =D(D+ V)D-I(D- V). 

Using the identity for constants a,b, 

(4.51) 

(4.52) 

(D + aVlD -ltD + bV) = (D + bVlD -I(D + aV), 
(4.53) 

it is found that 

(4.54) 

and, with (4.51), Eq. (4.50) is 

Iv IMvbm(Vx - !V2) +M _vL_vbm( - Vx - ;V2)J = 0. 
(4.55) 

Since the term in brackets vanishes by assumption, (4.49) is 
verified for n = m. We note that (4.52) is a recursion opera
tor for the higher-order modified KdV equations. 

Equation (4.32) and the invariance (4.34) obtain that 
(liJ,u2 ) are solutions ofEq. (4.29). We now show that Eqs. 
(4.32), (4.31), and (4.30) imply that u [defined in Eq. (4.30)] 
will be a solution of Eq. (4.29), completing the proof of the 
existence of the Backlund transform. 

To begin, we note that Eq. (4.32) is invariant under the 
Moebius group. 

Letting 

<P = 11"" (4.56) 
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we find that'" satisfies Eq. (4.32) and that 

az 
U2 = 4 -In", + u, (4.57) ax2 

a ("'xx) 1 ("'xx)2 a2 

u2 = - - - - - - +4-
2 

In"', (4.58) 
ax "'x 2 "'x ax 

or 

(4.59) 

By the previous calculation Eq. (4.59) implies u satisfies 
Eq. (4.29), completing the proof. 

Remark 1: Equation (4.32) effectively defines three dis
tinct solutions ofEq. (4.29). That is, 

U2,liJ = 1 <p;x 1 
and 

(4.60) 

Remark 2: If we consider the stationary solutions of a 
higher-order KdV equationS Theorem 1 defines Backlund 
transformations for the associated ordinary differential 
equations. Furthermore, to construct solutions of the (n + 2) 
equation 

~bn+2(U) =0, 
ax 

we integrate the (n + 1) equation 

b n+ l(liJ) = ° 
and set 

liJ = 1 <p;x l. 
Then 

<P = V I IV2, 

where VI and V2 satisfy 

(4.61) 

(4.62) 

(4.63) 

(4.64) 

Vxx = - !wV, (4.65) 

defines the solutions (u,u 2 ) of (4.61). 
Thus the solution of the (n + 1) equation is the "poten

tial" in a associated linear, Schrodinger equation, that de
fines the solutions and Backlund transforms for the (n + 2) 
equation. Further consideration of these Backlund trans
forms for (Painleve) ODE's and the iterative construction of 
solutions seems warranted. 

We now generalize Theorem I to allow for the inclusion 
of a spectral parameter, A. 

Theorem 2: The sequence of higher-order KdV equa
tions 

u, + ~bn+2(u) = ° ax 
for n = 0,1,2, ... has the Backlund transformation 

az 
u = 4 ax2 In <P + u2, 

U2 = _ ~ (<Pxx) _ ~ (<Pxx)2 + A, 
ax <Px 2 <Px 

<p, ·1 1 - + a n + I.j b1
( <p;x ) = 0, 

<Px 

John Weiss 

(4.66) 

(4.67) 

(4.68) 

(4.69) 
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where an + I,j = an + l,j(A ), with a summation convention 
overj = O,l, ... ,n + 1. 

Furthennore, 

w = {<P;X} +A (4.70) 

satisfies equation (4.66) and equation (4.69) is invariant un-

fined, completing the proof. 
For reference, we present the following tables: 

j/k 0 2 3 4 

der the transfonn 0 1 

<Px = t/lx- I. (4.71) -A 

Proof: By a previous remark invariance (4.71) follows 2 0 2 -3A 1 

immediately from (4.34). Now, let 3 -1A 3 15A 2 
2" - 5A 

V = <Pxj<px' (4.72) 4 J(A 4 ~A3 ¥A 2 -7A 
Then 

aj.k 

Vt + ...f.. (...f.. + V) an + I,jb j (Vx - J.. V2
) (4.73) j/k ax ax 2 ----+---------------------------

0 2 3 

and 

aJt + 

By (4.26) 

(
OJ a) . b~+ l(aJ - A) = -- + 2(aJ - A) -- + aJx b1(aJ - A). ax3 ax 

Lemma 1: 

where 

and 

ajj = 1, 

af.) = - A ((2j - l)1j)aj-I,O 

aj,k = aj _ I,k _ I - Uaj _ I,k' where k <j. 

Proof: By induction, using (4.26). 

(4.75) 

Now using Eqs. (4.70), (4.71), Lemma 1, and requiring 
that aJ satisfy Eq. (4.66) determines, for each n, the an + I,j' 
j = O,l, ... ,n + 1. 

We find the following triangular system of linear equa
tions for 

a n + I,n+ I 

a n + I.n 

an+l= a n + l .n_ l , 

an + 2•m + I 

an + 2,m am + I,m 

am + 2,k am + I,k 

a m + 2•1 an+I,1 

o o 

1 

o 
1 

(4.76) 

(4.77) 

Since the system (4.77) is always solvable, an + I exists 
for each n, and the Backlund transfonnations are well de-

19 J. Math. Phys., Vol. 25, NO.1, January 1984 

3A 

2 lfA 2 5A 

3 ¥A 3 ¥A 2 7A 

We next consider the sequence of higher-order Cau
drey-Dodd-Gibbon and Kuperschmidt equations. Again, 
to avoid unnecessary complexity, we consider these equa
tions with a specific scaling. With reference to Sec. 3, we let 

u--+u/12, 
(4.78) 

a--o/3, 

and find the Caudrey-Dodd-Gibbon equation 

a( 5 53) 0 Ut + - Uxxxx + -UUxx + -U = ax 2 12 
(4.79) 

and the Kuperschmidt equation 

a ( 15 2 20 3) 0 at + - axxxx + 10aaxx + --ax + -a =. ax 2 3 
(4.80) 

From Ref, 9 the sequences of conserved covariants 
(functional gradients of conserved densities) are given by 

Gn+2 = J I(U)6)I(U)Gn , (4.81) 

(4.82) 

for the Caudrey-Dodd-Gibbon and Kuperschmidt equa
tions, respectively, where 

and 

6)1 =D 3 + 2uD + ux ' 

J 1 = D3 + y> 2uD -I + y> -luD2 

+Mu2D- 1 +D- I
U

2), 

(4.83) 

(4.84) 

J2 = D3 + 3(uD + Du) + 2(D 2uD -I +D -luD2) 

+ 8(u2D -I + D -IU2). 

With the nonnalization that we employ, 

Go = 1, Ho = 1, 

John Weiss 

(4.85) 
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and Eqs. (4.79) and (4.80) are 

Ut + 61,G,(u) = 0, 

at + 612H,(a) = 0. 
(4.86) 

Furthermore, the respective sequences of higher-order 
equations are given by 

Ut + 61,Gn(u) = 0, 
(4.87) 

at + 612Hn(a) = 0. 

For what follows it is convenient, as was the case for the 
KdV equations, to "factorize" the recursion operators. That 
is, 

and 

61, = (D - W)D(D + WI, 

J, = D -'!(D - W 12)(D + W 12) 
XD(D - W /2)(D + W /2)}D -I, 

612 = (D - V)D(D + V), 

J2 =D-'[(D-2V)(D- V) 

XD(D+ V)(D + 2VllD -I, 

a=Vx -!V2
• 

We now formulate the following. 

(4.88) 

(4.89) 

(4.90) 

Theorem 3: The sequences of higher-order Caudrey
Dodd-Gibbon and Kuperschmidt equations 

Ut + 61,Gn(u) = 0, 
(4.91) 

at + 612Hn (a) = 0, 

for n = 1,2,3,.··, have the following Backlund transforma
tions: 

az 
u = 12-2 Inq; + U2 ' ax 

where 

and 

2 
q;xxx 

U2= - --, 
q;x 

~ + Hn(!q;;x}j =0, 
q;x 

il- + Gn(!tP;x}j =0. 
t/tx 
Furthermore, Eqs. (4.94) possess the symmetry 

(4.92) 

(4.93) 

(4.94) 

tPx = q;x- 2, (4.95) 
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and 

u3 = [tP;x}, 

a3 = [t,6;xJ 

are solutions ofEq. (4.91), respectively. 

(4.96) 

Proof (i) The sequences of higher-order modified Cau
drey-Dodd-Gibbon and Kuperschmidt equations are given 
by 

Vt + MvHnWx -!V2 )=0, 

respectively, where 

W = tPxxltPx' 

and 

Mv =D(D+ V). 

Since 

U3= Wx _!W2
, 

a3 = Vx - ~V2, 

the factorizations (4.88) and (4.89) show 

U3t + 61,Gn (u3) = 0, 

a3, + (3)2Hn(a3) = 0. 

(4.97) 

(4.98) 

(4.99) 

(4.100) 

(4.101) 

(ii) Now if (4.95) is valid, then, as is readily verified, 

U2 = [tP;x}, 
(4.102) 

a2 = {q;;xJ, 

and by the above (u 2,a2 ) solve Eqs. (4.91). Now, the invar
iance of Eqs. (4.94) under the Moebius group, (4.92) and 
(4.93) imply 

(4.103) 

a = - !(iixxxliix - i~xx/~), 
where 

q; = 1Iq;, ii = 1ItP (4.104) 

and (q;,ii) are solutions of (4.94). By the above, (u,a) are solu
tions of(4.91), and (4.92) is well defined if (4.95) is verified. 

(iii) By (4.98), (4.95) is equivalent to the condition 

W= - 2V, (4.105) 

or, using (4.97), to 

2MvHnWx - !V2) + M -2v Gn( - 2Vx - 2V2) = O. 
(4.106) 

We verify (4.106) by induction. Previous calculations dem
onstrate (4.106) for n = 1,2. We assume (4.106) valid for 
n = 1,2, ... ,m; then, by (4.81) and (4.82), 

2MvHm+ I Wx - !V2) + M -2vGm+ d - 2Vx - 2V2) 

= 2MJ2(a)@2(a)Hm-IWx - !V2) 

+M _lJ,(U)@,(u)Gm _ l ( - 2Vx - 2V2), (4.107) 
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where 

a= Vx _!V2, u= -2Vx _2V2. 

However, (4.88) and (4.89) readily obtain 

Mv J,€J, =AvMv' Mv J2€J2 = f/JvMv, 

where 

Av =D(D+ V}D-'{(D- V/2)(D+ V/2) 

(4.108) 

XD(D - V /2)(D + V /2)]D -'(D - V) (4.109) 

and 

f/Jv =D(D+ V}D-'{(D-2V)(D- V) 

XD(D + V)(D + 2V)]D -'(D - V). 

The identity [by (4.53)] 

A -2v = f/Jv 

(4.110) 

(4.111) 

and (4.106) for n = m - 1 imply that (4.107) vanishes, verify
ing (4.106), (4.105) and completing the proof. 

We note that, in another context, the method offactori
zation of operators has been used to derive Miura transfor
mations and Hamiltonian structures. '0-'2 

Remark 3: It is not known whether the sequences of 
KdV, Caudrey-Dodd-Gibbon, and Kuperschmidt equa
tions exhaust the equations in the class (4.1). Presumably, 
there may exist a sequence of equations for every index pair, 
(m,lIm), m = - 1, - 2, - 3,···. 

We conclude this section with some remarks concern
ing the nature of the higher-order poles for the class of equa
tions considered herein. For instance, the sequence of KdV 
equations, (4.32), can have singularities of the form 

q; = q;o€- N + q;,€-N+' + "', (4.112) 

where it is not assumed that (4.112) is Painleve. 
For simplicity we employ the "reduced" expansion! 

(4.113) 

Now, since (4.32) is invariant under the Moebius group, the 
transformation 

I/! = 1Iq; 

produces a solution which has an expansion 

I/! = I/!o? + I/!,?+' + .... 
Furthermore, the symmetry 

q;x = I/!x-' 
obtains 

(4.114) 

(4.115) 

q;x = q;o€-N+' + "', (4.116) 

q; = q;o€ - N + 2 + .... (4.117) 

If N is an odd integer, after a finite number of steps, 
there results 

q; = q;oc' + .... (4.118) 

However, singularities of the form (4.118) identically possess 
the Painleve property. Now In € terms could arise in going 
from (4.112) to (4.118) [but do not, since (4.118) is Painleve 
with the complete set of "arbitrary functions"]. However, no 
In € terms can occur in going from (4.118) to (4.112). Thus, 
(4.112), as reconstructed from (4.118), has the Painleve prop-
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erty (when N is odd). [Note in going from (4.118) to (4.112) 
Taylor, not Laurent, series are integrated.] 

Let us now assume that 

q;zq;o€" + '. (4.119) 

Then, 

[q;;x] z - !m(m + 2)€-2, (4.120) 

and using the Lenard formula (4.26) with 

b n({ q;;x]) zP n(m)€ - 2n 

obtains 

(2n + 2)pn + lIm) = 2(2n + I)(A + n(n + 2))pn(m) 
(4.121) 

where A = - !m(m + 2). 
Thus, each higher-order equation of order (n + I) ac

quires two new leading orders 

A = - !m(m + 2) = - n(n + 2) 

or 

m = 2n, - 2 - 2n, 

where 

q;zq;ocn +' 
or 

q;zq;O€-2n -I. 

(4.122) 

(4.123) 

The higher-order KdV equations (in the Schwarzian 
formulation) can have only odd integral leading orders, and 
by the previous remarks these have the Painleve property. 

Considerations of a similar nature determine that the 
higher-order singUlarities of the Caudrey-Dodd-Gibbon 
and Kuperschmidt sequences, again, "reduce" to singulari
ties ofthe (Painleve) form (4.118). Thus, these equations 
identically possess the Painleve property. 

5. ITERATIVE CONSTRUCTION OF RATIONAL 
SOLUTIONS 

For the KdV equation 

U, + ~ (~2 + Uxx ) 

the Backlund transform 

az 
U = 12 -2 In q; + U2 ax 

implies that 

!!l. + {q;;x] =A. 
q;x 

=0, 

Equation (5.3) is invariant under: 
(i) The Moebius group 

al/!+b 
q;= cl/!+d 

and the transformation 

(ii) q;x = I/!x- '. 
Combining Eq. (5.4), i.e., 

I/! = - 1Iq;, 
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(5.1) 

(5.2) 

(5.3) 

(5.4) 
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and Eq. (5.5), there is defined the Backlund transformation 

(5.7) 

Without loss of generality (modulo a Galilean transforma
tion) we set A. = 0 in Eq. (5.3). Then setting 

rpo = x, (5.8) 

it is found from Eqs. (5.7) and (5.3) that 

rpl = x 3/3 + 4t. (5.9) 

We normalize (5.9) by setting 

rpl = x3 + 12t. (5.10) 

From Eq. (5.7) it is found that (after normalization) 

and 

rp3 = l/rpl [x lO + 180tx7 + 302400t 3x 
+ 7e(x5 

- 6Otx3 - e/3) + jrpd, 

where (el) are constants of integration. 
Equations (5.8)-(5.12) suggest that 

(5.11) 

(5.12) 

(5.13) 

where the ~ are polynomials in (x,t). Substitution of (5.13) 
into (5.7) obtains 

Pn- I Pn+I,x -Pn-I,x Pn+1 =P~, (5.14) 

where 

Po=x, 

PI =x3+12t, (5.15) 

P2 = x6 + 6Otx3 - nOt 2 + ex. 

The solutions obtained from (5.14) and (5.15) are (essentially) 
those rational solutions of the KdV equation found by 
Ablowitz and Segur,13 using Hirota's method, and are equi
valent to rational solutions of Airault, McKean and 
Moser. 14 

From Eqs. (5.13) and (5.2) we find that 

a2 

u = 12-
2

1nPn , 
ax 

a2 

u2= 12-21nPn_ 2 
ax 

define rational solution of the KdV equations. 

(5.16) 

For the Caudrey-Dodd-Gibbon equation (3.1) and the 
Kuperschmidt equation (3.25), there are defined the follow
ing Backlund transformations: 

and 

a2 

u = -2 In rp + u2 (5.17) 
ax 

laz 
a = - -2 In tP + a2 , 

2 ax 
(5.18) 

respectively, where 

rp a2 

-' + -a 2 {rp;xJ +4{rp;XJ2=0 
rpx x 

(5.19) 

and 

A + az
2 

{tP;xJ + ~ {tP;XJ2 = O. 
tPx ax 4 

(5.20) 
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Using the transformation 

tPx =rpx- 2 (5.21) 

and invariance under the Moebius group, we find the follow
ing Backlund transformation: 

rpn,x = tPn/tP~:;' 

tPn,x =rp:-I/rp~-I.x' 
Letting 

rpn = Pn/Pn - I 

and 

tPn = Qn/Qn - I 

obtains 

Pn- I Pn,x - Pn-I,x Pn = Qn' 

Qn-IQn,x - Qn-I,xQn = P!-l' 

It is readily found that 

Po = 1, Qo = 1, 

PI =x, QI = 1, 

P2 = x 5 
- nOt, Q2 = x 5 + 180t. 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

are the first terms (after normalization) that satisfy Eqs. 
(5.26) and (5.27) and define (rational) solutions ofEqs. (5.19) 
and (5.20). 

APPENDIX A: LAX PAIR AND BACKLUND 
TRANSFORMATIONS FOR THE CAUDREY-DODD
GIBBON EQUATION 

In Sec. 3 the Caudrey-Dodd-Gibbon equation 

u, + ~ (u= + 30uuxx + 6Ou3) = 0 (AI) 
ax 

was found to have the Backlund transformation 

az 
u = -2 In rp + u2, (A2) 

ax 

where U2 satisfies (AI) and 

(i) U2 = - ~ rpxxx , (A3) 
6 rpx 

(ii) !fr. + ~ {rp;.x J + 4{ rp;.x J 2 = O. (A4) 
rpx ax2 

Equations (A3) and (A4) may be rewritten as the follow-
ing "Lax pair": 

rpxxx + 6u2rpx = 0, (A5) 

rp, = - 18uz>: rpu + 6(u= - 6u~)rpx' (A6) 

With the exception that the spectral parameter vanish-
es, this is the Lax pair found in Ref. 4. 

To obtain a Lax pair with the spectral parameter, it is 
necessary to generalize the procedures introduced in Ref. 2. 
That is, we define a Backlund transformation (A2), where 
(u,u2 ) satisfy (AI). In Sec. 3 the resulting expressions were 
ordered according to the inverse powers of rp, i.e., (3.6iii, iv, 
and v). Herein, other than requiring that U2 satisfy (AI) the 
various terms are collected into a single equation, obtaining 
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~(!Jl.) + ~(Hs + H4) =0, 
aX2 ~ ax ~ ~2 

(A7) 

where 

H4 = -~! {!2 {~;xJ + 4{~;XJ2 

+ 5Wxx + t1 2 + 2{~;xJt1)}, (AS) 

{ ~ a a} Hs = ~x ax3 {~;X J + 4 ax {~;x J 2 + 5t1 ax {q7;X J 

+ {}xx {~2 {q7;xJ + 4{q7;xJ2 + 5{}xx 
ax 

+ 5{}2 + lO{q7;xJ{}}, (A9) 

{} = {q7;xJ + 6W, (AlO) 

and 

Now, letting 

{} = 6Aq7 lq7x' 

it is found from (AlO) and (All) that 

q7xxx + 6u2q7x = 6Aq7. 

From (A7HA9) and (A12) there results 

~ {!Jl. + ~ (~ {q7;xJ + 4{q7;XJ2 + 3M q7q7xxx 
ax2 q7 q7 ax2 q7 ! 

-30A q7q7; -30Aq7xx -lSOA 2q7:)} =0. 
q7x q7x q7x 

Setting the term inside the bracket equal to 0, 

!Jl. + ~ {q7;X J + 4{ q7;X J 2 + 30A q7q7xxx 
q7x ax2 q7! 

(All) 

(A 12) 

(A13) 

(A14) 

2 2 
_ 30A q7q7 xx _ 30A q7xx _ lSOA 2 L = o. (A15) 

q7! q7x q7! 

Using (A 13), 

q71 = (54A - lSu2x )q7xx + 6(U2x;c - 6u~ )q7x + 2l6Au2q7· 
(A16) 

Equations (A13) and (A16) constitute the Lax pair for the 
Caudrey-Dodd-Gibbon equation,4 where A is the spectral 
parameter. We note that Eq. (A15) is not invariant under the 
Moebius group. 

APPENDIX B: SOME SEVENTH-ORDER EQUATIONS 

We consider when the equation 

!Jl. + ~ {q7;xJ + a{q7;xJ ~ {q7;xJ 
q7x ax4 ax2 

+ {:J (! {q7;X J r + A {q7;X J 3 = 0 

has a transformation 

q7x = 1/1: 
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(Bl) 

(B2) 

preserving the form of (B 1). 
Directly, 

{ J "'xxx (m2 ) tP!x q7;x =m-- - - +m -
"'x 2 tP! 

(B3) 

and 

q7xl = m"'': - l"'xl· 

We note that 

(B4) 

or 

m"'': - l"'xl = ! (1/I:F) 

= 1/1: ~ F + m1/l: - l"'xxF 
ax 

a 
m"'x, = "'x - F + m"'xxF. ax 

(B5) 

(B6) 

Therefore, for Eq. (B6) to be of the form (B 1) 

a a "'x -F+m"'xxF= -G, 
ax ax 

(B7) 

where G is a functional of "'x. Expressions on the lhs of (B7) 
that are not "gradients" must vanish. In this case, we find: 

(i) Term "'xx ~xxxxltP! obtains the condition 

2m + 7 + 2m(a -(:J) = o. (BS) 

(ii) Term "'xx "'!xxl",! obtains the condition 

17m + 42 + ~am(9m + 2S) - 6{3m(m + 3) - 3Am2 = o. 
(B9) 

(iii) Term "'!xx tP!xx I",! obtains the condition 

- 39m - S4 + am(3m2 - ~m - 25) 

- 2/3m(m2 - 5m - 16) + 3Am2(m + 2) = O. (BlO) 

(iv) Term "'"'xxl"'~ obtains the condition 

6O(m + 2) - ~am(13m2 - Sm - 6S) + 2/3m(2m2 -7m - 22) 

+ iAm2(m3 + m2 - Sm - 12) = O. (Bll) 

Equation (BSHBll) have the following solutions: 

(i) m= -1, a={:J+~, 6A=5{:J+~, (BI2) 

(ii) m= -2, a={:J+~, 6A={:J+!, (B13) 

(iii) m = -~, a = 12, {:J = 6, A = ¥, (BI4) 

(iv) m= -j, a=26, {:J=Jj, A=4S, (B15) 

(v) m = -~, a = 5, {:J =~, A =~. (B16) 

Further calculation obtains that Eq. (B6) will be of the 
form (B 1) when 

(i) m = - 1, a = 5, 

(ii) m= -2, a=~, (BI7) 

(iii) m = -!, a = 12, {:J = 6, A = ¥ 
The transformations defined by (BI5) and (BI6) do not 

preserve theform of Eq. (B 1). 
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Expansions over the "squared" solutions and difference evolution equations 
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The completeness relation for the system of "squared" solutions of the discrete analog of the 
Zakharov-Shabat problem is derived. It allows one to rederive the known statements concerning 
the class of difference evolution equations related to this linear problem and to obtain additional 
results. These include: (i) the expansion of the potential and its variations over the system of 
"squared" solutions, the expansion coefficients being the scattering data and their variations, 
respectively; thus the interpretation of the inverse scattering transform (1ST) as a generalized 
Fourier transform becomes obvious; (ii) compact expressions for the trace identities through the 
operator A, for which the "squared" solutions are eigenfunctions; (iii) brief exposition of the 
spectral theory of the operator A; (iv) direct calculation of the action-angle variables based on the 
symplectic form of the completeness relation; (v) the generating functional of the M operators in 
the Lax representation; (vi) the quantum version of the 1ST. 

PACS numbers: 02.30.Hq 

I. INTRODUCTION 

The intensive development of the inverse scattering 
transform (1ST) has led to the discovery of a vast number of 
completely integrable Hamiltonian systems. For such physi
cally important nonlinear evolution equations (NLEE) as the 
KdV, nonlinear Schrooinger, sine-Gordon equations, etc., 
the classes of soliton solutions, the infinite series of con
served quantities, the Backlund transformations, the explicit 
form of the action-angle variables, etc. (see Ref. 1 and the 
review papers, Refs. 2-4) have been constructed and investi
gated. 

The investigation of the class of NLEE, related to the 
one-dimensional Zakharov-Shabat system 

[iU3 ! + (r(~) q~)) -A ]t/!{X,A) = 0, 

U3 = (~ _ ~), (1.1) 

has revealed the importance of: (i) the expansions over the 
"squared" solutions of (1.1 )2.5-8 and (ii) the operator for 
which the "squared" solutions of (1.1) are eigenfunctions. 
The spectral theory of the operator A 7 enables one to justify 
the suggested in Ref. 2 interpretation of the 1ST as a general
ized Fourier transform, linearizing the corresponding 
NLEE. An important property of the operator A consists 
also of the fact that it generates the hierarchy of Hamiltonian 
structures for the NLEE.9 

Besides the NLEE there also exist a number of impor
tant difference evolution equations (DEE), solvable by the 
1ST. 1.3 An example of such system is the Toda chain. 10 

The main result of the present paper consists in the deri
vation of the complete integrability, the construction of the 
hierarchy of symplectic structures and the quantization of 

alOn leave of absence from the Institute of Nuclear Energy and Nuclear 
Research. Sofia, Bulgaria. 

the DEE, related to the discrete analog of the Zakharov
Shabat systemll: 

t/!{n + 1,z) = L (n,z)f/!(n,z), L (n,z) = E (z) + Q (n), 
(1.2) 

E(z) = (~ Z~I)' Q(n) = (r(~) q~)). 
Our construction is based on the completeness relation for 
the "squared" solutions of the system (1.2). 

Ablowitz and Ladik have considered in Ref. 11 the 
more general at first sight system (we put it in the form, 
proposed in Ref. 12): 

u(n + 1,;) = 2"(n,;)u(n,;), 

Sn)( ; 
1 Rn 

Iln = 1- QnRn, Vn = l-SnTn. (1.3) 

The class of DEE related to (1.3) includes the discrete ana
logs of the nonlinear Schrodinger, KdV, sine-Gordon equa
tions, etc. For these DEE the soliton solutions, conservation 
laws, the Backlund transformations, Hamiltonian structure, 
and the asymptotic ofthe solutions for t-+oo are 
known.3.11-15 

It comes out that the systems (1.2) and (1.3) are equiva
lent. (The authors are grateful to I. T. Khabibulin for this 
remark.) Indeed, it is easy to see that if we relate the poten
tials and the solutions of these problems by 

Sn = q(2n + 1), Qn = q(2n), 

Tn = r(2n + 1), Rn = r(2n), (1.4) 
2n - I 

u(n,;)I~=? = II h(k)E-1/2(z),p(n,z)EI/2(z), 
k= - 00 

where h (k ) = 1 - q(k )r(k ), we obtain 

2"(n,;)I~=? = [h (2n)h (2n + 1)]-1/2E- 1/2(z)L(2n + 1,z) 

XL (2n,z)E 1/2(Z). (1.5) 

As a result all the objects related to the system (1.2) such as 
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DEE, conservation laws, Hamiltonian structures, etc. trans
fer to the corresponding objects of the system (1.3). There
fore, we confine ourselves to the system (1.2). 

The present paper is a further development of our pre
print. 16 We regret that when writing this preprint we were 
not aware of Ref. 12. We thank the referee for calling our 
attention to this paper. 

In Sec. II we derive the completeness relation for the 
"squared" solutions of (1.2). Starting from it, we easily re
produce the statements from Refs. 11-14, and also obtain 
additional results. These include: (i) the expansion of the po
tential of (1.2) and its variation over the "squared" solutions, 
which justify the interpretation ofthe 1ST as a Fourier trans
form (Sec. III); (ii) compact expressions for the trace identi
ties (Sec. III); (iii) brief exposition ofthe spectral theory of the 
operator A (2.21) (Sec. II); (iv) direct calculation of the ac
tion-angle variables based on the symplectic completeness 
relation7

•
8 (Sec. IV); (v) the generating functional of the M 

operators in the Lax representation (Sec. III). In Sec. V it is 
shown that the DEE related to (1.2) with the natural reduc
tionr(n) = ± q+(n) maybe quantized through the quantum 
1ST. 17-19 

II. COMPLETENESS RELATION OF THE "SQUARED" 
SOLUTIONS 

Let us start with some known facts (see Refs. 3 and 11) 
from the direct and inverse scattering problem for the system 
(1.2). In order to make the exposition simpler, we consider 
the case when the potential wIn) = (_ ~~) )E6(Z,C2

), the space 
of complex-valued vector sequences such that 

lim nkw(n) = 0 for all k = 0,1,2, .. ·. (2.1) 
n~oo 

This together with the condition 
00 

0< II Ih(k)l<oo, h(k)=l-q(k)r(k) (2.2) 
k= - 00 

ensures the existence and the analyticity properties of the 
Jost solutions of (1.2), introduced by 

lim t/J(n,z)E - n(z) = I, lim rp (n,z)E - n(z) = 1, 
n-+oo n-+oo 

t/J(n,z) = Iit/J- ,t/J+ II, rp (n,z) = Ilrp +,rp -II, 
wheret/J+,rp +,(t/J-,rp -)areanalyticfor Izl > 1 (Izl < 1). The 
transition matrix is introduced by 

rp (n,z) = t/J(n,z)S (z), S (z) = (::: 

00 

det S (z) = v = II h (k ). 

-b-) - , 
a 

(2.3) 

k= - 00 

We shall denote by X + (x -) the fundamental solutions of 
(1.2), analytic for Izi > 1 (Izl < 1): 

26 

X +(n,z) = Ilrp +,t/J+II, X -(n,z) = Iit/J-,rp -II, 
x+(n,z)=t/JS- =rpS+, x-(n,z)=t/JT+ =rpT-, 

(2.4) 

~) , 
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obviously S - S + = T + T - = S (z). Here and in what follows 
by X we shall denote the matrix inverse to X, i.e., X ==X - I. 

The solutions X + and X - satisfy the following relations: 

X +(n,z)E- n (z) = x-(n,z)E- n (z)G (n,z), Izl = 1, 

G (n,z) = En (z)T(z)S - (z)E - n (z), 
(2.5) 

on the unit circle S I. If we consider G (z) as a given matrix
valued function of zES I, then this relation may be interpreted 
as a noncanonical Riemann problem.20 

The continuous spectrum of the problem (1.2) has mul
tiplicity 2 and fills upS I. Thediscretespectrum.J =.J +u.J -
is located at the zeroes of a ± (z), 

.J ± = I Zj± :a ± (Zj± ) = a ± ( - Zj± ) = 0, 

IZj± 1~1, j= 1, ... ,N± J. (2.6) 

Here for simplicity we asume that n + = n - = N. The fact, 
that a ± (z)(b ± (z)) are even (odd) functions of z follows from 

Remark 1: If t/J(n,z) is a solution of (1.2), then 
( - l)n u3t/J(n, - z)u3 will also be a solution of (1.2). 

From the analyticity of X ± it follows that a ± (z) will 
also be analytic functions of z for Izl ~ 1. One is able to derive 
the following dispersion relation for them: 

Izl < 1, 

where p ± (z) = b ± (z)/ a ± (z) are the reflection coefficients 
for the system (1.2). 

We shall not discuss the solution of the inverse scatter
ing problem in detail; see Refs. 3, 11, and 20. Note only that 
the set of independent scattering data Y = Y+uY-

Y± ==Ip± (z) = -p± (-z),zES 1
; 

cl, Zj± , IZj± 1~1, j = 1, ... ,N J, 

p±=b±/a±(z), cl=bl/ill, 

ill = da± I ' 
dz Z~ZJ± 

(2.8) 

b l: rp ± (n,zj± ) = b l t/J ± (n,zj± ), 

and the dispersion relation (2.7) allow one to reconstruct 
uniquely the functions a+(z) (a-(z)) for all z, Izl > 1 (lzi < 1), 
and also b ± (z) for Izl = 1. 

It is instructive to consider the interrelations between 
the potential wIn) and the set of scattering data Y, (2.8), 
following from the formulas 
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x± (n,z)u3X± (n,z)I:= - '" 

"" A 

= 2 L x± (n + 1,z)u3Q(n)x± (n,z), 
n= - 00 

(2.9) 

x(n,z)t5x± (n,z)I: __ '" 

= f X ± (n + 1,z)t5Q (n)x ± (n,z), 
11=--00 

which are direct consequences of (1.2). The lhs of (2.9) are 
expressed easily through the scattering data Y, (2.8), and 
their variations. Inserting the first line of (2.4) into (2.9) for 
the matrix elements of the rhs of(2.9) one obtains expressions 
of the type: 

f 4> (n,z)w(n)h -I(n), 
11=--00 

(2.10) 
'" L 4>± (n,z)u3c5w(n)h -I(n), 

11= - 00 

where 

4J± (n,z) = v(n~± (n,z)o~± (n + l,z), 4> = (4J2, - 4JI ), 

(2.11) 
~ (n,z)°tfi(m,z) 

= (~I(n,z)t/tl(m,z)), v(n) = IT h (k). 
~2(n,z)t/t2(m,z) k = II 

Ifwe introduce in the space 6(Z,C2
) the skew-scalar product, 

X,Ye6(Z,C2
): 

[X,Y] = f X(n)Y(n) 
11= - 00 

'" = L [X2(n)YI(n) -XI(n)Y2(n)], (2.12) 
11:::1:: - 00 

then the matrix elements of the rhs of(2.9) can be interpreted 
as expansion coefficients of w(n) and u3c5w(n) over the 
"squared" solutions 4J ± (n,z) of (1.2), i.e., the terms (2.10) 
will have the form [4J± (n),w(n)h -I(n)], 
[4J± (n),u3c5w(n)h -I(n)]. 

Let us introduce the system {4J }, {I[/} of "squared" 
solutions of (1.2) by 

{4J }=={4J± (n,z), zeSI; 4J/(n), ~/(n),j= I, ... ,N}, 

{I[/}=={I[/± (n,z), zeSI; I[//(n), q,./(n),j= I, ... ,N}, 

I[/± (n,z) = v(n)t/t± (n,z)°t/t± (n + l,z), 

I[//(n) = I[/± (n,zJ±)' 

. d 
I[//(n) = lim -I[/± (n,z); 

z-+ZJ± dz 

(2.13) 

4J / (n) and ~ / (n) are obtained analogously from the defini
tion of 4J ± (n,z) in (2.11). The completeness of the systems 
{ 1[/ }, {4J } is proved by introducing the Green function 
G = G± (n,m,z), Izl~l, 

G± (n,m,z) = {2/[a± (zW} {I[/± (n,z)4> (m,z)8 (n - m) 

+ 8(m - n)[2(~± (n,z)°t/t± (n + l,z)) 

Xh6± (m + l,z)0t/t± (m,z)f v(n)v(m) 
- 4J± (n,z)W± (m,z)]), 
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{

I, n>m, 

8(n-m)= !, n=m, 

0, n<m, 

(2.14) 

and applying the contour integration method to the integral, 

~" dz G +(n,m,z) _ ~" dz G -(n,m,z). 
2m :r" + z 2m :r" _ z 

Here the contours r + = S IUS'" , r _ = S IUSO, where S I is 
the positively oriented unit circle andS"" and SO the negati
vely oriented circles with infinitely large and infinitely small 
radii resp. The result is 

h (n)t5(n _ m) = _,_' " dZ[ 1[/ + (n,z)4> +(m,z) 
21T 1, z [a+(zW 

_ 1[/ -(n,z)4> -(m,z) ] 
[a-(zW 

N 

- 2 L [X/(n,m) +Xj-(n,m)], 
j=1 

(2.15) 

X/(n,m) = 1 ± 2 [1[//(n)4>/(m) + q,./(n)4>/(m)] 
zJ± (aj ) 

.± "± 
_ aj +Zj±aj 1[/,±(n)4> ±(m). 

-2 ('±)3 J j Zj± aj 

This completeness relation may be rewritten in the so-called 
symplectic form: 

f dz - -h (n)t5(n - m) = - [P(n,z)Q(m,z) - Q(n,z)P(m,z)] 
s' z 

N _ _ 

+ 2 L [P/(n)Q/(m) - Q/(n)p/(m) 
j= 1 

+ Pj-(n)Qj-(m) - Qj-(n)Pj-(m)], (2.16) 

where 

P(n,z) = - (l/21T)(p+l[/+ +p-I[/-)(n,z) 

= - (l/21TV)(U+4J + + u-4J -)(n,z), 

Q (n,z) = (iv/b + b -)0+ 1[/ + - u
v
+ 4J + }n,z) 

= (iv/2b + b - (u
v
- 4J - - P -1[/ - }n,z), (2.17) 

P/(n) = + (ic//zJ± )I[//(n), 

Q/(n) = +~i[m/~/(n)-c/q,./(n)], 
u± (z) = b =F (z)/a ± (z), m/ = (b /a/ )-1. 

The two systems { 1[/ J and (4J J are biorthogonal with 
respectto the skew-scalar product (2.12). Indeed, using (1.2), 
one can verify the following biquadratic relations between 
any two solutions ~ (n,z) and tfi(n,t ) of (1.2): 

[4J (n,z), 1[/ (n,t)h -I(n)] 

t v2(n) 
=-;-'t 2 -zl 

X [z~2(n,z)t/tI(n,t) - t~l(n,z)t/t2(n,tWI:= _ "". 
(2.18) 

Making use of (2.4) and of the fact that 
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P.v.lim (z/~T 
n~oo t; - Z 

= 1Tti (arg z - arg t; ), z,t;eS I, 

we obtain 

[<P± (n,t;),CJI± (n,t;)h -I(n)] 

= += 21T[a ± (t; )j2ti(arg z - arg t;), z,t;eS I, 

[<Pl(n),CJlk±(n)h-l(n)] =0, 

[<P l (n),.p k± (n)] = - Mal )2Zj± tijk' (2.19) 

[<Pl(n),CJlk±(n)h-l(n)] = -~(al)2zj±tijk' 
[<Pl(n),.p k±(n)h -I(n)] = - !(iilZj± + al)altijk . 

From (2.18) and (1.29) we also have 

[Q (n,z),P(n,t;)h -I(n)] = - iti(arg Z - arg t;), z,t;eS I, 

[Ql(n),Pk±(n)h -I(n)] = ~tijk' 

[Ql(n),P t(n)h -I(n)] = O. 

(2.20) 

Relations (2.19) and (2.20) allow one to conclude that the 
systems { CJI J, { <P J, and {P,Q J consist of a linearly indepen
dent element. 

Now it is natural to introduce the operators A ± ' for 
which the elements of { CJI J and { <P J are eigenfunctions, i.e., 

(A + - ZZ)CJI± (n,z) = 0, (A _ - ZZ)<P ± (n,z) = 0, zeS luLl, 

(A+ - zJ± ).pl (n) = 2zj± CJI/ (n), 

(A_ -zJ± )<Pl(n) = 2zj± <P/(n). 

(2,21) 

The explicit form of A ± has been known. 11,12,14 For us it will 
be convenient to factorize them in the form 

A ± X(n) =A z±A I±X(n), X(n)E@:i(Z,C2), (2,22) 

where the operators A i±' i = 1,2, are defined by 

A 1+ CJI± (n,z) = zji± (n,z), A 1- <P ± (n,z) = z(p ± (n,z), 

z = S luLl, (2.23) 

A 2+ W± (n,z)zCJI± (n,z), A 2- (p ± (n,z) = z<P ± (n,z), 

W± (n,z) = v(n)¢± (n,z)o¢± (n,z), 

(p ± (n,z) = v(n)~ ± (n,z)o~ ± (n,z). 
The explicit form of A i± , i = 1,2 and their inverse is given by 

A I±X(n) = ( Xl(n) ) ± ( q(n) ) 
\x2(n - 1) - r(n - 1) 

XLn± [r(k)X](k)+q(k)Xz(k)]h-l(k), 

From (2.26), (2.21), and (2.15) it follows that 

(A + + zZ)-I(A + - ZZ)G (n,m,z)h -I(m) = ti(n - m), 

i.e., G (n,m,z) is the Green function for the operator 
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AlX(n)=h(n)(Xl(n+l))+( q(n)) 
Xz(n) - - r(n) 

X Ln±+ I [r(k - l)XI(k) + q(k )Xz(k)], 

A I±X(n)=h(n)( XI(n) )+( q(n) ) 
X2(n + 1) - r(n) 

X Ln±+ I [r(k )XI(k) + q(k - l)Xz(k)], 

A lX(n) = (xI(n - 1)) += (q(n - 1)) 
Xz(n) - r(n) 

X Ln± [r(k )XI(k) + q(k )Xz(k )]h -I(k), 

(2.24) 

where 

The condition (2.1) ensures that A i± X E@:i(Z,CZ
) for any 

XE@:i(Z,C2
). 

The operators A i±' i = 1,2, and A ± satisfy conjuga
tionlike relations with respect to the skew-scalar product 
(2.12): 

[Y(n),A 1+ X(n)h(n)] = [A 2- Y(n),X(n)], 

[Y(n),Az+X(n)] = [A l-h(n)Y(n),X(n)], (2.25) 

[Y(n),A+h(n)X(n)] = [A_h(n)Y(n),X(n)]. 

The first two lines of (2.25) follow directly from the explicit 
form of A l, (2.24), and from the definition of [ , ], (2.12); 
the third line is a consequence of the first two and (2.22). 

The spectral theory of the operators A ± can be con
structed analogously to Refs. 7 and 21. Here we will only 
show the interrelation between the Green function (2.14) and 
the operator A +. Applying the contour integration method 
to the integral 

-1-f dt; t;2+r G+(nmt;) 
2 · t; t;2 2 " 1TI y+ -z 

1 i dt; t;2+Z2 _ 
- 21Ti 1'r _ T t; 2 _ r G (n,m,t; ), 

we obtain the following spectral decomposition for G: 

CJI-(n,t;)~-(m,t;)} -2 ~ [Y+(nm)+ Y.-(nm)] 
[a-(t;W /~I J' J" 

(2.26) 

(A + + r) - I (A + - ZZ). This result is esentially different 
from the one related to the Zakharov-Shabat system (1.1); 
there the continuous analogs of G and A + are related by 
(A + - A )G (x, y.A ) = ti(x - y). 
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III. THE 1ST AS A FOURIER TRANSFORM 

Let us start by deriving the expansions for w(n) and 
0"30w(n) over the systems of "squared" solutions { IJI} and 
{ tP }. To do this, we multiply the completeness relations 
(2.15)and(2.16)byw(m)h -'(m)and0"30w(m)h -'(m)fromthe 
right and sum over m. Thus the corresponding expansion 
coefficients have the form (2.10) and through (2.9) are easily 
expressed in terms of the scattering data Y. The result is 

and 

wIn) = _1_' j dz (p+lJI+ +p-IJI-)(n,z) 
21T 1s, z 

w(n) = -ii, ~ p(n,z)- 2i
j
t, [P/(n)+Pj-(n)] 

(3.1b) 

N 

+ 2 L [Y/(n) + Yj-(n)], (3.2a) 
j= , 

0"30w(n) = j dz [Q(n,z) op(z) - P(n,z) oq(z)] 1s, z 

N 

+2 L [Z/(n)+Zj-(n)], 
j=' 

Z/(n) = Q/(n)op/-P/(n)oq/, 

(3.2b) 

where 

dw 
0"3- +f(A+)w(n,t) 

dt 

In obtaining the rhs of(3.6) we have made use of(2.21). It 
remains to be noted that the lhs of (3.6) vanishes if and only if 
all the expansion coefficients on the rhs of(3.6) vanish, which 
readily gives (3.5). This last step follows also from the fact 
that the systems {IJI j and (tP j are biorthogonal [see (2.19)]. 

Analogously, using the symplectic expansion (2.16), we 
can prove 

Theorem 2: w(n,t ) satisfies (3.4) if and only if the set 
(p,qjin (3.3) satisfies the linear equations: 
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p(z) = -(l/21T)ln[1 +p+p-(z)], 

q(z) = -! iln[b +(z)/b -(z)], ZES', 

p/ = + iln zH' ql = + iln(b ll/zJ), 

op(z) = - [P(n,z)'0"30w(n)h -'In)], 

oq(z) = - [Q(n,z)'0"30w(n)h -'In)]. 

(3.3) 

Now the parallel between the 1ST and the Fourier transform 
is obvious: The expansion coefficients in (3.1) and (3.2) are 
simply the scattering data Y, (2.8), and their variations. As a 
generalization of the usual "discrete exponent" zn , one 
should consider {IJI} or {P,Q }; the role of the shift operator 
will be played by the operator A + (2.21). 

From (3.1) and (3.2) there follows a more rigorous proof 
of the theorem, concerning the description of the DEE relat
ed to (1.2). 

Theorem 1: Letf(r) be a meromorphic function with 
poles lying outside of a certain neighborhood of the spec
trum S 'uLi of (1.2). Then w(n,t ) satisfies the DEE 

dw 
0"3 - + f(A +)w(n,t) = ° (3.4) 

dt 

if and only if the scattering data Y, (2.8), satisfy the linear 
equations: 

dp± --;Jt + f(Z2)P ± (z,t) = 0, 

dcl _ -2 ± - + f(zH )cj (t) = 0, 
dt 

~=o. 
dt 

(3.5) 

Proof Let us insert the expansion of w(n), (3.1a), and 
0"3(dwldt ) over the system {IJI} in thelhsof(3.4). The latter is 
obtained from (3.2a) by considering variations of the form 
0"30w(n) = 0"3(dwldt)& + 0 ((& )2), and differs from (3.2a) 
only in that the coefficients op ± .... are replaced by dp ± I 
dt .. ··; the same is true also for (3.2b). This gives 

(3.6) 

(3.7) 
dp/(t) 
--- =0, 

dt 

From (3.5) and (3.7) it follows that the DEE (3.4) has an 
infinite series of conserved quantities C(p) ,p = 0, ± 1 ..... As 
a generating functional of C(P) it is natural to consider d'(z): 
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..of(z) = In a+(z), Izl > 1, 

..of(z) = - In a-(z), Izl < 1, 

CIPI being the expansion coefficients of ..of(z): 

00 

..of(z)= L CIPi z - 2p, Izl>l, 
p~1 

00 

..of(z)=- LCIPirP, Izl<1. 
P~O 

(3.8) 

(3.9) 

To derive compact expressions for C(pi as functionals of 
wIn), we start with the relation 

d..of z--
dz 

= ~ tr{ [zi+(n,z)x+(n,z) - n0'3](1 + 0'3) }I: ~ - 00' 

Izl > 1, (3.10) 

which follows from (2.4), (3.8), and (1.2). Using (1.2) once 

Inserting the rhs of(3.l3) into (3.12), we arrive at 

z d: = - n~~ 00 L n+ :i~~ (A+ +r)(A+ -r)-Iw(k), 

(3.14) 

which proves to be valid both for Izi > 1 and Izl < 1 (the con
siderations for Izl < 1 are analogous). Comparing (3.14) and 
(3.9) for C(pi, we obtain 

Clpi= J.. i: Ln+ w(k)AP+w(k) , 
P n ~ - 00 h (k) 

P = ± 1, ±2, .. ·. (3.15) 

The dispersion relations (2.7) allow one to express Cipi as 
functionals of the scattering data Y: 

II ifdZ-2 -C P = - -z P In[l +p+p (z)] 
21T S' Z 

1 N - - L (1~ -1~), p#O, (3.16) 
P j~ I 

C(O)= -Inv=_l_' i dZ ln [l+p+p-(z)] 
21T 1, z 

N z7+ - L In_1 _. 

j~1 1-
The desired trace identities are obtained after equating the 
rhs of(3.15) and (3.16). Through the same pattern one can 
derive compact formulas for the variations of ~Clpi .12 For 
this it is enough to note that 
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more for the rhs of(3.1O), we obtain 
00 

L {pr[ i+(n,z)0'3x+(n,z)(1 + 0'3)] - l} 
n = - 00 

00 

= L L n+ tr[ i+(k + 1,z)Q (k )0'3X+(k,z)0'3], 
n = - 00 

(3.11) 

which can be put into the form 

d..of 
z--= -

dz 

00 

L L n+ v(k + 1 )w(k ) 
n= - 00 

x ¢+(k + l)oc;6 +(k) + ¢+(k )oc;6 +(k + 1) 
a+(z) 

(3.12) 

Let us now expand [v(k )/a + (z)][¢+ (k + l)oc;6 +(k) 
+ ¢+(k )oc;6 +(k + 1)] over the system {I/I). The correspond

ing expansion coefficients are expressed through the scatter
ing data Y by using (2.18). Thus we obtain 

~..of(z) = ! tr[X+(n,z~i(n,z)(l + 0'3)] I: ~ _ 00 

= J.. i [0'3~w(n)] - v(n++ 1) 
2 n~ - 00 a (z) 

(3.l3) 

X [c;6 +(n,z)o¢+(n + 1,z) + c;6 +(n + 1,z)o¢+(n,z)], 

Izl > 1, 

which with (3.l3) directly leads to 

(3.17) 

We end this paragraph by reproducing in compact form 
the formulas from the traditional approach2,3 to the DEE 
(3.4) as a consistency condition, 

dL (n,z) + L (n,z)M (n,z) - M (n + 1,z)L (n,z) = 0, 
dt 

of two linear problems: (1.2) and 

d¢(n,z) = M (n,z)¢(n,z). 
dt 

(3.18) 

(3.19) 

ChoosingM(n,z) = ~k ~ Mlki(n)aspolynomialofzandz- I 

and inserting in (3.18), one obtains recurrent relations for the 
coefficients M(k i (n) II; trying to solve them, one, after some
what tedious calculations, naturally obtains the A operator. 

Here we shall use another approach, developed for the 
NLEE by Gel'fand and Dickey22; see also Ref. 21. Let us 
introduce the resolvent of the system (1.2)23 
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~(n,m,z) = ~ ± (n,m,z), Izl~l, 

~ ± (n,m,z) = x± (n,z)e(n - m)i± (m + 1,z), (3.20) 

.a +( ) _ {diag( - 1,0), m>n, 
~ n-m-

diag(O, 1), m < n, 

.a _( ) {diag(O, - 1), m>n, 
~ n-m = 

diag( 1 ,0), m < n, 
and define its "diagonal" as 
R (n,z) = ~(n,n - 1,z) -! = - !x± (n,z)u:&,± (n,z). It is 
easy to verify that R (n,z) satisfies the equation 

L (n,z)R (n,z) - R (n + 1,z)L (n,z) = O. (3.21) 

Since R ± (n,z) is analytic in z for Iz I ~ 1, one may consider the 
asymptotic expansions 

00 

R + (n,z) = -!u3+ I R(P)(n)z-P, Izl>l, 
p~1 

(3.22) 
00 

R -(n,z) = !U3 + I R (- p) (n}z", Izl < I, 
p~1 

Note that R (p)(n) and M(p) (n),p#O, satisfy the same recur
rent relations. From the definition of R (n) and (2.23) and 
(2.24) we have 

U
3
(R t'~ (n)) = + v(n)¢ ± (n,z)0tP ± (n,z) 
R 21(n) - a± (z) 

= ! zA / ~[¢ ± (n + l,z)°tP ± (n,z) 
a± (z) 

+ ¢ ± (n,z)°tP± (n + 1,z) + w(n)], 

R 11(n) = -Rli(n) 

= + ~ a ~nlz) [¢ 1± (n,z)tP2± (n,z) 

+ ¢ 2± (n,z)tP1± (n,z)] . 

(3.23) 

Making useof(3.12) and (3.13), one obtains compact expres
sions for R (p) (n,z) through the operator A +: 

R (2p) (n) - U3~ + w(k) A P w(k) p = ± 1 + 2 ..• 
~ n h (k ) +, '- , , 

R (2p-1)(n) = ' 12 
(

OR (2P -1)(n)) 

R ~f-I)(n), 0 ' 
(3.24) 

(R;~=::(n))= -uy1E+AP+w(n), E={2
1
, p>O, 

R 21 (n) , P < 0, 

The M operators for the DEE (3.4) are simple linear combi
nations of R (p) (n). We write down the M operator only for 
the simplest case, when in (3.4)f(r) = vrN, N> 0, 
v= const: 

M(N)(n,z) = v[ 2XOI 

rN-PR (p)(n) +!R (2N)(1 + U3)]' 

(3.25) 

Thus R (n,z) may be considered as a generating functional of 
the M operators and also of the conserved quantities of the 
DEE (3.4). The last statement is obtained by comparing 
(3.24) and (3.11), which gives 
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doff 
z-- = =t= 

dz 
[tr(R (n,z)u3) ± 1], Izl~1.(3.26) 

n= - 00 

IV. HIERARCHIES OF HAMILTONIAN STRUCTURES 

The proof of the Hamiltonian structure of the DEE (3.4) 
is now easy. For this one should introduce the following 
symplectic fonn 12

: 

!1 (0) = 2i f c5q(n) /\ c5r(n) 
n~-oo h(n) 

=i[u3c5w(n), exterior product, u3c5w(n)h -l(n)], 
(4.1) 

where c5q /\ c5r = c5 1qc52r - c52qc5 1r is the usual exterior pro
duct. In order that the Hamiltonian equations of motion 

11 (0)( U 3 ~~ , .) = c5HI {-} (4.2) 

coincide with (3.4), one should choose HI in the fonn 

HI = - i Ifp
CIP) 

P 
00 

= -i/o I lnh(n) 
n = - 00 

n = - 00 

where 

fIr) = ~J;,rp, F(r) = fZ> ~s [f(s) - fo]. (4.4) 

The complete integrability of the DEE (3.4) becomes 
obvious after recalculating !1 (0) and HI in tenns of the scat
tering data variations. Most simply 11 (0) is calculated by in
serting the symplectic expansion (2.16) into (4.1) and using 
the third line in (3.3). This immediately casts 11 (0) in canoni
cal fonn: 

11 (0) = 2;,[ dz c5p(z) /\ c5q(z) 
JsI Z 

N 

+ 4i I [c5p/ /\c5q/ + c5pj- /\oqj-]' (4.5) 
j~1 

which means that! p,q} is a set of canonical coordinates and 
momenta. From (3.16) and (4.3) we see that 

HI = - 11 ~ f(Z2).D(Z) + ijtl [F1(zJ+) -F1(zJ- I], 
(4.6) 

FI(s) = r ~~' f(s'), zJ± = exp( ± 2ip/), 

i.e., HI depends only on the set of the new momenta! p}. 
Thus! p,q} in (3.3) is the set of the action-angle variables for 
the DEE (3.4).12 

The symplectic structure !1 (0) is not unique. One can 
introduce a one-parameter family of symplectic fonns 11 1m) , 

generated from 11 (0) (4.1) by the operator A +: 

11 1m) = i[u3c5w(n)h -l(n), A ,;; u30w(n)]. (4.7) 

The proof that 11 1m) are symplectic is most easily perfonned 
as in Ref. 9 after recalculating 11 1m) in tenns of the scattering 
data variations, which now gives 

Gerdjikov, Ivanov, and Kulish 31 



                                                                                                                                    

n (m) = 2i i dZ?m c5p(z) 1\ c5q(z) 1, z 

N 

+ 4i L [zJ~ c5P/ 1\ c5q/ + zJ~ c5pj- 1\ c5qj - ]. 
j~ • 

(4.8) 

From (4.8) it is obvious that {n (2m) , 
m = 0, ± 1, ± 2,· .. J is a hierarchy of compatible symplectic 
forms, which generate a hierarchy of Hamiltonian structures 
for the DEE (3.4). Indeed, thechoicen = n(m) ,H = H flml in 
(4.2) with jim) (?) = ?m f(Z2) lead to the same DEE (3.4) as 
il _ il (0) H - H 
J~ - J~ , - f' 

In complete analogy to Refs. 7 and 8, one can define the 
Lagrange manifold for the DEE (3.4) by 

mIt )- [X (n,t )Em: [X (n,t ),P (n,t,z)] = 0, zES ·uA J. 
Let us list without proof the main properties ofm(t): 

(i) if XEm, then A +X = A _XEm; 

(ii) dim m = codim m; 

(iii) u3c5w(n )Em if and only if c5p(z) = 0 for all ZE S ·uA, 
i.e., the restriction of n(m) 1m =0 for all m = 0, ± 1, .... 

Remark 2: From (2.17), (2.9), and (2.4) one verifies that 
w(n,t )Em(t). This together with the property (i) of m gives 
f(A +)w = f(A _ )w, i.e., the operators A + and A _ generate 
the same DEE (3.4). 

Remark 3: Ifw(n,t) satisfies any of the DEE (3.4), then 
u3(dwldt )Em(t) for all t. 

At the end of this paragraph let us consider two particu
lar examples of soluble DEE. They are related to the system 
(1.2) with simple reductions of the potential, which naturally 
requires a recalculation of the action-angle variables. 

A. The difference nonlinear SchrOdinger equation 
(DNLS) 

i dq(n,t) = _ [1 - eq*(n)q(n)] [q(n + 1) 
dt 

+ q(n - 1)] + 2q(n), e = ± 1, (4.9) 

is obtained from (3.4) withf(z2) = i(2 - Z2 - Z-2) provided 
the reduction r(n) = cq*(n) holds. This reduction imposes 
the following restrictions on the scattering data: 

a+(z) = a-(l/z*), b +(z) = - cb -*(lIz*), 

Zj+ = lIZj*_' cj- = c(c/ )*/(zt+ f (4.10) 

As a Hamiltonian and 2-form, generating (4.9), one can 
choose 

n DNLS = cn(O)lq~Er" 

= - ~ f1T dr c5(arg b + (eiT )) 1\ c5 
1T -1T 

N 

- 4c I [c5tj 1\ c5pj + c5wj 1\ c5Sj ], (4.11) 
j~. 

where In zJ + =;j + iWj' In(b / lJU) = Sj + ipj; 
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H = e(2C(0) - eO) - e(-I))I 
DNLS q~ Er" 

<Xl 

L ! q*(n)[q(n + 1) + q(n - 1)] 
n= - = 

+ 2eln[1 - eq*(n)q(n)]j 

=2c{- ~f1T drsin2rln[l- clp+(eiT W] 
1T _" 

+ 2 jt. [cos Wj sinh;j - tj]}' (4.12) 

The explicit form of the action-angle variables is obvious 
from (4.11). Note that from (4.10) and (3.16) one obtains 
e(p) = C(-p)" 

B. The difference modified KdV equation (DMKdV) 

i dq(n,t) = _ [1 - cq2(n)][q(n + 1) - q(n - 1)], 
dt 

c = ± 1, (4.13) 

is obtained from (3.4) withf(z2) = Z-2 - Z2 provided that the 
reduction q(n) = cr(n) holds, which means that 

a+(z) = a-(lIz), b +(z) = - cb -(lIz), 

(4.14) 

As it has been noted in Ref. 12, n (0) vanishes identically if 
this reduction is imposed. Therefore, we should use another 
symplectic structure from the hierarchy, e.g., 
I") '1")(-1)1 2 
J~MDKdV = IJ~ q~Er = - C 

X f [2c5q(n) 1\ c5q(n + 1) + c51n h (n) 1\ c5 
n = - 00 

X(I n+ q(k )q(k - 1))] 
2 1" = - - drsin 2rc5 
1T 0 

Xln[ 1 - cp+(eiT)p+(e - iT)] 1\c5 

X - - In ---'----'--[ 
i b +(eiT) ] 
2 b +(e- iT) 

N 

+ 4 I c5 cosh(tj + iWj)I\c5(Sj + ipj)' (4.15) 
j~ 1 

In zJ + =;j + iWj' In(b / 1.jV) = Sj + ipj' 

The corresponding Hamiltonian is 

H MDKdV = e(O) - e(2) 

n = - 00 

+ cq(n)q(n - 2)[ 1 - q2(n - 1)] 
- ! q2(n)q2(n - III 

2 1" - - drsin22r 
1T 0 

Xln[ 1 - ep+(eiT)p+(riT)] 
N 

- 2 I [tj + iWj - ! sinh 2(;j + iWj)] . 
j~ 1 

Ifbesidesq(n) = cr(n) we requireq(n) = cr*(n), then the scat
tering data Y, (2.7), will satisfy both (4.10) and (4.14). In this 
case the eigenvalues appear either in four tuples (zj+ ,zt+ ' 
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- Zj + , - zj + lor pairwise if among Zj + there occur real or 
pure imaginary numbers. Let us introduce the notations: 

..2 !;j+iWj b +1 r:: Sj+ipj . 1 N 
Zj+ = e , j 'IIV = e ,J = , ... , I' 

z;, + = e'a, b a+ I/V = era, a = 1, ... ,Nz, (4.16) 

~+ = - e"l3, b // I/V = e(Jl3, /3 = 1, ... ,N3, 

2NI +N2 +N3 =N. 

Then the 2-forms in (m) = - in ( - m) become real and 

equal to 

i{) (m) = ~ (1T drsin 2mr 8 (In [1 - Elp + (e i1"W]) 
1T Jo 
A8(arg b +(eiT

)) 

8 N, - - L 18 [ cos(mtLlj) cosh(m~j)] A 8/3j 
mj=1 

- 8 [sin(mtLlj ) sinh(m~j)] A 8pj J 
4 N, - - L 8 cosh(mEa)A8Ya 
m a=1 
4( -It N, - L 8 cosh m7]p A8()p. (4.17) 

m P=I 

From (4.17) with m = 1 we easily get the action-angle 
variables for the MDKdV (4.13) with real-valued q(n). If in 
(4.13) we change the variables to u(n) = arctanh q(n) for 
E = 1, and u(n) = arctanh q(n) for E = - 1, we obtain an
other interesting DEE: 

du(n,t) = tan u(n + 1) - tan u(n - 1), E = 1, 
dt 

(4.18) 

du(n,t) = tanh u(n + 1) - tanh u(n - 1), E = - 1. 
dt 

The equivalence of (4. 13) and (4.18) is obvious only for 
E = - 1; for E = 1 the change of the variables u(n) = arc
tan q(n) is singular. 

There are more examples ofinteresting DEE which can 
be obtained from (3.4). Obviously for all of them one can 
calculate the Hamiltonian structures and the action-angle 
variables, following the above considerations. 

V. QUANTUM DIFFERENCE NONLINEAR EQUATIONS 

The nonlinear DEE mentioned above can be solved by a 
quantum version ofIST. Let us consider quantum DNS (4.9) 
where now the quantities q(n) and q+(n) are operators with 
commutation relations (m,n = 0, ± 1, ± 2, ... , ± N) 

[q(m),q+(n)] = 1i[1 - Eq+(n)q(n)]8(n - mI. (5.1) 

Hereafter we shall use the normal ordering with respect to q 
and q +. For finite N we can realize these operators in the 
state space K (N) : 

N 
CU'N = CU' 

eTl ® ifl n' 
n= -N+ 1 

(5.2) 

where !L' denotes closure of a linear space I···J and 
Ik)n = (q+(n))k 10)n,q(n)10)n = 0. As a consequence of(5. 1) 
the norm in JY IN) is positive definite provided n (OIO)n = 1: 
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k 

(k Il)n = 8k1 (lit II Cm' cm = (5.3) 
m=l 

n 
The parameter 7] = ! In( 1 - Eli) is more appropriate in the 
following formulas. In order that the Heisenberg equations 
of motion coincide with (4.9), we must add the quantum cor
rections to the classical expression of the Hamiltonian (4.12): 

H = - I Iq+(n)[q(n + 1) - q(n - I)J 
n 

- [2li/ln(1 - Eli)] In[1 - Eq+(n)q(n)]}. (5.4) 

The quantum version of 1ST (QIST) also uses an auxil
iary linear problem. In this case we can take the same L 
operator (1.2), r(n) = Eq+(n), with its entries as operators in 
Kn (5.2). The main step ofQIST is the determination of 
commutation relations of the quantum scattering data or, to 
be more precise, the operator-valued entries of the mono
dromy matrix 

(5.5) 

(5.6) 

whereR (cp )isa4X4c-numbermatrixorintertwiningopera
tor, I is the identity operator in C 2

, exp cp = z/~. The R ma
trix can be calculated from the very same relation (5.6) but 
with Ln (z), Ln (~ ) instead of TN (z), TN (~): 

RI~I~(~ b~- b:+ ~} 
a = sinh(cp - 7]), b± = e± 7J sinh cp, 

C = - sinh 7]. (5.7) 

For finite chain with periodic boundary conditions 
(2N + k = k, mod 2N) the trace of the monodromy matrix 
tN(z) = AN(Z) + DN(Z) is the generating functional of the 
quantum integrals of the motion. In order to define eigen
states and eigenvalues of t N (z), we shall need the following 
commutation relations (5.6): 

[tN(Z),tN(~)] = 0, [CN(Z),CN(~)] = 0, (5.8) 

AN(Z)CN(~) = [lib -(cp )]CN(~ JAN(Z) 

- [c(cp)/b -(cp )]CN(ZJAN(~)' 

DN(~ )CN(Z) = [lib -(cp )]CN(z)DN(~) 

- [c(cp)/b -(cp )]CN(~ )DN(Z), (5.9) 

Since, when applied to the vacuum 10) = n;; = _ N + I 10) n , 

Ln (z) becomes triangular, one easily finds for the action of 

AN (z), BN(z), DN(z) on 10) 

AN(z)IO) =rNIO), DN(z)IO) =z-zNIO), (5.10) 

BN(z)IO) = 0. 

Using (5.8)-(5.10) via the general scheme of the QIST,17,18 
one constructs the eigenstates of tN(Z): 

n 

IZI,· .. ,Zn) = II CN(Zk)IO) (5.11) 
k=1 

provided the quasi momenta Zk satisfy the algebraic equa
tions (exp A = z) 
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4N sinh(Ak - AI + TJ) 
(Zk) = II ' k = 1,2, ... ,n. (5.12) 

I-I'k sinh(Ak - AI - TJ) 

The corresponding eigenvalue is given by 

V(z!z 1 n) _ r-N lIn e
71 

sinh(A - Ak - TJ) 
, k I - k = I sinh(A - A k ) 

_ 2N lIn e71 sinh(A - Ak + TJ) 
+z . 

k = I sinh(A - Ak ) 

(5.13) 
For the energy of the state (5.11) we have 

n 

E(!zd~)= I €(Zk)' €(z)=21i-z2 _Z- 2
• (5.14) 

k=1 
There exist different phases in the limit N--oo. The 

phase with finite number of particles is the simplest one. The 
state space has the Fock type structure with vacuum 10) and 
creation operators q+(n), n = 0, ± 1, ± 2,.··, or 

R +(z) = lim CN(z)Ir-N AN(Z), Izl = 1. (5.15) 
N-ao 

The additional factor r-N is a consequence of the transition 
matrix definition 

T(z) = lim E-N(z)TN(z)E-N(z) 
N_ao 

BN(z) I IA (z) 
r-N DN(z) = C(z) 

B(Z)I 
D(z) , 
(5.16) 

whereE(z) = (OILn(z)IO) = diag(z,z-I). It is possible to de
fine operator-valued Jost solutions (in the weak sense) and 
their analytic properties and relations to the transition ma
trix T(z). The inverse to Ln (z) is [Pn = 1 - €q+(n)q(n)] 

L n-I(z) = e-
71 

VL
n
(e- 71Iz)V-I, 

Pn 
V = diag(e - 71

/2
, - e71/2

). (5.17) 

Using L ~(z) = UILn (l!z)ul, we get 

Tiil(Z) = QiiIWT:V(e71z)W-I, W= VUI' 
N 

QN = II e71Pn· 
n=-N+I 

(5.18) 

The operator R + (z), R (z) = €D -l(z)B (z) is called quantum 
scattering data. They are generators of the Zamolodchikov
Faddeevalgebra. By means of the formulas (5.17) and (5.18) 
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one can obtain a quantum analog of (2.5), i.e., the quantum 
Riemann problem. The reconstruction of the local quantum 
operators q(n) and q+(n) from the quantum scattering data 
would enable one to calculate the Green's functions of this 
model. 
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A new integral equation for summing Feynman graph series (general scalar 
Lagrangian case) 
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9 J J 90 Gif-Sur- Yvette, France 

(Received 30 June 1981; accepted for publication 14 January 1983) 

The Schwinger parameter formalism is used to derive a new integral equation verified by the 
"open" four-point amplitude built from any scalar Lagrangian. This integral equation is a 
generalization of the one already obtained and studied by the authors in the cp3 ladder graph case. 
One of the main results obtained here is a new representation of the Feynman amplitudes: the so
called,B-representation, which expresses the Bethe-Salpeter structure of a graph in the Schwinger 
parameter space. The integrand of the ,B-representation satisfies a recurrence relation which is 
used to sum the perturbation series, and which leads to an integral equation for its sum. The 
expression ofthis integral equation is also given in some particular cases (particular values of the 
invariants, particular classes of graphs, etc.). The Mellin transform of the open amplitude satisfies 
a similar integral equation which may be used to describe the Regge behavior. 

PACS numbers: 02.30.Rz, 1l.l0.Mn, Il.lO.Ef 

INTRODUCTION 

This work takes place in a set of studies whose aim is to 
obtain, in the framework of Lagrangian field theory, results 
on the infinite sum of the perturbation series, whatever the 
value of the coupling constant is. The common feature of this 
set of studies is that they are performed in the framework of 
the Schwinger parametrization of Feynman integrals. 

Some years ago, powerful results were obtained on the 
complete asymptotic behavior of each term of the perturba
tion series (mainly in the Regge limit) for scalar Lagrangians, 
and on their sum. 1 

Another way, more recently explored, provided results 
on the four-point amplitUde which are not restricted to 
asymptotic values of the invariants. It relies on the existence 
of a new integral equation (IE) that does not apply to the 
amplitude itself, as it is the case for the Bethe-Salpeter (BS) 
integral equation, but rather to a new quantity: the "open 
amplitude." The first step has consisted of deriving this new 
IE in the restricted case of cp3 ladder subseries. 2 The present 
work is the generalization of this first step to the complete 
perturbation series built from any scalar Lagrangian. 

The advantages of working with IE are well known: 
Under conditions of sufficient regularity of the inhomogen
eous term and of the kernel, the solution of an IE can be 
computed. For example, when an IE satisfies the conditions 
of the Fredholm theorems, its solution is the ratio of two 
holomorphic functions, and its singularities are poles, given 
by the zeros of the Fredholm denominator, which depends 
only on the kernel. 

As for the Bethe-Salpeter IE in momentum space, our 
IE makes use of the Bethe-Salpeter structure of the ampli
tude, that is to say, its decomposition into generalized lad
ders whose rungs are t-channel two-particle irreducible sub
graphs (t-2PI subgraphs) [see Fig. l(b)]. The Bethe-Salpeter 
IE reflects directly the factorization of the integrand when 
the Feynman amplitude is expressed as an integral over in
ternal 4-momenta. 

The Schwinger parametrization of the same amplitude 
destroys this factorization. For example, the quadratic form 
DG (a) which appears in the integrand is a complicated func
tion of all the Schwinger parameters of the graph G. How
ever, the ladder structure of the graph was still reflected, in 
the cp3 ladder case, by the open amplitude built in Ref. 2: 
Inside the set of all integration variables of the Schwinger 
parametrization [Eq. (1 )], we have distinguished there a sub
set a c = ! ail ,ai, ," J, called the closing variables. The open 
amplitude OG (ac ) is then defined by the same integration as 
the Feynman amplitUde IG itself, except that the closing 
variable integration is not performed. Of course, the Feyn
man amplitude of the graph G is the integral of OG (ac ): 

IG = f dac OG(ac )' 

We have shown that the open amplitUde obeys a recurrence 
law on the number of rungs of the ladder. This recurrence 
law is the key result from which the existence and the proper
ties of the IE verified by the infinite sum of the open ampli
tudes is deduced. 

We show in the present paper that an analogous work can 
be done independently of the ladder restriction and for any 
scalar Lagrangian cpn . 

Although the Bethe-Salpeter IE and our IE, both, re
flect the Bethe-Salpeter structure of the amplitude, they are 
qualitatively different: It is not possible to transform one of 
them into the other. They concern different amplitUdes and 
different variables: 

(i) Our IE is not satisfied by the amplitude, but by the 
open amplitUde. 

(ii) The integration variables in the Bethe-Salpeter IE 
are the external momenta, whereas our IE involves as inte
gration variables the closing variables, i.e., a given subset of 
the Schwinger parameters. 

A consequence of the qualitative difference between the 
two IE appears in the actual computation: In the cp3 ladder 
case, our IE turns to be very appropriate; indeed it provides 
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t channel 

5 channel ___ 

(a) 

9j = 

FIG. I. The kinematics of the four point graph and its Bethe-Salpeter struc
ture: G = u i gi. In the first part of this work, the subgraphs gi have no 
special property of reducibility: There is, in general more than one such 
decomposition of the graph G. In the second part, gi are restricted to be two 
particule irreducible in the t channel: There is an only Bethe-Salpeter de
composition of G. 

not only the Regge singularities but gives directly the ampli
tude itself, whereas the Bethe-Salpeter IE has to be studied 
by two different methods to obtain the same results.3 From 
the method initiated by Lee and Sawyer, indeed, the Regge 
singularity analysis is obtained from an analytic continu
ation of the partial waves, the problem of the summation of 
the partial wave expansion, which gives the amplitude, being 
left over. If one is interested in the amplitude, other methods 
must be used (such as the perturbation-theoretical integral 
representation,3 for instance), and so the complete study of 
the properties of the amplitude through the Bethe-Salpeter 
equation is difficult and lengthy. 

Though our integral equation is singular, we prove the 
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existence and uniticity of its solution and make explicit its 
singularity structure. Our fundamental result is that, for 
each given value of the coupling constantA, the solution can 
be written as a finite sum of solutions of Fredholm equations 
plus a function which is the sum of a convergent series in A. 
Moreover, our IE allows simple approximate quantitative 
computation: For example, the trace approximation gives 
good results for the dominant trajectory.4 

To achieve the generalization of our IE, we split the 
problem into two steps: First we neglect the UV divergences 
and focus our attention on the algebraic structure. This step 
is completely done for all scalar Lagrangians (Secs. I-IV). 
Then we have to face the ultraviolet divergence problem, 
namely, in our approach the compatibility of the Bergere
Zuber5 renormalization procedure and of the structure of 
the recurrence relation [see Sec. I A, Eqs. (32)]. This is done 
here only for the rp3 interaction. 

The price to pay for the generality of our result is, of 
course, the formal character of the equation obtained. The 
kernel, which governs the properties of the solution, is given 
in terms of an infinite series. The logical following step of our 
program is the link between the properties of this series and 
those of the four-point amplitude. 

We conclude this introduction with a more precise pre
sentation of the content of this paper. We obtain two new 
results: the first one, presented in Sec. I, is a scalar integral 
representation for the Feynman amplitudes, which is an al
ternative to the Schwinger one. The Schwinger a-parametri
zation gives in fact the amplitude associated with a given 
graph as a multiple scalar integral involving as many scalar 
variables as internal lines in the graph. There appears in the 
integrand no factorization according to the "rungs" of the 
generalized ladder [see Fig. I (b)]. Our aim is to make explicit 
on the Schwinger integrand the BS structure of a graph. This 
requires, as presented in subsection I A, a change in the 
choice of the invariants and consequently of the topological 
functions which are their coefficients in the quadratic from 
DG (a). In subsection I B, important properties of quasifac
torization and of recurrence of these topological functions of 
the graphs are given. In subsection I C, the structure of the 
quadratic form DG (a) is made precise. In subsection I D, we 
are then led to establish our alternative parametrization for 
the Feynman amplitude: the .B-parametrization. Let us con
sider the graph G of Fig. I(b), which is a generalized ladder 
with n rungs gj. The .B-parametrization is an integral over 
6 X n scalar variables (the.B variables) and its integrand is a 
product of two factors: 

( I) The first one is completely factorized, and is a pro
duct of n functions of six variables, each one being attached 
to one rung gj . 

(2) The other one is a global factor, which depends only 
on n and is independent of the structure of each rung: It is the 
skeleton of BS structure of the graph. 

The.B variables represent appropriate combinations of 
the topological polynomials associated with each gj. Their 
variation domains are always explicitly indicated by means 
of e step functions. 

We have then the adequate tools for proving the exis
tence of the integral equation, which is the second new result 
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ofthis work. It is the aim of Sec. II. From the recurrence 
relation obeyed by the open amplitudes (defined in II A) we 
deduce the integral equation satisfied by their sum (II Band 
II C). 

Then we discuss in this framework the Regge limit, that 
is to say. the structure of the IE in the Mellin space (Sec. III). 

Some physically interesting particular situations are 
grouped in the fourth section: forward scattering. bound 
states equation, .... In this section one can find also the sim
plified expression of the IE for a special class of kernels (the 
ladder with generalized rungs; see Fig. 4). or for particular 
values of the variables {3. 

Finally, the renormalization problem is achieved for 
the q;3 interaction Lagrangian in Sec. V. Some technical 
points are grouped in the Appendix. 

I. BETHE-SALPETER STRUCTURE AND 
TOPOLOGICAL POLYNOMIALS 

We consider here the scalar Lagrangian field theories. 
With any graph G is associated its Feynman amplitude. 
whose Schwinger integral representation is 

L
'" IIG) 

I~(P) =,1 N(G)(ie- i£)-lUIG)/2 IT da
a 

o a=\ 

(1) 

In (1), w( G ) is the superficial degree of divergence of the 
graph G: 

wIG) = 4L (G) - 21(G), 

where L (G ), I (G ), and N (G ) are, respectively, the number of 
independent loops, of internal lines, and of vertices of G. Pis 
the set of externaI4-momenta, and A is the coupling constant 
of the theory. There is a scalar variable aa attached to each 
internal line of the graph. The set (a l,a2, .... aI IG ) ) will be 
noted a or a G every time an ambiguity is possible. The oper
ator R is the Bergere-Zube~ subtraction operator which 
ensures the ultraviolet (UV) convergence of the Feynman 
amplitude. In this work we will pay no attention to the UV 
convergence problems, but for the case of the interaction q;3 
which we treat exhaustively (see Sec. V). 

In Minkowsky space the amplitude is the limit E-G + of 
I ~. As we are mainly interested with the algebraic structure 
of the integrand, and not with the convergence conditions of 
the integral, we place our problem in Euclidean space, in 
which the amplitUde is given from (1) with E = 1T12: 

IG(P) = L'" df.tG(aG)e
Dda

). 

where 

d (a )="tNIG)lrrIG)d exp(-l:~I~)laam2) 
f.tG G aa . 

a=1 P~(a) 

(1 ') 

(2) 

The function DG(a) is a quadratic form built from the 
external 4-momenta. In 2 particles __ 2 particles case which 
we are studying, it is equal to 
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A ::'(a) A ~(a) A ~(a) 
DG(a)=s-- +t-- +u--

PG(a) PG(a) PG(a) 

~ 2 A ~(a) + ~Pi---' 
i=1 PG(a) 

(3) 

s,t,u are the Mandelstam invariants built from the external 
momenta Pi [see Fig. l(a)]. andPG(a),A ::,(a),A ~(a),A ~(a). 
A ~(a) (i = 1, ... ,4) are the topological polynomials, charac
teristic of the graph G. Their definition can be found in the 
Appendix A of Ref. 2. Let us only say that they are polyno
mials. homogeneous in the seta, and ofdegreeL (G) for PG' 
(L (G) + 1) for the other ones. 

The problem we solve here is the adaptation of this for
malism in order to make use of the Bethe-Salpeter structure 
of the four-point amplitude: Any graph composed of at least 
n two-particle irreducible subgraphs in the t channel may be 
drawn as the generalized ladder of Fig. lIb). As we consider 
the two vertical lines attached under each bubble as internal 
lines of the corresponding subgraph. the graph G is exactly 
the union of each subgraph gi: 

G = I gl>· .. ,gn)· 

In this first section, except for the existence of the two addi
tional vertical lines, the graphs gi can have absolutely any 
structure: They can be reducible or irreducible. 

The problem stands of course in the fact that the inte

grand eDda)1 P ~ (a) in (1') is not factorized in functions, each 
attached to each subgraph gi' As we want to build G as a 
ladder of rungs gi' we are faced with the necessity of per
forming loop integrals to link two subgraphs: In the follow
ing paragraph a change of external momenta is performed in 
order to make easier this integration. 

A. Alternative expression for the quadratic form DG{a) 

The first step consists in modifying the usual form of 
DG(a). We choose as external momenta the three combina
tions, 

ql = ~(PI + P3)' 

q2 = !(pz + P4)' 

q=(PI-P3)=(P4-P2)' 

and build their associated invariants, 

Sl1 = qi = ~ (pi + p;) - g 

Sl2 = 2q\q2 = !(s - u) =s+~(t- ± p;), 
2 ;=J 

S22 = q~ = ~(p~ + p~) - ! t. 
SI = 2qql =pi - P;' 

S2 = 2qq2 = p~ - p~ , 

Sf = q2 = t. 

(4) 

(5) 

The seven invariants s,t,u, P;. i = 1,2,3,4, are not indepen
dent (s + t + u = l: PT), so it is enough to define the six inde
pendent invariants Sj ,jEK, where K is the set of indices: 

K = pI, 12,22, 1,2,t ). 

Putting in (3) the inverse relations of (5), which gives the 
Mandelstam invariants in terms of the Sj variables, we find 
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DG(a) = I Sj /3 b(a). (6) 
jEK 

The /3 b (a) are the combinations of topological polyno
mials associated with Sj : 

/3g(a) = [lIP(a)] [A ~(a) +A ~(a) +A ~(a) +A ~(a)], 

/3:i(a) = [lIPG(a)][A~(a)-A~(a)], 
/37](a) = [lIPG(a)][A ~(a) +A ~(a) +A ~(a) +A ~(a)], 

/3~(a)=~ [lIPG(a)][A~(a)-A~(a)], (7) 

/3~(a) = ~ [lIPG(a)][A ~(a) -A ~(a)], 

/3~(a) = [lIPG(a)][A ~(a) 

+! [A ~(a) +A ~(a) +A ~(a) +A ~(a)] J. 
The set of the six functions /3 b , iE/(, will be noted /3 G . 

Let us now give the variation domain of /3G' when the a 
parameters vary from zero to infinity. For the most general 
graph, the topological functions AjG(a)/PG(a), 
i = s,t,u, 1,2,3,4 are independent and vary from zero to plus 
infinity. Then, using (7), one obtains the bounded domain: 

1/3:i1 +21/3~1</3~1, (8a) 

1/3:i1 + 21/3~1</37], (8b) 

1/3~1 + 1/3~I<2{3~· (8c) 

In opposition with A {.;(a)IPG (a), some ofthe/3 bmay be
come negative. 

In fact, we will see in the following that the six/3j ,iE/(, 
do not play an equivalent role: We have to group them into 
two sets: 

Y=! /3IZ,/3Z,/3zzJ 
and 

(9a) 

(9b) 

Thus, the variation domain (8) may be built in two steps: the 
variation domain of y, y being kept fixed and the domain for 
y, whatever y is. These variation domains play an important 
role in the following. To each of them are attached, respec
tively, the function 8 1, 8 z, 8 3 with 

8 1(/3) = 8 2.83, 

where 

(lOa) 

8 z(y,y) = 8(/3 11 -I/3 lz l-21/3 11).8(2{3' -1/3 11-I/3 zl), 
(lOb) 

83(y)=8(/3ZZ-I/3IZI-21/3ZI), 

with 8 the usual step function. 

B. Bethe-Salpeter structure of the /3 functions 

(We) 

The theorem we establish now concerns the Bethe-Sal
peter structure of the topological polynomials. It is the result 
upon which the whole work relies. 

Theorem 1: Let us consider a graph G which can be 
written as a generalized ladder with n rungs [Fig. lIb)]: 

G=! gl,gz,···,gn J. 
Then there exists seven functions of 6 X n variables, S ~ ,iE/(, 
and S ~, verifying the three following properties: 

-They are independent of the graph gi' depending 
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only on the number n of such sub graphs, 

- /3 b(aG) = S ~ (/3g, (ag,), /3g2 (ag2 ), ... , /3g.!agn )), (11) 

and 

PG(aG) = (iii Pgi(ag))S~(/3g,(ag,), ... ,/3g.!agJ). (12) 

-The functions S ~ , iE/(, and S ~ verify the following 
recurrence relations: 

S ~ (/31"'" /3n) 

= S ~ _ 1(/31"'" /3n -Z,SZ(/3n_1 ,/3n)), 

S~(/3I,· .. ,/3n) 

(13) 

= S~ _ I (/31"'" /3n - Z ,Sz( /3n - I' /3n ))S~ (/3n - I' /3n)· 
(14) 

The meaning of this theorem is the following: The /3 func
tions associated with the graph are themselves functions of 
the /3 functions associated with each subgraph gi in a way 
which is independent of the graph G except for the number of 
subgraphs gi . 

I t is this property which replaces the factorization prop
erty of the integrand in the momentum space. 

Proof The proof proceeds through two stages: first we 
show it directly for the case n = 2. Then the proof works by 
recurrence. 

n = 2 case: Let us consider a graph G which is two
particule reducible in the t channel (see Fig. 2): G = ! g l' gz J. 

We write the amplitude I G in terms of the convolution 
of the two amplitudes Ig, and Ig2 : 

I G(qpq2,q) 

= cstJ d 4q' Ig,( - q',q2,q)·Ig2 (ql,q',q), 

where 

q' = ~(p~ + p;). 

(15) 

In the two members ofEq. (15), we use for I the expres
sion (1'), where D (a) is given by (6). After having done the 
integration over q', we can identify on the two sides the de
nominators and the coefficients of the invariants. We remark 
that/3G dependsonag, andagZ onlythrough/3g, and/3g2' We 
thus obtain explicitly the functions Sz: 

S~I(/3I,/32) =/3~1 - (/3~2)ZI(/3:1 +/3~Z), 

S ~2( /31' /32) = /3 :2/3 ~2 I( /3: I + /3 ~2), 

S ~Z( /31' /32) = /3 iZ - (/3 :2)2/( /3:1 + /3 ~Z), (16) 

S~(/3I,/3Z) =/3~ -/3~2(/3~ -/3:)/(/3:1 +/3~Z), 

S~(/3l>/32) =/3i +/3:2(/3~ -/3:)/(/3:1 +/3~Z), 

S ~ (/31' /3z) = /3; + /3 ~ - (/3 ~ - /3:)Z I( /3 : I + /3 ~2), 

and finally 

(17) 

n subgraph case: Let us turn now to the graph of Fig. 
lIb). We build by recurrence the set offunctionsS ~ ,iE/( [see 
(13)]. Inside the graph G we can group together the two last 
subgraphs gn _ I and gn : 

G=! gl,gz,···,gn-Z,g~-I J, 
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with 

g~ - I = 1 gn - 1> gn ). 

If we assume that the S ~ _ I functions are known, we have 

13 b(aG) = S~ _ I (f3g, (ag, ), ... , f3g• _ 2 (ag._ 2)' f3g~ _, (ag~ _ )). 

then using Eq. (16) to compute 13. , we obtain 
g,,- t 

13 b(aG) = S ~ _ I (f3g, (ag, ), ... , f3g• _ 2 (ag• _ 2 ),S2( f3g• _, (ag• _,), 

f3g.(agJ)). (18) 

The comparison of (18) with (11) proves the existence of 
S ~ (jEK) and gives us their recurrence law. With the same 
procedure, we deduce the recurrence law (14). 

This achieves the proof of Theorem 1. 

c. Bethe-Salpeter structure of the quadratic form 

In this subsection, the dependence of the quadratic 
form in function of the variables Yn is studied. In the recur
rence relations (13) and (14), the six variablesf3n do not play 
an equivalent role. The dependence in function of three of 
them (Y n ) is linear and does not depend on all the 6 X n - 3 
other variables. It will be seen further that this property al
lows to obtain an IE with only three integration variables 
and not six. To lighten the notations, we write 
f3 ln) = 1 f3l,.··,f3n ).ThefunctionsS~,jEK,arehomogeneous 
functions of degree one in the set of the 6 X n variables f3 ln)' 

and S ~ is homogeneous of degree (n - 1) in the same set. We 
recall that we have defined the two subsets [see (9a) and (9b)): 
Y = 1 13 12, 13 22, 13 2) and Y = 1 13 11 , 13 I, 13' J; we define also 
the two subsets of indices: 

K'=112,22,2) and [('=111,1,1). 

From (16) and (13), one can show by recurrence that it is 
possible to define a set off unctions S ~ such that 

S ~ (f3ln)) = S ~ (f3ln _ Ii'Yn), forjEK' andj = 0, 

S ~(f3ln)) = S ~(f3ln _ 1),Yn) + f3~, forjEK'. 
(19) 

As a direct consequence of Theorem 1, we are led to 
define a function D n : 

Dn (131"'" f3n )= I SjS ~ (f3l>"'" f3n)· 
jEK 

(20) 

The quadratic form DG (aG) has a simple expression in func
tion of Dn: 

DG(aG) = Dn (f3g, (ag,), f3g2(ag2), ... ,f3g.(agJ). (21) 

The useful properties of Dn are given in the following 
theorem. 
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Theorem 2: The dependence of the D n function upon 
the three variables Y n of the last graph g n is explicit and 
linear: 

(22) 

jEK' 

where the Dn function depends, as fa! as the last subgraph is 
concerned, only on the set Yn' The Dn function verifies the 
recurrence law: 

Dn (f3ln - Ii'Yn) 

= Dn _ I (f3ln - 2i'S2( f3n -I ,Yn)) + d (Yn - I ,Yn), (23a) 

where 
( 13 i2)2 13 i2( 13 ~ - 13 : ) 

-SII -SI 
13: 1 + f3~2 13: 1 + f3~2 

(
, (13 ~ - 13: f) 

+ S, 13 I - 13: 1 + f3~2 (23b) 

and where S2 represents the set of functions 1 S {, jEK '). 
Proof The relation (22) follows immediately from Eqs. 

(19) and (20). The function Dn and the term l:jEK' Sj 13 ~, fol
low the same recurrence law (13) asS ~,Thus, using (22), one 
can obtain the recurrence law (23) for Dn. 

Let us remark that the function d, and the term 
(l:jEK' Sj 13 ~) in (22) correspond exactly to the violation of the 
• law in the framework of our work on the rp3 ladder. 2 

D. f3-parametrlzatlon of the Feynman amplitudes 

Weare now able to proceed any further and to propose 
an alternative form for the Schwinger parametrization, form 
which reflects the Bethe Salpeter structure of the amplitude: 

Theorem 3: The amplitude I G attached to the graph of 
Fig. l(b) may be written as 

IG = J iI (df3jjg,(f3j)) [S:;;'····;) )]2' (24) 
l - 1 n 1"" n 

where 

jg(f3)=el(f3) (00 djlg(ag) II 8(13 j-f31(ag)). (25) Jo jEK 

Proof Theorem 3 is easily proved if, inside expression 
(1') where DG(a) is given by Eq. (21), we insert 

1 = J jDJI8( 13 ( - f31,(ag,)) df3{. (26) 

Let us make three remarks: 
(1) We purposely make explicit the integration region 

for the 13 via the factor e l [see Eq. (10)). 
(2) For a given graph G, the decomposition 

G = 1 gl'"'' gn ) is not unique, as far as the irreducibility of 
the subgraphs gj is not required. In particular, to any graph 
is associated its f3-parametrization with n = 1: 

IG = J df3jG(f3)eDtII3
). 

(3) The strength of the expression (24) is that the inte
grand appears as the product of two qualitatively different 
factors: 
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(a) e
D

"(.8(")); [S~ (/3(n))] 2 is independent of the character
istics of the graph G but the number n of subgraphs gi' 

(b) The n functionsjgi( /3i ) depend on the subgraphs gi' 
This factorized structure is the main property which is 

used to build the integral equation derived in the next sec
tion. 

II. INTEGRAL EQUATION 

The Bethe-Salpeter integral equation is written for the 
amplitude. It is not the case here. Our work relies upon the 
properties of the partially integrated integrand. The first 
subsection is devoted to define this "open amplitude." Then 
a first form of the integral is given. The third subsection gives 
the final form of this equation. 

From now on and up to the end of the work we consider 
for each graph its unique decomposition in the generalized 
ladder [see Fig. l(b)] oft-2PI subgraphs: Here the notationgi 

will always refer to such a two-particle irreducible subgraph. 

A. The recurrence relation obeyed by the open 
amplitude 

The open amplitude OG"_, (Yn) is defined by the rela
tion 

(27) 

where Yin) is a condensed notation: 

Yin) = I /3ln - II,Yn l· (28) 

Equation (27) is nothing but Eq. (24) where we let remain the 
last six integrations df3n : 

The open amplitude is only dependent on the (n - 1) sub
graphs G n _ 1 = I g I"'" gn _ 1 j, and not on the last subgraph 
gn' From a given open amplitude OG" ... " it is possible, using 
(29), to reconstruct all the amplitudes of the family of graphs 
G n which have the sames (n - 1) first subgraphs and a differ
ent nth subgraph gn . Such graphs, which are generalized 
ladder with n rungs, but with only the (n - 1) first subgraphs 
Gn _ 1 specified, will be called n-open graphs (see Fig. 3). 

The integration (29) can be simplified: Inside the set of 
the six variables /3 n , the three integrations dy n can be per
formed: 

(30) 

with 

Inserting definition (25) for jg (/3), we find 
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FIG. 3. The n-open graph 
G"_, = {g, •...• g" __ ,}. An n-open 
graph. and the open amplitude 
which is associated with it. depend 
on the (n - I) subgraphs gi' 
i = I •...• n - 1. but not on the nth 
subgraph. The nth bubble is a skele
ton which may be dressed by any 
graphg". 

}g(Y) = e 3(y) J d,ug(ag) exp( Ii.Sj /3 ;(ag)) 

X II O(/3j -/3£(ag )). (31) 
jEK' 

The way to build the recurrence relation on the number of 
subgraphs of the open amplitude is straightforward: In the 
expression OGJYn + I)' we make use of the recurrence rela
tions (14) and (23). 

We recognize the open amplitude OG" ,(S2( /3n, Yn + 1 )) 

in the integrand and so 

OG,,!Yn + d = J d/3n }gJ /3n) [SO~~Yn'Yn+ d W 
2 n ,Yn + 1 

XOGn ,(S2(/3n,Yn+d). (32) 

In the relation (32), only the variables with an index equal to 
n or n + 1 appear. Thus the notations can be simplified: in
steadof/3n = IYn,Ynl and/3n+l= IYn+I,Yn+lj,wewill 
use in theremainder/3' = li,fl and/3= Iy,Yl· 

Let us remark that the open amplitude has been defined 
in perfect analogy with the cp3 1adder case. 2 We recall that, in 
this latter work, the closing variables (see the Introduction) 
were the three Schwinger parameters attached to the last 
rung and the last vertical lines of the ladder, whose corre
spondent here is exactly the last subgraphgn [see Figs. l(b) 
and (c)]. One can get convinced that the elements of Yn con
cern the same topological polynomials of gn that the closing 
variables of the ladder. 

B. Summing the series over all graphs 

As we already said, we may draw all graphs generated 
by any scalar Lagrangian as a generalized ladder (see Fig. 
l(b)], where each subgraphgi is t-2PI. Now, the crucial point 
when one wants to face the whole perturbation is to organize 
the infinite sum. The results already obtained [the factoriza
tion ofEq. (24) on one hand, the definition of the open ampli
tude on the other] lead us to the following four steps: 

(i) For any n-open graph, we define its open amplitude 

OG" __ ,· 
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(ii) We group together all the n-open graphs and define 
the quantity 

On(Y)= L OGn_,(Y)· (33) 
G"_1 

From Eqs. (32) and (33), we see that On (y) verifies the 
recurrence relation 

(34) 

with 

k(y,fJ') = L kg(y,fJ'), (35a) 
g 

where ~g is the sum over all the t-2PI graphs and where 

edlY•r) 
(35b) 

(iii) The following step consists in summing over each 
such set of graphs; we define 

00 

O(y) = L On (y). (36) 
n=1 

then 0 (y) verifies the integral equation 

O(y) = OIly) + f dfJ' k(y,fJ')O(S2(fJ',y)). (37) 

with 

(38) 

Equation (37) is essentially the integral equation we are look
ing for. 

(iv) The last step consists of performing the integration 
on the variables y in order to get the four-point amplitude I: 

1= f dy J(y)O (y), (39) 

where 

(40) 
g 

withJg given by (31). 

c. Final form for the integral equation 

We will now proceed a little further in order to get the 
integral equation verified by 0 (y) in a more classical form, 
and see whether it falls under the scope of classical theorems. 

We define the change of variables 

r'-Y* (41) 

such that 

fJ 12'_fJ 12* = S ~2(fJ',y) =fJ I2'fJ I2/(fJ II, +fJ 22), 

fJ 22'-+/3 22* = S~2( fJ ',y) = fJ22, _ (fJ22')2/( fJ II' + fJ 22), 

fJ2'-+/32* =S~(fJ',y) (42) 

= fJ 2, + fJ 12'( fJ 2 - fJ I')I( fJ II, + fJ 22). 

This change of variables does not concern the variables Y'. 
We define 

u = fJ 12* /fJ 12 = fJ 12'/( fJ I I, + fJ 22). (43) 
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One can immediately see that the variation domain of y* is at 
most as large as the domain defined by 8 3(y*), as y* is noth
ing but the y variables of the graph of Fig. 2 with 
! gI,g2} =! g',g}. 

The computation of the actual variation domain of y* is 
given in Appendix A. It is given by the following function: 

8 4(y,y*) = 8(1 - lul)8(fJ22* _julfJ 22 
- 21fJ2* - ufJ21). 

(44) 

The Jacobian of the transformation (41) is 

J (y'_y*) = ({3 II, + (3 22)/{3 12. (45) 

Among the six integrations of the integral (37), three 
can be done explicitly and a new kernel K can be defined by 

K (y,y*) = L Kg (y,y*) 
g 

with 

Kg(y,y*) = f dY' kg(Y, (3')J(y'-y*). 

Using (35b) and the expression (25) ofjg, one obtains 

Kg(Y,y*) = 8 4(y,y*) f dvg(ag ) exp[ d(8y(ag ),y)] 

X II 8({3j* -Sl(fJg (ag ),y)) 
jEK' 

with 

We finally have 

o (y) = OIly) + f dy* K (y,y*)O (y*), 

(46) 

(47) 

(48) 

with OI(Y) given by (38) andK (y,y*) by Eqs. (46) and (47). Of 
course, we obtain the amplitude 1 from Eq, (39). 

Let us make three last remarks about the IE: 
-The dependence of 0 (y) as function of Sj ,jE/(, has two 

sources: OIly) depends upons I2, S22' ands2, and the kernelK 
depends on the three other invariants SII' SI' and Sf. 

-Whereas the number of integration variables was six 
in the IE (37), it is only three in (48). This diffeH!nce reflects 
exactly the difference between the recurrence relation veri
fied by Sn andDn and which concerns six variables [see (13)], 
and the one verified by b n , where only the three variables y n 

are concerned. 
-The inhomogeneous term OI(Y) is a simple explicit 

function [Eq. (38)] which is independent of the Lagrangian. 

III. MELLIN TRANSFORM AND REGGE POLES 

A. The integral equation verified by the open amplitude 
of the Mellin transform 

The reasons for working with the Mellin transform of 
the amplitudes are of two different types: 

-First, there are technical reasons which are linked to 
the Wick rotation problem and to the Landau singularities. 
These points have been discussed in Ref. 2 for the tp3 ladder 
case, and we shall not come back to it in the present paper. 

-On the other hand, it is well known that the Mellin 
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transform is very well adapted for the study of the amplitude 
at high energy, where the Regge model is relevant. The sin
gularities of the Mellin transform are linked to the Regge 
singularities in the angular momentum space. 

In term of the invariants Sj,jE/(, the Regge limit is de
fined by 

S 12----+ 00 , Sj = cst for j =f. 12; 

so we are going to perform the Mellin transform of the am
plitude for the variable S12' The Mellin transform/Ix) of a 
function/Is), which is integrable and regular when S goes to 
zero, is defined by 

e-;TrXF( _ x17(x) = f" dss- x - 'f(s) 

for - 1 < Re(x) < O. (49) 

For the values of x where the integral (49) does not exist.!(x) 
can be defined by analytic continuation. If one uses the /3-
representation (24) of I G, it is possible to perform the integra
tion (49) over the variable SI2 explicitly, and one obtains 

IG(x) = J ;~\ [d/3;jg,(/3;)] 

[S !2( /3w .. ,/3n)] x 
X 0 2 [S n(/3p ... ,/3n)] 

xexp( ~ SjS~(/3I, ... ,/3n)). 

J# 12 
Using the relations (13) and (16), it can be shown that 

rrn /3 12 
SI2(/3 ,/3) = ,= 1 , 

n I"" n S~(/3I, ... ,/3n) 

the Mellin transform I G (x) becomes 

IG(x) = Jill [d/3;jgj(/3;)(/3:2t] 

X 0 1 x + 2 exp ( I SjS ~ (/31"'" /3n )). 
[S n (/3I,· .. ,/3n )] jEK 

J# 12 
(50) 

The factors (/3 :2)X and [S~( /3", .. ,/3n)] - x introduce no 
new singularity in the integral when x > - 1, and IG(x) is 
defined when I G is defined. 

The open amplitude of the Mellin transform is a func
tion of three variables y = (y12,y22,y2) defined by suppress
ing in (50) the last integration d/3n and the factor 
}gn (/3n)( /3 !2)X exp(~jEK' Sj /3 ~), which depends only on the 

variables /3n : 

aGn _ I (Yn) = J i;ll [d/3; }gj( /3;)( /3 :2)X ] 

1 

x exp( I S; S~(/3p ... ,/3n)). 
IEK 

;# 12 
The important property of the function aGn (y) is the fact that 
it follows nearly the same recurrence relation than 0G.!Y)· 
The only difference comes from a factor 
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[ /3 !2/S~( /3n ,y) r = (/3 12*1/3 12)X 

which appears in the kernel 

- J . (/3 12*)X 
°G.!Y) = d/3n }gJ /3n) /3 12 

exp[d(Yn,Y)] a (S (/3 )) 
X [S~(/3I, ... ,/3n)r+2 G n

_
1 2 n'Y' 

Then, in the same manner as for the function ° (y) [see Eq. 
(48)], one can show that the sum a of all the open amplitudes 
of the Mellin transforms verifies an IE: 

(51) 

with 

K (y,y*) = (/3 12*1/3 12r K (y,y*). (52) 

Due to the factor (S !2r , or ( /3 :2r , all the expressions de
rived here would be well defined only if S !2 or /3 :2 would 
never become negative. It is not true in general [see Eqs. (7) 
and (11)]. 

So it is necessary to replace (S !2)X by 

(S !2)x --+() (S !2)(S !2)x + () ( _ S !2)e;?TX( - S !2r , 

and similarly for ( /3 :2)X . It is known that the step functions () 
are the origin of the Mandelstam cut. 

B. Particular value of y: [112 = 0 

Usually, when an IE is written for a particular values of 
a variable, the number of integration variables does not vary. 
Here, if we put /3 12 = 0, then 

Si2(/3',/3) = 0, 

the interval of integration for the variable /3 12* disappears 
and the IE becomes a two-variable IE. Actually it is not 
possible to put/312 = ° directly in the IE ofEq. (51) because 
the JacobianJ(y'--+y*) becomes infinite and one must come 
back to Eq. (37). The change of variables y'--+y*, being not 
allowed when /3 12 = 0, we replace it by the change 
y----+(/322*,/32*,U) with 

U = S~(/3',y)l/312 =/312'/(/3"' + /322). (53) 

For any value of /3 12, the IE can be written as 

O(y) = OI(Y) + J d/322* d/32* du 

xl (y, /3 22*, /3 2*,U)O (/3 22*, /3 2* ,u/3 12) (54) 

with 

I (y,/322*,/32*,U) 

= 8 4 (/322,/32,/322*,/32*,U)UX f dVg exp(d) 

X II 8(P* -Sil8(u _ f3:2~a)), 
J= 22.2 S 2 

(55) 

where d is defined by (23b). 
It is now possible to put /3 12 = ° in the previous equa

tion, and we find 
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0°(/3 22
, /3 2) = O~( /3 22, /3 2) 

+ f d/3 22* d/3 2* 

XK (/3 22, /3 2; /3 22*, /3 2*)0 O( /3 22*, /3 2*) 
(56) 

withKO = ~Ko and g 

K~( /3 22, /3 2, /3 22*, /3 2*) 

f ( /3 12(a) )X 
= dvg(ag) S~(~(:),y) 

xexp[s (/3 t(a) _ (/32 -/3
I

(aW)] 
t /311(a) + /322 

X II 8(pi*-Si(/3(a),/322,/32)) (57) 
j = 22.2 

and 0°(/3 22,/3 2) = 0(/312 = 0,/322,/32). 
When/3 12 = 0, twoinvariantssl1 andsl disappearin the 

expression of the IE. The solution 0 ° depends on the three 
remaining invariants S22' S2' and St and on the Mellin variable 
x. The kernel itself depends only on St = t and x. 

C. Expansion of the IE. Leading Regge poles 

In Ref. 2, this reduction of the number of integration 
variables, when /3 12 = 0, was the basis of a method of com
puting the amplitudes and its singularities by means of an 
expansion, the first term of which is precisely the function 
0o( /3 22, /3 2). Each term of this expansion was the solution of a 
Fredholm type IE, and so its singularities were given by the 
annulation of the determinant of the kernel. This expansion 
classifies the singularities, which give the Regge singularities 
of the amplitude, in a simple manner: Only the first term of 
the expansion contributes to the leading Regge pole, only the 
two first terms contribute to the subleading poles, and so 
on .... In the general case we study here, it is again possible to 
perform such an expansion which has the same formal struc
ture. Of course, the nature of the kernel depends on the La
grangian, and on the particular graphs one actually keeps in 
the kernel. For the complete perturbation it will be difficult 
to verify if we are or not in the Fredholm case. 

Let us expand the function 0 ( /3 12, /3 22, /3 2) as a series of 
/3 12: 

n 

Using Eq. (51), it can be easily verify that each function On is 
the solution of an IE with a kernelKn = ~g K;, whereK; is 
equal to K ~, with x replaced by x + n. 

If we note explicitly the dependence of these kernels, 
they verify 

Kn(x) =KO(x + n). (59) 

If the kernel K ~ are of the Fredholm type (bounded, 
squared-integrable, kernel of a compact operator, ... ), the reo 
lation (59) shows that all the Regge poles are given by the 
first kernel KO(x). The poles coming from the other kernels 
Kn (x) are obtained by a simple translation: x-x - n. In the 
tp3 1adder case, the kernelK O(x) are not of the Fredholm type. 
The expansion (58) must be slightly modified in order to ob-
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tain Fredholm type kernels, and the degenerescence of the 
daughter spectrum is lost (the exact degenerescence is true 
only in the limit -1.-0). 

As thekernelsKn (x) depend only onst = tandx and, of 
course, on the coupling constant -1., the Regge poles, when 
they exist, depend only on t and-1.. We recover here the well
known property that the Regge poles are independent of ex
ternal squared four momentap;. 

IV. PARTICULAR CASES 

A. Particular values of the Invariants 

When some of the invariants are equal to zero, the 
structure of the integral equations changes: The number of 
integration variables is reduced from three to two, and even 
only one in one case. 

1. Forward elastic scattering 

The elastic scattering in the forward direction is defined 
by 

pi = pL p~ = p~, t = 0, 

in term of the Mandelstam invariants or by 

SI =S2 =St =0 

in term of the Sj variables [Eq. (5)]. 
The kernel K of Eq. (48) depends on /32 and /3! only 

through the combination/3 2* - u/3 2. In particular, one of the 
three 8 functions contains this combination. Thus, if one 
integrates the kernel with a function/( /3 12, /3 22) which is in
dependent of /3 2, the result is also independent of /3 2: 

f dy* K(y,y*)f(/312*,/322*) 

= f d/3 12*d/3 22* k (/3 12, /3 22; /3 12*, /3 22*)f( /3 12*, /3 22*) 

with 

and 

kg (/3 12, /3 22; /3 12*, /3 22*) 

= 0(1 - lul)0(/322* - lul/3 22 - 21/3 2(ag ) 

- u/3 l (ag )l) 

f ( (/3
12
)2) 

X dVg exp -Sl1 /312(ag) +/3 22 

X II 8( pi * - S i (/3 (ag ); /3 12, /3 22)). (60) 
j= 12.22 

So, since the first term 0 I does not depend on /3 2 when S2 is 
equal to zero, 02,03, ... ,On' and thus their sum 0 does not 
depend on /3 2. This last function is a function of only two 
variables, 0 = 0 ( /3 12, /3 22) and it verifies an IE, the kernel of 
which is k (/3 12, /3 22; /3 12*, /3 22*). 

The reduction from three to two of the number of inte
gration variables is a consequence ofthe well-known result6 

that in the equal mass case and at t = ° the BS IE have a 
supplementary symmetry. 
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2. Threshold in the t channel 

The annulation of the three invariants s II> S 12' and S I 
corresponds to the threshold in the t channel: 

PI = - P3 or pi = p~ = A t and S = u. 

When SII = SI2 = SI = 0, it can be shown, in the same man
ner as in the previous subsection, that the amplitude verifies 
an IE of only two variables f3 22 and f3 2. The first term is 

0 1 = Ol( f3 22, f3 2) = exp(S22 f3 22 + S2 f3 2), 

and the kernel corresponding to the graph g becomes 

kg (f322, f32; f322*, f32*) 

- dv (a )exp S f31(a) g f [ ( f32 - f31(a ) )] 
- g gIg - f311(ag)+f322 

X II 8([Ji* - S1(f3(ag);f3 22,f3 2)) 
j = 22.2 

with 

uta) = f3 12(a)/[ f3 II(a) + f3 22]. 

3. £Iastic scattering with some external momentum equal to 
zero 

or 

Here we consider the case where 

PI =P3 =0 

pi =p~ =1=0 

and 

S= U =p~ =p~. 

This case contains, as an even more particular case, the 
scattering when all the momentum and all the invariants are 
equal to zero: 

Pi = 0, i = 1,2,3,4. 

The simplifications of the two previous paragraphs can 
be done together, and one obtains an IE of only one variable 
f3 22, with a kernel which is given by k = 1:g kg and 

kg (f3 22, f3 2*) 

= f dVg 8(f322* -S~2(f3(ag);f322)) 

XO(f322* -lu(a)1 f322 - 21 f3 2(a) - u(a)/3l(a)I). 
(62) 

4. Bound states 

It is possible to give another interesting interpretation 
of the cases studied in subsections 2 and 3. Using, for exam
ple, the Schwinger representation of the graphs, one can see 
that the vertex function of a bound state (the "relativistic 
wavefunction"), of squared mass t and which contains two 
particles of momentum P2 and P4' has exactly the same struc
ture in the invariant SI = t, S2 = !( p~ - p~), and 
S22 = !( p~ + p~) - At as the 2~2 amplitudes in the 1 channel 
whenPI + P3 = O. Thus one can define on "open" relativis
tic wa vefunction q;( f3 22, f3 2) which verifies a homogeneous 
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IE: 

q;( f3 22, f3 2) 

= f df322*dfJ2* k(f322,f32; f322*,f32*)qJ (f322*,f32*). 

(63) 

The wavefunction itself can be computed by integrating the 
open wavefunction qJ over f3 22 and f3 2. 

Similarly, ifnow one considers a bound state of mass 
equal to zero (t = 0), its "open" relativistic wavefunction 
q;( f3 ) verifies a homogeneous IE of one variable: 

qJ(f322) = f df322* k(f322; fJ22*)qJ (fJ22*). (64) 

B. Particular value of r: (312 = 0 

It has been seen in the previous section that the IE veri
fied by the Mellin transform became simpler when fJ 12 was 
equal to zero. It is also the case for the IE (48). The ampli
tudesOO( fJ 22, (32) = 0 (fJ 12 = 0, fJ22, fJ2)verifiesanIEwitha 
kernel KO = 1:g K~ defined by 

K~( fJ22, fJ2; fJ22*, fJ2*) 

= f dv (a) exp[s (fJ 1 (a) _ (fJ 2 - fJ l(a))2)] 
g 1 fJlI(a)+fJ22 

X II 8(fJ 2*-S1(y(a),f3 22,f3 2)). (65) 
j = 22,2 

WhenfJ 12 = 0, three invariants, S12' SII' and 51' disappear in 
the expression of the IE. The solution depends only on the 
three remaining invariants 522' S2' and S, (the kernel depends 
on 51 and the first term on 522 and S2)' 

C. Particular class of graphs 

In this section, we consider a particular class of graphs: 
the generalized rung ladder graph (GRLG), where the rungs 
are made with subgraphs which are linked to each upright by 
only one vertex (see Fig. 4, where different examples of such 
generalized rungs are given). To this class belongs the ladder 
graph of q;3, which has been already widely studied in our 
previous paper.2 When one considers the GRLG, four 
among the seven topological polynomials [Eq. (3)] of the 
rungs are equal to zero, 

AI =AU =A I =A 3 =0, (66) 

and the formalism which has been worked up in the first 
sections become simpler: All the kernels [Eqs. (25), (31), (35), 
and (46)] depend on the graph by the same function}g of only 
one variable, and, except for this function, they are explicit 
functions. In the q;3 ladder graph case, the function}g is a 
constant, and, of course, we find the IE of our previous paper 
again. 

FIG. 4. Some example of generalized rungs. The three first graphs come 
from a tp3 Lagrangian; the two last ones, from a tp4 Lagrangian. 
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In this subsection we note g the generalized rung itself 
and g the same graph with two vertical lines added (see Fig. 
5). If a and a' are the Schwinger parameters attached to 
these two lines, the measure dp,g becomes 

dp,g(ag) = da da' exp[ - (a + a')m2] dp,g(ag). 

In addition to the relations (66), the particular structure of 
the graphs lead to simple expressions for the other topologi
cal polynomials of g: 

Pg =Pg , Ai =aA;, 
A; =a'A;, A~ =A~. 

If one computes the /3 ~ functions, one obtains 

/3~(ag) = 0, 

/3 flag) = /3 j2(ag) = /3 !2(ag), (67) 

/3i2(ag) = a + a' + /3 !2(ag), 

/3i(ag) = ~(a' - a), /3~(ag) = Ala + a'). 

We are not going to transform all the results of the previous 
sections, but only the main ones. 

Taking into account the relations (67), we can give the 
new expression of the kerneljg( /3) [see Eq. (25)] 

jg( /3) = {j( fll~( fl 11 - fl 12){j( /3' - i( /3 22 - /3 12)) 

X exp( - fl 22m2'iJg( /3 12), 

where the new function}g is defined by 

}g (/3 12) = 0 ( fl 12) exp( fl 12m2) I dp,g{j (/3 22 - /3 12(ag)). 

(68) 

In the particular case of the rp3 ladder graphs, the function} g 

is a constant: 

}g (/3 12) = A 2. 

The /3-representation [Eq. (24)] can be written 

IG = IlJI [d/3J2}gi(/3J2)]Q"(/3l~), (69) 

where Q" is an explicit function of n variables, /3 (~ 
= (/3 :2, /3 ~2, ... , /3 ~2), independent of the graph and equal to 

Q"(/3 (~) = I lJI [d/3t
2 

d/3t exp( - /3;2m2)] 

exp[D"(/31,· .. ,/3")] I 
X pI 0 pl1 p12. 

[S~ (/31'···' /3")] 2 ;:: (~f~ -=P!~)~4; 
;= 1,,,,,n. 

For example, the /3-representation of dimension 1 is 

IG = I d/312}G(/312)QI(f3 12), 

9 

45 

FIG. 5. Definition ofg and g. In sub
section IV C, gis the rung itself and g 
is the rung to which two vertical lines 
have been added. a and a' are the 
Schwinger parameters attached to 
these two additional lines. 
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with 

Q (flI2) = exp[ - f312(m 2 
- Sl1 - S12 -S22)] 

1 (m2 _ S22 _ !S,)2 _ (¥2)2 
exp[ - (m 2 - s)/312] 

(m2 _ p~)(m2 _ p~) 

The denominator of Q I represents the propagators of the two 
extra lines which have been added to the graph. 

Let us now come to the integral equation itself [Eq. 
(48)]. The product of the three {j functions in Eq. (47) can be 
written as 

[fl22/f312(1 - u)2]£5(f3 !2(ag) - [u/(1 - U)]f322) 

X {j (a + a' - /3 22* + u/3 22)o(~(a' - a) - /3 2* + u/3 2). 
(70) 

In the definition of Kg [Eq. (47)], the integrations over the 
two variables a and a' can be done, using the two last £5 
functions. The remaining integrations of the first {j function 
give the}g function with an argument equal to [u/ 
(1 - u)] /3 22. As/3 12 and thus u are always positive variables, 
the 8 4 function becomes simpler: 

8 4(y,y*) = O(U - u) 

with 

_. ~ /322* _ /32* /322* + /3 2*) 
U - m 1, 22 2' /3 22 /3 2 . 13 -/3 + 

Finally we obtain 

with 

K (yy*) = __ I_exp( _f322*m2 _ ~f322m2) 
g' /3 12/3 22 1 - u 

Xexp(d)}gC : u 13 22
) 

XO(U(f322,f32,f322*,f32*) - u) 

d = - [Sl1(/3 12 )2 +slfll2f32 +s,(f32)2](I- u)lfl22 

+S,(/322* _ u/3 22)/4. 

In order to verify that, in the rp3 ladder case (}g = A 2), this 
kernel is actually identical to the one of Ref. 2, two changes 
must be done. First we must perform the change of variables 
/3 12, /3 2, /3 22-a,a', /3, defined by the relations 

a = !( /3 22 - 13 12) - /3 2, 

a' = ~(f3 22 - 13 12) + 13 2, 

13 = /3 12
• 

The other change comes from the different normalization of 
the amplitUdes. Here the pole term is OI(Y) [see Eq. (38)] 
when in Ref. 2 it would be defined by 

FI (a,a', 13) = exp(sf3 + p~ a + p~ a'). 

v. RENORMALIZATION: rp3 1NTERACTION 
LAGRANGIAN CASE 

As soon as some graphs of the theory are divergent, we 
have to take into account the renormalization operator R. 
We do this here only for the most simple case, namely the rp3 
Lagrangian case. 

The general definition of the renormalization operator 
can be found in Refs. ltd) or 5. 

c. Gilain and D. Levy 45 



                                                                                                                                    

When we restrict ourself to cp3 interaction, there is only 
one connected divergent subgraph in the theory (see Fig. 
6).I(d) Such subgraphs are logarithmically divergent, and 
they are always disjoint. The renormalization operator for a 
given graph G reduces to 

RG = II (I - 7"-;;4) (71) 
II" g 

where g! are all the connected divergent subgraphs de
scribed by Fig. 6 of G and 7'" 4 is the generalized subtraction 
Taylor operator. If the graph G is partitioned into a set of 
subgraphs g;:G = (gl' g2"'" gn), for example, if one consid
ers the Bethe-Salpeter structure ofG [see Fig. I(b)], thenR G 

appears as a product of renormalization operators, each act
ing on a given subgraph g; : 

n 

R G = II R gi
• 

;=1 
(72) 

It is this property which makes easy the demonstration of the 
compatibility of the renormalization and of the /3-represen
tation of the Feynman integral. Before going on, we give the 

expression of R II" for a simple divergent graph. The operator 

R II" is an operator which acts on a functionf(a,a') which 
depends on the two Schwinger parameters of the graph g! 
(see Fig. 6). Putting A. = 4 in Eqs. (1.9) and (1.10) of Ref. I(d) 
and using the integral representation ofthe Taylor remain

der [see, for example, Eq. (111.15) of Ref. 2], R II" can be writ
ten as 

Ri'f(a,a') = i l 

dg*(u) du 
o du 

=f(a,a') -lim [u~(au2,a'u2)], (73) 
u---+O 

where g(u) is defined by 

g(u) = u~(au2,a'u2). 
The generalization to the case of several divergent subgraphs 
is straightforward, but we are not going to write it because 
the only property we need is actually the factorization prop
erty of Eq. (72). 

In the Euclidian space, the amplitude I G of a graph G is 
[see Eq. (1)] 

with 

The functions DG and P G verify the structure property of 
Eqs. (12) and (21). Then, using (26), one obtains 

a 

--<>-- FIG. 6. The only connect divergent 
subgraph of rp'. 

a' 
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Dd,aG) 1 J n 

[;( )]2= n 2 IIIId/3f 
GaG [n;=IPgi(ag.l] j=ljeK 

.. eDn(Plnl) 

x8( /3! - /3 ii(ag)) [P
n 
(P(n))] 2 

If one commutes the integration on the variable /3 ! and the 
renormalization operator RG , then one finds that the /3-re
presentation (24) remains unchanged, except thatjg( /3) 
needs to be renormalized and becomes 

f( /3) = J dA. (a ) R g (njeK o( /3 j - /3 ~(ag))). (74) 
g g g [P

g
(a

g
)]2 

One sees now a supplementary advantage ofthep-represen
tation: the different singularities of the Schwinger represen
tation are disconnected: 

-The UV divergences appear only in the a g integra
tion which are contained in the expression ofjg. 

-The Landau singularities can come only from the P 
integration because only the function Dn (/3(n)) depends on 
the Lorentz invariants Sj. 

VI. CONCLUSION 

In the present paper, it has been shown that the 
Schwinger parameter formalism, could be modified in such a 
way that the Bethe-Salpeter structure of the amplitUde be
comes explicit. This is done through the introduction of a 
new scalar representation of the Feynman amplitudes, the/3-
representation [Eq. (24)]. The fundamental feature ofthis/3-
representation is the quasifactorization property of Theorem 
3. Reflecting the generalized ladder structure of the graphs, 
the /3-representation naturally exhibits a recurrence law in 
the number of "rungs" [Eq. (32)]. We are then able to build 
the infinite sum of the "open amplitudes" as the solution ofa 
three-variable integral equation [Eq. (48)]. The last step to 
obtain the four-point amplitUde is to perform the closing 
integration [Eq. (39)]. 

We conclude and indicate the next steps that this pro
gram should follow. The treatment of the renormalization is, 
of course, one of them. It has been shown in the framework 
of asymptotic behavior studies I(e) that in the case of a strictly 
renormalizable theory (such as cp3 in dimension six or cp4 in 
dimension four) the renormalization procedure can be split 
into two steps: On the one hand, the divergent subgraphs 
occuring inside the t-2PI subgraphs have to be subtracted: a 
behavior predicted by the renormalization group is thus gen
erated for the infinite sum of graphs building each "rung" of 
the generalized ladder; on the other hand, UV divergences 
arising from the ladder structure itself have to be treated. 
Obviously we have to look for such a two-step treatment 
within our framework. Already, for the cp3 Lagrangian, we 
have shown (Sec. V) that the R operator respects the factori
zation property of Theorem 3 (see Sec. I D). 

The next point of our program after renormalization 
has to do with the fact that the actual properties of the solu
tion of our integral equation, of course, depends on the ana
lytic structure ofthe kernel [the inhomogeneous term is ex
plicit; see Eq. (38)]. This structure is not known in general for 
the complete perturbative expansion of the kernel. 
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However, our approach allows to reach many exact re
sults even in cases where infinite subseries of the perturba
tion series are kept: The structure of the kernel is actually 
entirely explicit whenever it is restricted to a finite sum. It is 
then possible to classify the cases where global theorems 
(such as Fredholm theorems) may be used: quantitative 
work, such as in the rp3 ladder case,2 can be done. 

In this paper we have paid attention essentially to the 
four-point amplitude. As outlined in Sec. IV, it is possible to 
exhibit an analogous integral equation for the three-point 
amplitude (vertex). This can also be obtained for the propa
gator. 

Let us end this conclusion by a remark concerning the 
contested interest of the study of the rp3 ladder subseries pre
sented in Ref. 2. The results we have obtained in the present 
paper, taking into account the whole perturbation series, in
deed show that essential properties of the perturbation series 
are already present in the ladder. For example, as in the 
ladder case, we find a three-variable integral equation and 
this equation happens to be simpler under the same circum
stances (reduction of the number of variables in various par
ticular cases). Also, the,8 12 expansion, the analog of the y 
expansion for the ladder case, allows us to classify the singu
larities in the Mellin space. We even obtain a complete ana
logy between the ladder and the "generalized rung ladder" 
(see Sec. IV C and Fig. 4). 

As a last statement, we want to stress the importance of 
the kind of factorization property of a Feynman amplitude 
into a "skeleton," which exhibits its BS structure and con
tains its external momentum dependence, and a "dressing," 
which carries the whole information concerning the dynam
ics attached to the interaction Lagrangian. 

APPENDIX: VARIATION DOMAINS 

In the integral (37), the integration domain of the vari
able,8' is determined by the factor el( ,8 '), which is present in 
the kernel (see Eqs. (35) and (25)]. If one performs the change 
of variables r' -+y., the new integration domains of the inte
gration variables (y.,y') must be determined. As the change 
of variables depends on y [see Eq. (42)], the new domain also 
depends on y. We are going to describe this domain in two 
steps: the variation domain ofr' when yand y. are fixed; the 
variation domain of y. and y is fixed. 
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A. Variation domain of r' with y and y* fixed 

Using Eq. (42), one calculates y' as a function of y,y. 
and r': 

with 

,8 12, = u(,8 II' + ,822), 

,8 221 =,8 22. + u2( ,811' +,8 22), 

,8 2, =,8 2. - u(,8 2 - ,8 It) 

u =,8 12./,8 12. 

(AI) 

Then one writes that,8' = (y',r') verifies the three conditions 
(8): 

(8a)=> - 21,8 1'1 + (1 - lulV'II' - lul,822.;;;O, (A2a) 

(8b)=>21,8 I, _,82 + ,82·/u l + (1 -lulV'II' 

_,822./lul +,822(1-lul).;;;O (A2b) 

(8c)=>I,8I'1 + 1,82. - U(,82 -,81')1- 2{3I'.;;;O. (A2c) 

These three inequalities define the variation domain of 
r' = (,8 II', ,82" ,81'). 

B. Variation domain of y* with r fixed 

This domain is defined by the condition that the pre
vious domain for r' is not empty. A necessary condition for 
the inequality (A2a) to be verified is 

lui < 1. (A3) 

It can be easily shown that the compatibility of the relations 
(A2a) and (A2b) needs the fact that y. verifies the inequality 

21,82. - u,821.;;;,822. -lul,822. (A4) 

The two relations (A3) and (A4) determine the variation do
main ofy·: 

e 4(y,y·) = 0(1 -luIlO(,822. -lul,822 - 21,82. - u,821). 
(AS) 
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The potentials V(x) with a given U norm that maximize the lowest eigenvalue of -.:1 + Vare 
characterized. 
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I. INTRODUCTION 

How large can a given eigenvalue of a differential opera
tor be? This question has implications for many topics in 
mathematical physics, especially when the operator has the 
form 

H= -.:1 + V(x), 

where Vis a real-valued multiplication operator. Self-adjoint 
realizations of H are the fundamental mathematical objects 
of quantum mechanics. The eigenvalues are the energy levels 
of quantum-mechanical particles, and V is the potential en
ergy. Here the variable will range over a finite open domain 
D in Rm with a smooth boundary (an assumption much 
stronger than necessary), and V will be a nonnegative func
tion in L I(D). Nonnegativity of V is assumed only to avoid 
confronting questions of self-adjointness. Except for that it 
would follow automatically that a potential maximizing an 
eigenvalue would be nonnegative. H can be defined as a self
adjoint operator on L 2 by either of the following methods. 

(a) Let -.:1 be the usual self-adjoint Laplacian with 
Dirichlet boundary conditions on the boundary of D, and 
define -.:1 + V(x) via the sum of the associated quadratic 
forms. I Alternatively, equip -.:1 with Neumann or mixed 
boundary conditions. 

(b) Extend H to the infinite domain Rm by forcing the 
potential outside D to equal an appropriate fixed function. 
With the assumptions to be imposed on V, it suffices to have 
the exterior potential be bounded below, locally integrable, 
and greater than a positive constant outside some compact 
set (the constant need only be large enough to ensure the 
existence of an eigenvalue). 

Let Q (p, c) denote the set of potentials V defined on D 
such that II V lip <c. LetE ( V) denote the ground-state (lowest) 
eigenvalue of H. The question asked above can now be made 
specific: What is the supremum of E (V) over the set Q (p, c) 
and for what V is it attained, if any? The answer turns out to 
be that there is a maximizing potential, and that it is of a very 
special form, ordinarily the maximal eigenvalue times a 
characteristic function, 

V. (x) = Emax Xs(x). 

Indeed, the techniques of this paper also allow one to 
characterize the function V (x) that maximizes the bottom of 
the spectrum of a rather general semibounded operator of 
the form T + V, where T represents a closed, semibounded 
operator on L 2(D ) with a few simple properties. Specifically, 

a) Partially supported by NSF grant MeS 7926408. 

the domain of self-adjointness of T + V should be the same 
for all Vin Q (p, c) and Tshould be local in the sense that iff 
is constant (a.e.) on an open subset UofD, then Tf = Oa.e. on 
U. For example, T could be a positive higher-order differen
tial operator with no zeroth order term. The maximizing 
potential function Vis still ordinarily of the form Emax X sIx), 
subject to qualifications analogous to the ones spelled out 
below for the case T = -.:1. 

This problem was raised most recently in a list of open 
problems in mathematical physics at a meeting of the Ameri
can Mathematical Society.2 Prominent among the reasons 
for interest in it are its implications for inverse spectral the
ory, where for practical as well as theoretical reasons it is 
important to know what properties of a potential are deter
mined by incomplete spectral information. The result men
tioned above would be read by an inverse-spectral theorist 
the other way around, as stating that if the lowest eigenvalue 
is larger than a certain amount, then the L p norms of V are 
larger than something, and that if a potential has L p norm 
equal to c and maximizes the eigenvalue, then it has a parti
cular very simple form. From the latter point of view the 
statement is reminiscent of Levitan and Gasymov's striking 
version of Ambarzumian's theorem, viz., for VEL 1[0,1] and 
Neumann boundary conditions imposed at 0 and 1, if 
Eo=O, 

En -n2 __ O, 

where En is the nth eigenvalue, then necessarily V(x) = 0 
a.e.3 

II. MAXIMIZING POTENTIALS 

Let H be as above, and suppose that V belongs to 
Q (p, c) for some fixed p, c, and D. In the case p = 00 it is 
obvious that the lowest or any other eigenvalue is maximized 
by V = c, so p = 00 will not be considered further. It will 
first be established that there exists a Vin Q (p, c) that maxi
mizes the lowest eigenvalue, at least for certain p. 

Proposition 1: There is a bound on the lowest eigenvalue 
depending only on p, c, and D. Consequently there exists a 
maximizing sequence Vn E Q (p, c) such that 

lim E(Vn) = Emax sUPQ(P.c) E(V). 
n~ 00 

Proof The normalized ground-state eigenfunctionfo of 
- .:1 is bounded and hence in the quadratic-form domain of 

H. Therefore an upper bound for E (V) is given by the Ray
leigh-Ritz inequality as 
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E (V)<E (0) + (10' viol 
<E(O) + IVoll:, II vIII 

<E (0) + IVoll:, IIV lip [Vol (D)] I/q, 1/p + 1/q = 1, 

which depends only on e, p, and D. [E (0) is just the lowest 
eigenvalue of - Ll.] • 

Remark: Any sufficiently smooth function!o in the 
quadratic-form domain of H will furnish an upper bound. 
The normalized ground-state eigenfunction gives a good es
timate to compare with the exact answer for simple special 
cases. 

Proposition 2: For all N> 0 there exists a 
V E Q (p, c) n Q (00, N) that maximizes E (V) within that 
class. If p > max(2, mI2), then there exists a maximizing po
tential V within Q (p, c). 

Proof By interpolation Q (p, c) n Q ( 00, N) lies within 
Q (r, e') for all r,>p and some e' depending on r. Choose r> 2 
and > m12; this ensures that the eigenvalue depends con
tinuouslyon Vin the 1111, norm. 1.4 The maximizing sequence 
Vk within Q (p, c) n Q ( 00, N) has a subsequence that con
verges weakly in L ' to some limit V •. By a theorem of 
Mazur there is a sequence of convex combinations of Vk 

that converges strongly to V •. Since Q (p, c) n Q (00, N) is 
convex, the new sequence remains within that class. By the 
Rayleigh-Ritz inequality, the replacement of Vk by convex 
combinations can only increase E (V), i.e., if 

I ai = 1, ai,>O, 
i 

and!now denotes the normalized ground-state eigenfunc
tion of 

then 

= I ai(!,( - Ll + Vi)!) 
i 

It follows that E (V. ) = Emax. Observe that the relevance of 
Mazur's theorem is more convex combination than the na
ture of the convergence. The latter takes place in a somewhat 
arbitrary L '. Of course, if p > max(2, m/2), then the trunca
tion to Q ( 00, N) in this proof is unnecessary. • 

Definition: The potential function Vis a local eigenval
ue extremizer for the set Q (p, c) iff 

(a) II VI/p = c; 
(b) H (or its restriction to a given connected subset of D) 

has a nondegenerate eigenvalue A; 
(c) for every bounded multiplicative function W (x) such 

that 

dl/V,lIp I = 0, 
dt '=0 

where V, = V + tWo the eigenvalue A (V,) such that 
A (Vo) = A satisfies 
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dAd;') 1'=0 = O. 

Remarks: (a) Perturbation theory guarantees the exis
tence and differentiability of A (V,) for sufficiently small real 
values of t. 4 

(b) This is a necessary condition for V to maximize the 
lowest eigenvalue, which is known to be nondegenerate 
(after restriction to a connected component of D, if neces
sary); if it were false, then W could be given some higher
order dependence on t so that V + t W E Q (p, c), but dE I dt 
would still differ from O. 

Proposition 3: Any local eigenvalue maximizer in 
Q (p, c) is equivalent almost everywhere to a function satisfy
ing the nonlinear partial differential equation 

LlV(P-11/2=(V-AjV(P-I)12 (1) 

on the interior of its support. 
Remark: This curious equation has the obvious solu

tion V = A on S = int supp(V), which is the only solution 
when p = 1. It would be surprising if other conceivable solu
tions were relevant, but they might arise if either the shape of 
D or the boundary conditions were peculiar enough. While 
(1) is trivially satisfied away from S, it is not satisfied on the 
boundary of S, and so does not hold throughout D in the 
usual distributional sense. 

Proof Let y and z be points in S at the centers of small 
balls of radius d, denoted Yand Z. Let 

W(x) = Xy(x) - kXz(x), 

where k is chosen to satisfy the condition in (c) of the defini
tion. Since for almost every y and z the averages of V p over Y 
and Z approach P( y) and VP(z) as d _ 0,6 from the defini
tion of the L p norm, k can be taken arbitrarily close to the 
value 

(V(y)lV(z)Y- I 

for almost every y andz (write the integrand for /I V, II~ to first 
order in t). Let tP(x) be the normalized eigenfunction for 
A (V). By the Feynman-Hellmann theorem,4 

dA(V,) Iff = Xx t/?(x)dx - Xy kt/?(x)dx. 
dt ,=0 

For V to be a local eigenvalue extremizer it is necessary for 
the derivative to be 0 regardless of y, z, and d. By letting d 
tend to 0, it follows that for almost every y and z in S, 

tIlly) = (V(y)lV(Z)y-It/?(Z), 

or, in other words, that 

tP(x) = CV(p-I)/2(X) almost everywhere on S (2) 

for some constant C. SinceLl tP = (V - A )tP (sense of distribu
tions), Eq. (2) implies Eq. (1). • 

Actually, Eq. (2) holds almost everywhere on supp( V) 
(the distinction is the possible existence of nowhere dense 
sets of positive measure), since the balls can be replaced with 
appropriate sets that "shrink nicely.,,6 

Proposition 4: Let V,> 0, VEL P(D), p'> 1, D as above 
and moreover assumed connected. Define VT = min(V,T). 
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Let Eo(H ) and tP (H) denote the ground-state eigenvalue and 
eigenfunction of an operator H. Then Eo( -.1 + V T) tends 
monotonically to Eo( -.1 + V) and tP ( -.1 + VT ) tends to 
tP(-.1+V)inL2. 

Remark: Connectedness just ensures nondegeneracy of 
the ground state. 

Proof For simplicity of notation, letf = tP ( -.1 + V) 
andE = Eo( -.1 + V). Monotonicityoftheeigenvalueisan 
immediate and well-known consequence of the min-max 
principle, or the Rayleigh-Ritz inequality. From straight
forward corollaries of the spectral theorem it suffices to 
show that 

II( -.1 + VT -E)fIl2---+0. 

Actually, this just ensures that some point of the spectrum of 
-.1 + V T tends to E and the associated eigenfunction con

verges. But since the ground-state eigenfunctions are charac
terized by positivity, that point has to be the ground state. 
Also, set p = 1, which includes all the other cases. 

Since VT(x)f(x) increases monotonically to V(x)f(x), 
the distribution ( -.1 + V T) J, which is only in L 1 a priori, 1 

increases to ( -.1 + V)f = EfEL 2. Therefore 

III -.1 + VT -E)fll~ = 1 (( -.1 + VT -E)f)2d m x 

is finite, and hence tends to zero by the monotone conver-
gencetheorem. • 

Theorem 1: For p = 1 or p > 2, m/2, there is a potential 
in Q (p,e) that maximizes the lowest eigenvalue, and it satis
fies (1) with A = Emax on S. In particular, when p = 1, 
V. = Emax and "'equals its maximum almost everywhere on 
S. 

Proof The foregoing propositions cover all p other than 
p = 1. If p = 1, then consider the set Q ( 1, e) n Q ( 00, N) in 
place of Q (1, c), where N is larger than the upper bound on 
E (V) from Proposition l. The proof of Proposition 3 goes 
through unchanged, so that on supp(V), t/J(x) = C (a fixed 
constant) and V = E (V) almost everywhere, independently 
of N as N ---+ 00 . But truncation of Vat high values affects the 
ground-state eigenvalue continuously by Proposition 4. 
Hence there cannot be an unbounded VE Q(I, c) with a high
er eigenvalue than the maximum on Q (1, p) n Q (00, N). • 

Theorem 2: Ifp = 1, orifp:;i= 1, but it is known that V ... 
exists and is constant on its support, then V ... is unique a.e. 

Proof Suppose that there were two distinct sets S. Then, 
as in the proof of Proposition 2, the eigenvalue correspond
ing to the average of the two maximizing potentials would be 
no less than Ema. , since the average is a convex combination. 
This is a contradiction, since the averaged potential would 
equal Emu. /2 on a set of positive measure. • 

What makes the proof of Theorem 1 work is that all the 
maximizing potentials within Q (1, e) n Q (00, N) satisfy a 
pointwise bound independent of N. If the same were known 
for allp, then the restriction to values for which Vis relative
ly bounded could be dispensed with. It would suffice, for 
example, to know that the only solution of (1) of interest is 
the obvious one. In principle, these arguments leave open the 
possibility that different solutions are relevant for different 
N, and do not have a uniform bound. 
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111. EXAMPLES 

The one-dimensional case of an interval is rather easy to 
analyze in detail, since there are no geometrical complica
tions and since all eigenvalues are automatically nondegen
erate. By a change of variable it suffices to consider only the 
interval [0,1]. The case of a sphere is similar. 

Scholium: Let H be the one-dimensional operator 
- d 2/dx 2 + V(x)onL 2[0,1], with Dirichlet boundary con

ditions, and denote the nth eigenvalue En' n = 0,1,2, .... Let 
V range over Q (1, c). The eigenvalue En is maximized by 
potentials of the form 

Vn(x) = En, max XsJx), 

uniquely determined only for n = O. If n > 0, then there are 
uncountably many distinct choices of Sn' which can consist 
of any number of subintervals from I to n + 1. The subinter
vals are constrained only by their total length and the dis
tances between them and from them to the endpoints 0 and 
1. 

The somewhat informal proof will be given by con
structing the possible potentials. In one dimension there is 
no possibility of S differing from supp( V. ), since supp{ V. ) is 
the set on which the corresponding eigenfunction", has its 
maximum or minimum value, and on the complement'" is a 
simple exponential function. Since'" is not maximized at 0, V 
must equal 0 on some interval beginning at O. Since'" Eel, 
its first chance to attain its maximum occurs when 

sin(.JE; x) = 1, i.e., at 

x = 11'[£:/2. 

At that point the eigenfunction may either be constant for a 
while or continue oscillating until some later maximum or 
minimum. It is a matter of utter indifference how long the 
eigenfunction remains constant after reaching a sinusoidal 
maximum or minimum, so long as the total length of con
stancy has the correct value. By the Sturmian theorem, the 
nth eigenfunction must make (n + 1)/2 complete sinusoidal 
oscillations punctuated by intervals on which it is constant. 

The total length of the oscillations is (n + 1 )1T/.JE;, while 
from the condition that Vn E Q (1, c) the total length of the 
intervals of constancy of", is c/En (see Fig. 1). Therefore 

(n + 1)1T/[£: + c/En = 1. 

The solution of this is 

En = ((n + 1)11' + {(n + 1)2~ + 4c)1/2)2/4. 

For instance, the first several maximum eigenvalues are 

n En, max 

e=1 e=lO 

0 11.7847490 26.0275168 

1 41.4542947 57.7467175 

2 90.8154283 107.899653 

3 159.907417 177.349813 

4 248.736090 266.364685 

5 357.302960 375.039 120 

The asymptotic form is En, max -((n + 1)11')2. For compari-
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o 

1 

FIG.!. Typical maximizing potential and eigenfunction for a higher eigen
value. 

son, the bounds on Eo. max from Proposition 1 are, respec

tively, 11.8696044 and 29.869 6044 (i.e., r? + 2c), and the 
lowest eigenvalue with V = ° is r? = 9.869 6044. Eo. max has 
been found by an independent method by Farris. 7 

The maximizing potential for the lowest eigenvalue 
with Neumann boundary conditions is V(x) = c, and the 
maximizers of the higher Neumann eigenvalues are obtained 
by an argument analogous to the above. 

Similarly, if n > 1 and D is a regular figure, such as a 
cube, sphere, ellipsoid, etc., it is highly probable that the 
maximal lowest eigenvalue is attained when S is a smaller 
concentric figure of similar shape, and the maximum eigen
values can be obtained explicitly in terms of the special func
tions associated with the separated Laplacian. 

This is certainly true of the sphere. Let p = 1 and let D 
be the unit sphere in Hm. The maximizing potential for the 
lowest eigenvalue is of the form 

V. (x) = Emax Xs(x). 

The set Sin this case is again equal to supp(V.) and must bea 
concentric sphere. This is because a spherical average of all 
rotations of any putative V. would lead to at least as high an 
E., as seen above. Yet supp(V. ) cannot be hollow without 
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violating the minimum principle for the superharmonic 
ground-state eigenfunction on supp( V. r 

It follows that the eigenvalue equation is separable and 
reduces to the one-dimensional equation 

-R H(r) - (m - I)R , (r)lr + (V.(R) - Emax)R (r) = 0, 

which is just a form of Bessel's equation, with solutions 

R (r) = r1 - m121fj ml2 _ 1 (~Emax - V. r) 

on the interval [0, ro] on which V. is constant, where 1ff is 
any of the usual Bessel functions of index ml2 - 1. Conse
quently, Emax is the unique solution of the following triple of 
equations in three unknowns, Emax , ro, and a: 

J ml2 _ 1 (~ Emax ) + a Y m12 _ 1 (~ Emax ) = ° (first zero), 

:r (r1 - m12(J ml2 _ 1 (~ Emax r) 

+ aYm12 _ 1 (~ Emax r)))I,= '0 = 0, 

where (Urn is the volume of the m-sphere. In dimension 
m = 3, the Bessel functions reduce to circular functions, and 
the equations may be written 

417'r6 Emax/3 = c, 

~Emax + ¢ = 17', 

tan(~ Emax ro + ¢ ) = ~ Emax rD· 

These are easy to solve numerically. For example, with 
c = 1, 

Emax ~ 11.0247609. 

(The lowest eigenvalue with V = ° is r? ~ 9.869 6044, and 
the upper bound from Proposition 1 is r? + 17'12 
~ 11.440 4007.) 

1M. Reed and B. Simon, Methods of Modern Mathematical Physics, in four 
volumes (Springer, New York, 1972-1979). 

2Problem list of A. G. Ramm in H. Samelson, "Queries," Notices Am. 
Math. Soc. 29, 326--329 (1982). 

3B. M. Levitan and M. G. Gasymov, "Determination of a differential equa
tion by two of its spectra," Uspehi Mat. Nauk 19(2), 3-63 (1964) [Russ. 
Math. Surveys 19(2), 1-63 (1964)]. Curiously, Levitan and Gasymov state 
the theorem in Ambarzumian's original form, assuming that all En = n2, 

although they prove this much more powerful version. 
"T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der 
mathematischen Wissenschaften, Vol. 132 (Springer, New York, 1966). 
The Feynman-Hellmann theorem is not identified as such, but is equation 
(3.18) on p. 391. 

sK. Y&ida, Functional Analysis, Die Grundlehren der mathematischen 
Wissenschaften, Vol. 123 (Springer, Heidelberg, 1965). 

6W. Rudin, Real and Complex Analysis, 2nd ed. (McGraw-Hili, New York, 
1974). 

7M. Farris, "A Sturm-Liouville problem with maximal first eigenvalue," 
preprint, 1982. 

Evans M. Harrell II 51 



                                                                                                                                    

Stochastic path-ordered exponentials 
JOrgen Potthoff 
Fakultiitfiir Physik. Universitiit Bielefeld, D-4800 Bielefeld 1, Federal Republic afGermany 

(Received 20 July 1982; accepted for publication 10 December 1982) 

We prove convergence of an approximation of the stochastic product integral for conditional 
Wiener paths to the solution of a certain stochastic integral equation. This is used to establish the 
Wiener-Ito representation for the kernel of the semigroup exp t ..1 A , where ..1 A = l:JL (a JL 1 + A JL)2 
for functions AJL with values in the space of anti-Hermitian matrices. 

PACS numbers: 02.50.Ey, 02.30. - f 

I. INTRODUCTION 

The aim of this paper is to construct a (symmetrized) 
stochastic product integral w.r.t. the D-dimensional condi
tional Wiener path Z starting at x at time zero, ending at y at 
time t. The product integral is defined as the limit of a poly
gonal approximation and we show convergence of this ap
proximation to the solution of a certain stochastic integral 
equation w.r.t. Z. 

The existence of this product integral, which we sugges
tively denote by Ifs" exp A(Zsl·dZs,If denoting a product 
whose factors are ordered with increasing time to the left, 
allows writing the Wiener-Ito representation of the kernel of 
the semigroup exp t..1A' t>O, with ..1A = l:~ = 1 (a/ax/-, 
+ Au )2, on L 2(RD,Cm): 

(exp t..1 A )(x,y) = f dP ~y If exp(A(Zs ).d Zs)' (1.1) 
s,r 

where A is a D-tuple of continuous functions such that div A 
is continuous, with values in the space of anti-Hermitian 
m X m matrices and dP ~y is the conditional Wiener mea
sure. 

This formula, which turned out to be very useful in 
Euclidean quantum field theory and whose prooffor the case 
m = 1 can be found in Ref. 1, Chap. V, appears already in 
several papers.2

-6 A discussion of the proof for m > 1 is found 
in Refs. 2 and 3; however, there both authors construct the 
product integral for the Brownian path without fixed end
point and restrict the integration over these paths [cf. (1.1)] 
to those with fixed endpoint. Unfortunately the product in
tegral for Brownian paths is defined only up to sets of mea
sure of zero, so that the validity of their discussions is not 
clear, since the conditioned paths Z from a set of measure 
zero. 

Stochastic product integrals for Brownian motion have 
been studied by several authors (see Refs. 7-9 and literature 
quoted there). 

A basic tool of these works is to use the independence of 
the increments of the Wiener process of the past, i.e., its 
martingale property, which does not hold for the Z-process. 
Although Simon I has shown how one can overcome this 
difficulty for defining stochastic integrals w.r.t. Z by an ap
propriate decomposition of the increments, this is not suffi
cient to generalize the proofs presented in Refs. 7 and 9. 

Actually, in this paper we have to make use of the ideas 
of the Strasbourg school1

0-
13-in particular Emery has al-

ready developed a theory of stochastic product integrals 
w.r.t. semimartingales and their related integral equations lO 

in a very general framework. 
On the other hand the Z-process is simple enough (e.g., 

it is almost surely continuous) to allow for a detailed treat
ment without going through all the complications provided 
by the general situation. In this sense part of the present 
paper can be understood as an illustration (with some modi
fications) of the ideas found in Ref. 10 and in the beautiful 
book of Metivier and Pellaumail. 12 

Instead of working directly with the Z-process we pre
fer to work with the D-dimensional Brownian bridge W, 
which is related to Z via 

Zs =(1 - s/t)x + s/ty + ,ftws1" O";;s.,;;t, 

(1.2) 

where = means equality in sense of probability distributions 
and E(·) denotes expectations; i.e., Ws , O.,;;s.,;; 1, is the Gaus
sian process [over a probability space (I1,Y,P)] of mean zero 
and covariance matrix E (WsW t) = 1 DS( 1 - t) for 
O.,;;s.,;;t.,;; 1, ID denoting the D-dimensional unit matrix. 14 

The paper is organized as follows. In Sec. II we discuss 
some preliminary material; in Sec. III we study integral 
equations w.r.t. Wand show convergence ofthe product 
integral. Finally in Sec. IV we prove the Wiener-Ito repre
sentation for the kernel of exp t..1 A as given in (1.1). 

II. PRELIMINARY RESUL TS15 

As mentioned in the Introduction the problem in deal
ing with the Brownian bridge W comes from the dependence 
of its increments of the past. Simon 1 has shown how to by
pass this difficulty using the decomposition 

W'+.:I' - W, = (w,+.:I' - 1-?~t..1t) W,) 
1 

-..1t-- W,' (2.1) 
1 - t 

so that the increment in ( ) on the rhs is past independent. 
However, in this paper we need some more detailed informa
tion about the d W-integral than is available in Ref. 1, such as 
continuity of f~·dWs in t. 
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We note that an "integrated version" of (2.1) reads 

(2.2) 

where B, has the same probability distribution as the stan
dard Brownian motion b, (B, =b,), as one easily checks. 

Let the underlying probability space of the theory be 
denoted by (n,Y,p) and let the filtration of a-suba1gebras 
generated by b, be (Y;),;>o (i.e., b is an (Y:J-martinga1e). 
Then J eulin" shows that B, is measurable with respect to the 
enlarged filtration (Y,),;>o, where Y, = Y; V a(bJ!, a(b,) 
denoting the suba1gebra generated by b,. Thus the filtration 
(Y, bo is the "natural" one in this framework and in fact B 
is an (Y,)-martingale, so that by (2.2) W, is an (Y,)-semi
martingale.'" '6 

Henceforth measurability is understood w.r.t. Yor 
(Y,) depending on the context. 

The representation (2.2) allows now for an easy adap
tion of the construction of stochastic integrals f~Xs dWs as, 
e.g., in McKean's book9 for nonanticipating functionalsX of 
W (i.e.,Xs is Ys-measurable for O<s< 1) satisfying some suit
able boundedness condition (see below). 

Obviously we have the bound 

E((f Xs dWsY)<2[E(f X; dS) 

+E((f XsWs (l-S)-'dSY)] , (2.3) 

and using HOlder's inequality it can be shown that for X such 
that E (S61Xs 12 Hds) < 00, for any If> 0, one can define 
f~XsdWs' O<t< 1 as an integral continuous in t. 
All this generalizes now naturally to the case of D-dimen
sional Brownian bridge W (i.e., D independent copies of W) 
andX taking values in some Banach space Jf'" with norm 11·11. 

We shall have to use the following 
Definition 2.1: A stopping time u is a map u :n----+[O, 1] so 

that {w;u(w)<t lEY, for every tE[O,l]. 
A stochastic interval [u,v), for two stopping times u,v is 

the set {(w,t); u(w)<t < v(w) J en x [0, 1]. [u,v], (u,v), (u,v] are 
defined similarly. 

If X is a process with values in Jf'" and if u is a stopping 
time, denoteX~ = supo<,<u IIX,II. 

For a D-tuple of processes X, whose components XI' 
take values in Jf"', we let IIX, IIz=.I1' IIXI" liz and define X: 
similarly. 

Using the fact that B is a continuous (Y, )-martingale 
the results of Sec. 6.9 of Ref. 12 imply for Z, 
: = f~Xs.dBs 17 the bound 

(2.4) 

The following theorem is a generalization of the preceding 
consideration. 

Theorem 2.2: Let X be a D-tuple of Jf"'-valued processes 
so that E (f6 IIXs 1/ 2 + Eds) is tinite; then one can define the 
stochastic integral f~ Xs·d Ws as a continuous function of t. 
Moreover, one has the estimate 

53 J. Math. Phys., Vol. 25, No.1, January 1984 

(2.5) 

for any stopping time u, where Q denotes the continuous, 
increasing process 

Q, = 16(1 + f IWsI2(1-s)-3/2dS), O<t<1. 

Remark: Continuity of Q is due to the fact that the inte
gral exists for all tE[O, I] as a consequence of Holder contin
uity of the Brownian bridge W. 

(2.5) is similar to what is called "1T*-property" in Ref. 
12. 

Let us conclude this section by the observation that if X 
has the form Xs = X(Ws) then the condition E (f ollXs W Hds) 
< 00 (in order to define f~ Xs ·d W s) can be replaced by 
XEL foc' P > 2 if D = 1, and p > D if D> 2, as HOlder's inequa
lity and the use of continuity ofW show. 

III. CONVERGENCE OF THE PRODUCT INTEGRAL 

For the rest of the paper we let Jf"'be the Banach space 
of complex m X m matrices, 1 representing the unit matrix 
equipped with the operator norm 11·11 on em. 

The central result of this section is to detine the product 
integral by an approximation which is shown to converge to 
the (unique) solution of a certain stochastic integral equa
tion. Let us begin with a short study of a class of integral 
equations, which is an adaptation of the very general theory 
in Ref. 12 to our simple situation, 

Consider the equation (let D = I for notational conve
nience) 

X, = 1 + f dWsAsXs' tE[O,l] (3.1) 

for (nonanticipating) A with values in Jf"'. 
We can state the following 
Lemma 3.1: LetA be such that 

E (S611As 112(1 - s)-I/zds) < 00. 

Then the integral equation (3.1) admits a unique solu
tion. 

The proof of this lemma has two steps. First one shows 
that (3.1) has a unique solution on a sufficiently small sto
chastic interval [O,u] (using the Banach fixed point theorem). 
Then one extends the solution globally by [0,1]. 

Define a stopping time u by1S 

Let fC' be the complete metric space of continuous H-valued 
processes defined on [O,u], withXo = 1 for XEfC' and 
IIIX Ill z: = E(suPt<u IIX, liZ) finite. We define a mapping 
U: fC' ----+ fC' by 

(UX), = 1 + L dWsAsXs' (3.2) 

By Theorem 2.2, one easily verifies that iiJ (U) = fC': 
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IIIUXIW <2(1 +E(~~PQ, L IIAsI12I1XsIl2(I-s)-1/2dS)) 

<2 + IIIXIW< 00. 

To prove that Uis a contraction letX,x'E~. Then 

IIIU(X -X')IW 

<E(SUPQ, (' liAs II 2 IIXs -X;1I2(I-S)-1/2dS) 
t<u Jo 

<!IIIX-X'IW, 

again by Theorem 2.2. 
Finally we note that U > 0. The condition E (S~ liAs 112 

(1 - S)-1/2ds) < 00 implies that P(Sb //AsW (1 - S)-1/2ds 
> 2k )<2 - k X const for every t and k, so that the Borel-Can
telli lemma implies that liAs 112 (1 - S)-1I2 is integrable on 
[0,1] and hence by continuity of Q, and 
sb liAs 112(1 - S)-1/2ds in t U > 0. This concludes the first step. 

Note that IIIX 1112 < 00 clearly implies that IIX, II < 00 for 
t<u. Hence, choosing some large B> 0, one can extend the 
solution by the same method as before for all those wEiJ, so 
that X~<B and for a new stopping time u' > u, so that 
Q.s~ liAs 112 (1 - S)-1/2ds<! for t<u'. 

This is systematized in the following construction. De
fine recursively a sequence of stopping times ! Uk! k>O as fol
lows: Uo = 0; given Uk choose Bk large enough such that 
P(X~. >Bk)<2 - k. Then ifX~. >Bk put Uk + I = Uk; ifX~. 
<Bk let 

Uk+1 =inf{t;t>Uk,Q, i~ IIA sIl 2(I-S)-1/2dS>!}/\l. 

On each stochastic interval one can now apply the contrac
tion mapping principle as above. But as k~oo uk~l, which 
proves the lemma. 

The lemma is easily generalized to 
Theorem 3.2: Consider the D-dimensional Brownian 

bridge W. Let a D-tuple of nonanticipating functionals A 
and a nonanticipating B, A and B taking values in JY, be 
such thatE(SbllAs 112 (1 - S)-1/2ds) and EUbllBsll2ds) are 
finite. Then the integral equation 

x, = 1 + f dWs·AsXs + f dsBsXs (3.3) 

has a unique continuous solution on [0,1]. 
Remark: As before for As = A(W s), Bs = B (Ws) the 

preceding conditions can be replaced by AEL foc , BEL foc , p 
as in the remark after Theorem 2.1, q = 2 if D = 1, q > D if 
D>2. 

In the following we assume As = A(Ws' s) and that A is 
C 2 on RD X [0,1], bounded with bounded first and second 
derivatives. 

Define a family of processes on [0,1], indexed by nEN, as 
follows: 

X 7 = exp [!(A, + Aim _ 1)12" )'(W, - Wlm _ 1)/2")] 

m-i 

X It exp[!AkI2"+Alk_1)I2")·..::1kW] (3.4) 
k=1 
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for 

tE..::i := -- - and [
m-l m] 

m 2"' 2" 

..::1k W: = W k12" - Wlk _ I )12"' 

For later convenience we introduce the following notations: 
..::1 A' = i(A + A )·..::1 k W' for D vectors x, y, z, etc. k . 2. k12" {k-i)/2" , 
and V the gradient on RDx·(VY)·z = ~~v= I xl'(aI'Yv)zv' 
((VY)'z)1' = ~~= 1 (al'xvlYv' etc. AlsoI"A denotes the pro

cess (J"A), = ~r= 1 1.d.(t )Alk _ I )/2"' 

We shall now show that X ~ converges as n~ 00 uni
formly on [0,1] to the solution X, ofEq. (3.3), Bs being given 
by Bs =! (V.As + A:). This is done in three steps. First we 
derive for X7 an integral equation of the type previously 
discussed. Then we show how to reduce the question of con
vergence of X ~ to X, to the question of convergence of their 
coefficient functions. Finally we prove convergence of the 
latter. 

Proposition 3.3: LetX~ be given by (3.4). ThenX~ is the 
solution of the integral equation 

X~ = 1 + f dWs'CsX~ + L dsDsX~, (3.5) 

where 

Cs = HlV As )'(Ws - (J"W).) + As + (J" A)s!, 

Ds = W..::1 As)'(Ws - (J"W)s) + 2(V'A)s 

+ ~[(VAs)'(Ws - (J"W)sl + As + (J"A)s]2 

+ 2(.!....A) ·(Ws - (J"W)s)!' (3.6) as s 

Proof The proof is based on an application oflto's 
lemma. 19 For tE..::i m , l<m<2n

, we compute 

f dWs'CsX: 

m {I i' = L - 1.d.(s)dWs·((VAs)·(Ws - W(k_l)/2") 
k= I 2 0 

+ (As + Alk _ I )/2")) exp B(As + Alk _ I )/2") 

'(Ws - W lk _ I )/2")] 1:[1: exp..::1/A (3.7) 

using the definition of X~. By Ito's lemma 

~ d Ws'((VAs)'(Ws - Wlk _ 1)/2") + (As + A(k - 1)/2")) 

X exp! !(As + Alk _ 1)/2")(W s - W lk _ 1)12")! 

= d expU(As + Alk _ I )/2")'(WS - W1k _ I)/2")] 

- dsl.dk(s)Ds expU(As + A(k_i)/2") 

·(Ws - W(k_I)/2")] 

for D as defined before. Inserting this into the rhs of(3.7) 
gives 

L dWs'CsX: = X~ -}- f dsDsX: 

proving the proposition. 
Proposition 4.4: Let X" X ~ be as above and U be the 

following stopping time: 
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u = inf{ 1;1>0, 

Q,(sup( IIx.llz + IIc.llz + liDs liz») >L J AI, 
s';" 

L some positive constant. Then we have 

E(SUP IIX, -X71Iz)<KE(suP (IIA, - C,lIz 
~u ~I 

+ liB, - D, liZ)). 

where the constant K depends only on L. 
Proof Write 

X, -X7 = f dWs·(As - CslXs 

+ f dWs'Cs(Xs -X;) 

+ f ds(Bs - DslXs 

+ f dsDs(Xs -X;), 

and by Theorem 2.2 and the definition of u we obtain 

E(SUP IIX, -X71Iz)<4{2LE(suP IIA, - C,ll z) 
'';'U '.;,q 

+2LE(f IIXs _X;1I2 

X(I - S)-1/2ds) 

+LE(~~f liB, _D,112)}. 
Hence denoting tP, = sups.;" IIXs - X;1I 2 we may bound 

E(tPU)<8LE(sup(IIA, _C,1I2+ liB, _D,112)) 
,<I 

+ 8LE(i
U 

tPs(I-S)-1/2dS). (3.8) 

The following very simple version of Gronwall's lemma (cf., 
e.g., Ref. 12) shows that (3.8) implies the proposition: 

Let [tk 10<k<k
o 

be a finite increasing sequence with 
to = 0, t ko = 1 and 

l
'k+1 

ds(I - S)-1/2«16L )-1. 
'k 

Define a sequence of stopping times [v k J by setting v k = t k 

A u. Then (3.8) entails 

E(tPv )<8LE(sup(IIA, -C,W+ liB, -D,W)) 
k+ I t< 1 

+ 8LE(tPVk) + ~E(tPVk+I)' 
so that by iteration for every k<ko, 

k" 
X L (16)j (3.9) 

j=O 

and (3.9) holds in particular for E (tPu). 
Proposition 3.5: Let A, B, C, D be as above. Then 
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E (sup (IIA, - C, liZ + liB, - D, IIZ))<const X 2 -". 
,<I 

Proof Using the explicit expressions (3.6) and Bs 
= !(V·A)s + A;) and Taylor expansion, it suffices to show 

that 

E (sup IW, - (rW), 12)<const X 2 -". 
'<I 

Consider 

E(sup IW, - (J"W), 12) 
'<I 

= E( sup IW, - W(k_I)IZ" 12) 
l<k<2" 
~k 

= E (sup IW, _ (k _ I)/Z" 12) 
l<k<Z" 
~k 

=E( sup IW,12) 
0<,<2 -" 

= E (sup I (' d WS IZ) 
o.;,,<z -" Jo 

<2(E(f-" dS) +E((f-" IWsl(l-S)dSY)) 

<6X2-", 

where we used (2.3) and (2.4) in the next to last inequality. 
Altogether we have found that for u defined as in the 

hypothesis of Proposition 3.4 the following estimate holds: 

E(sup IIX, -X711 2)<constx2-". 
,<u 

Chebyshev's inequality and the Bore1-Cantelli lemma imply 
now the convergence of X 7 to X, uniformly in t<u as n- 00. 

But, for a.e. ill, we have u = 1. This follows from the boun
dedness of the coefficient functions and the continuity prop
erties of Q, and X,. We formulate this result in the following 

Theorem 3.6: Let A be a bounded C 2 function with 
bounded first and second derivatives; then X 7 (3.4) con
verges with probability one to the solution X, of the integral 
equation 

i' 1 i' X, = I + dWs·AsXs + - ds(V·As + A;lX., 
020 

(3.10) 

the convergence being uniform in tE[O, 1]. The solution of 
(3.10) is called stochastic product integral or stochastic path 
ordered exponential, denoted ft.<, exp As·dWs. 

A 

IV. THE WIENER-ITO REPRESENTATION 

In this last section we shall discuss an application of the 
results of Sec. III. 

For the rest of the paper A will denote aD-tuple of maps 
from RD into the Banach space of anit-Hermitian m X m ma
trices. (The results carry over to the case of real skew-sym
metric matrices.) Define the operator AA = ~~ = 1 (a/ax,.. 
+ A,..)2 on the L 2 -space of functions on RD taking values in 

em (resp. am, in the skew-symmetric case). We quote the 
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following theorem of Schechter, 20 formulated for scalar A, 
generalized to the matrix-valued situation by Schrader. 6 

Theorem 4.1: Let A be such that 

(i) Apd toe, 1 <f..l<D, 

(ii) V·Ad;oc, 

(iii) s~p Ix _ YJ<1 IIA(Y)!I Ix - yl- D + ld Dy < 00. 

Then..1 A is nonpositive on L 2(RD,Cm ) and essentially self
adjoint on C ;(RD,Cm

). 

Consider the contraction semigroup exp t..1 A , t;>O. By 
standard methods, e.g., Refs. 1,21, and 22, we have 

(exp t..1 A )(x,y) = !~n;, f dP~yX;'(Z), 
2" 

X 7(Z) = Ii exp [HA(Zmt /2") + A(Z(mt _ t )/Z")J 
m~1 

·(Zm'll" - Zlmt_ ')12")] (4.1) 

as an equality of kernels of operators on L Z(RD,Cm ), when
ever the limit exists. 

Using now relation (1.2) it is easy to see that the results 
of Sec. III carryover to X ~(Z); i.e., by Theorem 3.2 X ~(Z) 
converges as n---+oo to the solution X, of the equation 

i' 1 it x, = lL + d Zs ·AsXs + - ds(V·As + A;)Xs (4.2) 
o 2 0 

if A is a bounded C 2 -function with bounded first and second 
derivatives. 

Furthermore we have IIX, II < 1, since A is anti-Hermi
tian (resp. skew symmetric), so that by Lebesgue's dominat
ed convergence theorem the rhs of (4.1) converges to 
fdPxyX,(Z). 

It is easy now to extend this representation to contin
uous A by the following standard argumene·6

: let An be a 
sequence of smooth functions converging to A in L foc' p as 
remarked after Theorem 2.2, and let XI,x ~ resp., denote the 
solution of (4.2) with the corresponding coefficients. Then 
..1 A" converges to ..1 A in strong resolvent sense, hence the 
semigroup exp t..1 An converges strongly to exp t..1 A' An argu
ment parallel to the proof of Proposition 3.4 (with coefficient 
functions mUltiplied by the characteristic function of a large 
ball) shows that X ~ converges to X" hence f dP ~yX 7(Z) con
verges to SdP~yX,(Z) by the dominated convergence 
theorem. 

Theorem 4.2: Let A be a continuous anti-Hermitian 
(resp. skew-symmetric) matrix, such that div A is contin
uous. Then we have the representation 

(exp t..1 A )(x,Y) = f dP~y n exp As'dZs, 
s<t 

(4.3) 

where Ils<, exp A·dZs denotes the solution of (4.2). 
This theorem has an obvious 
Corollary: Denoting by..1 the Laplace operator in R D

, 

56 J. Math. Phys., Vol. 25, No.1, January 1984 

then we have the inequalities 

II(exp t..1 A )(x,y)II«exp t..1 )(x,y), 

II(m2 -..1 A )-1(x,y)II«m2 -..1 )-I(X,y), 

for nonzero, real m. 

(4.4a) 

(4.4b) 

Inequalities (4.5) are called Kato's inequalities or diamagne
tic inequalities; cf. also Refs. 1,6,20, and 23-25. 
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Constraints in dynamical systems typically arise either from gauge or from parametrization. We 
study Newtonian systems moving in curved configuration spaces and parametrize them by 
adjoining the absolute time and energy as conjugate canonical variables to the dynamical 
variables of the system. The extended canonical data are restricted by the Hamiltonian constraint. 
The action integral of the parametrized system is given in various extended spaces: Extended 
configuration space or phase space and with or without the lapse multiplier. The theory is written 
in a geometric form which is manifestly covariant under point transformations and 
reparametrizations. The quantum propagator of the system is represented by path integrals over 
different extended spaces. All path integrals are defined by a manifestly covariant skeletonization 
procedure. It is emphasized that path integrals for parametrized systems characteristically differ 
from those for gauge theories. Implications for the general theory of relativity are discussed. 

PACS numbers: 03.20. + i, 02.30. + g, 03.65. - w 

1. MOTIVATION 

The most straightforward way to describe an evolving 
classical system is to give its true dynamical degrees offree
dom qa,Pa' a = 1, ... ,n, as functions of the physical time t. 
The most straightforward way to describe an evolving quan
tum system is to give its state'" on the physical configuration 
space as a function of the physical time. 

The actual classical path of the system extremizes the 
action functional 

s[q(t)] = J:" dt I (t,q,d,q) (1.1) 

in configuration space or the canonical action functional 

s[q(t ),p(t)] = J:' dt (Pa d,~ - h (t,q,p)) (1.2) 

in phase space. In quantum theory, the state function "'(t ',q') 
at t' is evolved into the state function "'(t ",q") at t " by the 
quantum propagator (t ",q" It ',q'), 

"'(t ",q") = J d n q' (t ",q" It ',q')"'(t ',q'). (1.3) 

The connection between quantum theory and the classical 
theory is established when we represent the quantum propa
gator as an integral over all paths connecting t ',q' with t" ,q" 
in the configuration space, 1 

(t ",q"lt',q') dnq' = J Dq eis[q('IJ, (1.4) 

or as an integral over all paths connecting t ',q' with t ",q" in 
the phase space, 

(t ",q" It ',q') d n q' = J Dq Dp eiS[q(t J. p(t II. (1.5) 

The transition from classical theory to quantum theory 
thus amounts to an interpretation of the formal expressions 
(1.4) or (1.5). To do that, one must explain what is meant by 
integrating the exponentiated classical action functionals 

(1.1) or (1.2) and what are the measures Dq or Dq Dp in the 
space of paths. Both problems can be solved by a skeletoniza
tion procedure. In configuration space, the skeletonization 
of the action functional is obvious: s[q(t )] is replaced by a sum 
of Hamilton's principal functions for individual segments of 
the skeletonized path. However, the choice of the skeleton
ized measure is not obvious. One can use different measures 
and these measures yield different propagators. 1 This ambi
guity corresponds exactly to factor ordering in Hamiltonian 
quantum mechanics: The Hamilton operators in Schro
dinger's equation for the propagators differ by curvature 
terms of the order fP. 

In the phase space path integral, the situation is re
versed. The invariant Liouville measure dn q dn p in the 
phase space induces a natural measure in the space of skele
tonized paths. On the other hand, the skeletonization ofthe 
canonical action (1.2) by a sum of phase space principal func
tions is not unique. 2 Different principal functions yield the 
same classical dynamics but because nondifferentiable paths 
are the most significant contributors to the path integral (1.5) 
they do not yield equivalent quantum dynamics. The advan
tage ofEq. (1.5) over Eq. (1.4) is that the measure is fixed, and 
the ambiguity is shifted to the skeletonization of the canoni
cal action where it can be resolved by applying geometric 
criteria. 

The clarity achieved by formulating a physical theory 
in terms of its true dynamical degrees of freedom is often at 
the expense of obscuring its fundamental symmetries. Exam
ples of this statement are found in gauge theories and in 
parametrized theories. The symmetries in these two cases 
are, of course, gauge invariance and parametrization invar
iance. For complicated gauge and parametrized systems, it is 
often impractical or even impossible to exhibit the true dyna
mical degrees offreedom explicitly. It is thus imperative to 
have a procedure for passing from the classical version to the 
quantum version of the theory in its symmetry revealing 
form. We shall briefly discuss one example of a gauge system 
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and one example of a parametrized system to get a feeling for 
the problem. 

Though one can easily concoct finite-dimensional 
gauge theories, the best known specimen of gauge theories is 
a field system, namely, Maxwell's electrodynamics. The 
gauge invariance and the Lorentz invariance of this theory 
are readily seen when the field action is expressed as a func
tional ofthe 4-potential Aa (x), a = 0,1,2,3. Due to gauge 
invariance the variables Aa are redundant. However, it is 
extremely cumbersome to describe the field by its two phys
ical degrees offreedom which are the transverse components 
of Aa ( x), especially in the presence of interactions. The de
sirability of a quantization procedure which operates at the 
level of unphysical variablesAa (x) is readily seen. For gauge 
theories such procedures have been extensively developed.3 

The path integrals are ofthe same form as Eq. (1.4) or ( 1.5), 
but the paths lie in the configuration or phase space aug
mented by gauge variables. The central issue of these formu
lations is then specifying the measure which reproduces the 
physical predictions of the theory. This measure is often 
quite complicated and difficult to guess from first principles. 

As a consequence of gauge invariance, the electric field 
strength E' ( x) cannot be freely specified, but on each spatial 
hypersurface it is subject to the constraint 

(1.6) 

In the Hamiltonian version of the theory, Ea( x) is the mo
mentum conjugate to the vector potential Aa (x). The con
straint (1.6) is the price we pay for the freedom to perform the 
gauge transformations. 

Another important but quite distinct class of theories 
with internal symmetries are parametrized theories. The in
variance with respect to reparametrization is achieved by 
adjoining the physical time to the dynamical variables of the 
system. An arbitrary parameter is then used to locate the 
system on its dynamical path. Any field theory on a given 
background can be cast into a parametrized form, but the 
best known example of a parametrized theory is a finite
dimensional system, namely, the free relativistic particle. 
Let us discuss the canonical version ofthe theory. The ca
nonical action (1.2) of the particle is expressed as a functional 
of the spatial coordinates qa(t) and their conjugate momenta 
Pa (t) considered as functions of the Minkowskian time t in a 
given inertial frame: 

s[qa(t),Pa(t)] = r" dt(Pa dtqa_({jabpaPb +m2)1/2). 

(1.7) 

In the physical variables qa, Pa and with the fixed parametri
zation t, it is difficult to discuss the Lorentz invariance and 
the reparametrization invariance of the theory. However, if 
we let t be a function of a parameter r (not necessarily the 
proper time) and introduce the Minkowskian time t = qO(r) 
and energy - po(r) as dynamical variables, we can write the 
action (1.7) in the form 

S [qa (r)'Pa(r)] = i~' dr Pa qa, (1.8) 
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which is manifestly invariant both under Lorentz transfor
mations and under reparametrizations of paths, 
r-r* = r*(r). The momentapa cannot be varied freely, but 
they must lie on the mass shell, 

(1.9) 

The equations of motion follow from extremizing the action 
(1.8) subjectto the constraint (1.9). The constraint (1.9) is the 
counterpart of the constraint (1.6) in electrodynamics. It is a 
consequence of the reparametrization invariance in the same 
way as the constraint (1.6) is a consequence of gauge invar
iance. 

The most important and also the most intricate system 
in which both gauge and parametrization are subtly inter
twined is general relativity. It may be studied as a Hamilton
ian theory by foliating space-time with a family of spacelike 
hypersurfaces. The foliation is specified by giving the lapse 
function N ( x,t ) and the shift vector N a( x,t ). The lapse func
tion determines the normal proper time separation 
da = N ( x,t )dt between two nearby spatial hypersurfaces t 
and t + dt and the shift vector Na( x,t) tells us how to dis
place the point xa on the hypersurface t so that by launching 
from the displaced pointxa + Na dt in the direction perpen
dicular to the hypersurface t we land at the point x a of the 
deformed hypersurface t + dt. The canonical variables 
gab (t,X) andpab(t,.x) are the intrinsic metric and the extrinsic 
curvature of the hypersurface t. The gauge transformations 
of the theory are spatial diffeomorphisms on the hypersur
faces of the foliation. The reparametrization is connected 
with the change of the foliation. Invariance of the theory 
under gauge transformations implies the supermomentum 
constraint 

(1.10) 

on the canonical data gab ( X), pab (X); the reparametrization 
invariance implies the super-Hamiltonian constraint 

H( x) = g-I/2(Pabpab - !p2) - gl/2R = O. (1.11) 

Here, g( x) = det gab ( X), the vertical stroke denotes the co
variant derivative on the hypersurface and R is the curvature 
scalar on the hypersurface. 

The gauge and reparametrization changes together 
with the constraints (1.10)-( 1.11) imply that the metric field 
has only 2",3 degrees offreedom, i.e., 2·2",3 physical field 
coordinates and conjugate momenta. The remaining 2'" 3 co
ordinates and momenta play the role of an internal time 
which distinguishes one hypersurface from another by look
ing at its intrinsic geometry or extrinsic curvature, and of an 
internal energy. Unfortunately, no one knows how to write 
an action for general relativity which involves only the two 
physical degrees of freedom expressed as functions of the 
physical time. The best we can do is to work with the ex
tended variables gab' pab. General relativity comes to us di
rectly only in the gauged and parametrized form. This is our 
strongest motivation for studying the relation between gauge 
and parametrized theories in an attempt to understand their 
similarities and differences. 

The similarities are obvious. Both types of invariance 
imply constraints. In electrodynamics, we have the diver-
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genceequation (1.6). In the parametrized relativistic particle 
theory, we have the restriction (1.9) of the 4-momentum to 
the mass shell, and in general relativity, we have the con
straints (1.10) and (1.11). Further, the constraints generate 
the changes of extended canonical variables under corre
sponding transformations. In electrodynamics, we smear the 
constraint C ( x) by an arbitrary test function A ( x), 

CAE: f d 3xA (x)C(x). (1.12) 

The Poisson bracket of C A with the extended phase space 
variables Aa ( x), E" ( x), a = 1,2,3, generates their gauge 
transformation, 

15Aa( x) = [Aa( x),CA ] =Aa( x) - aaA (x), 
(1.13) 

I5EO( x) = [Ea( x),CA ] = O. 

Similarly, for the relativistic particle the constraint (1. 9) 
determines the change of the canonical variables x a ,p a un
der displacement 15(7 in proper time, 

I5xa = [ xa ,H] 15(7, I5pa = [Pa,H] 15(7. (1.14) 

Finally, in general relativity we smear the super-Hamilton
ian (1.11) by the lapse function N( x) and the supermomen
tum (1.10) by the shift vector N a

( x): 

H N = J d 3xN(x)H(x), 

H N = f d 3xNa(x)Ha(x). 
(1.15) 

The Poisson brackets 

I5gab ( x) = [gab( x),H N ] &, I5pab( x) = [pab( x),H N] & 
(1.16) 

yield the changes ofthe canonical variables gab ( X), pab ( X) 
when the point xa is displaced by amount I5xa = N a & along 
the hypersurface, while the Poisson brackets 

I5gab ( x) = [gab( x),HN ] &, I5pab( x) = [pab( x),HN ] & 
(1.17) 

yield the changes of gab ( X), pab ( X) when the hypersurface is 
deformed by the amount N & in the normal direction. 

There is, however, an important physical distinction 
between gauge theories and parametrized theories. For 
gauge theories the changes generated by the constraints do 
not change the physical state of the system. They change 
only the gauge in which it is represented. The true physical 
degrees of freedom do not change. So, in electrodynamics, 
Aa( x) is changed by the transformation (1.13), but the field 
strengths Ea( x) and H a( x) remain unaffected. By contrast, 
in parametrized theories the changes induced by the con
straints are those associated with the dynamical evolution of 
the system. The true physical degrees of freedom are moved 
along the dynamical path. This is clearly seen in Eq. (1.14) 
for a free relativistic particle. In general relativity, the 
changes (1.16) generated by the supermomentum leave the 
intrinsic geometry and the extrinsic curvature of the hyper
surface unaffected. The quantities like f d 3X gl /2 R or 
fd 3X gab pab stay the same. On the other hand, the super
Hamiltonian generates the dynamical evolution of the spa
tial geometry and of the extrinsic curvature under the nor-
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mal deformation ofthe hypersurface [Eq. (1.17)]. 
The different roles which the constraints resulting from 

gauge invariance and those resulting from reparametriza
tion invariance play in classical theory have fundamental 
consequences for the quantum theory. This is because in 
quantum theory time is clearly distinguished from all other 
variables and cannot be represented by a Hermitian opera
tor. As a result, the path integral procedure developed in 
gauge theories to achieve the transition from classical me
chanics to quantum mechanics is not directly applicable to 
parametrized theories. In this paper we shall build a correct 
procedure for a simple class of parametrized systems and 
show how it differs from the prescription developed for 
gauge theories. An understanding of where the two prescrip
tions differ would seem an essential prerequisite to under
standing the quantization of general relativity by path inte
grals. 

The finite-dimensional theory which we have chosen as 
our model is a nonrelativistic system described by the Hamil
tonian 

(1.18) 

The potentials tP and tPa depend on the configuration varia
bles qa, a = l, ... ,n and on absolute time t. A curved nonde
generate metric ~b is also a function of these variables. We 
study a nonrelativistic theory because it contains an easily 
and uniquely identifiable time variable. We consider curved 
configuration spaces because the parametrized version of the 
theory can be expressed in terms of a degenerate curved met
ric in n + 1 dimensions and so bears structural similarity to 
general relativity which is our ultimate theory of interest. To 
emphasize this similarity, we shall express our results in a 
manifestly covariant manner using this extended metric. We 
can thus clearly exhibit the geometric structure these theor
ies possess. 

Our starting point is the path integral (1.5) in the phys
ical phase space with the canonical action (1.2) containing 
the Hamiltonian (1.18). We interpret this path integral by a 
manifestly covariant skeletonization procedure which leads 
to the Schrodinger equation for the quantum propagator 
without additional curvature term. This choice fixes the fac
tor ordering and the quantum theory. Our ending points are 
path integrals for the same propagator over associated 
spaces. The simplest of these is the integral (1.4) over paths in 
the physical configuration space. More important, however, 
are path integrals corresponding to the parametrized version 
of the theory. 

We parametrize the system by adjoining time and a con
jugate momentum to the variables {qa, Ph J, forming thus an 
enlarged configuration space { (t J, A = O, ... ,n and phase 
space {(t , PA J. The quantum propagator can be expressed 
as a path integral in the enlarged phase space or in the en
larged configuration space. Each case divides into two, cor
responding to the classical choice of how the constraint con
nected with reparametrization invariance is enforced. It can 
be enforced either explicitly on the variations of an action or 
implicitly using a Lagrange multiplier. This possibility is re
flected quantum-mechanically in two forms of the path inte
gral for each space of variables: one in which the action is 
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free from mUltipliers but the measure includes a /j function of 
the constraint and a second in which the action contains a 
multiplier and the measure includes an integration over it. 
There are thus four forms of the path integral for parame
trized theories with the basic Hamiltonian (1.18). This may 
seem an unnecessary proliferation of possibilities, but each 
of the four forms of the classical action corresponding to 
these choices can be actually constructed in general relativi
ty. They are displayed in Table I. It therefore seems appro
priate to consider all of them in the simple nonrelativistic 
systems under consideration. 

Our results are thus the six forms for the path integral 
for the system described by the Hamiltonian (1.18)-two in 
terms of physical variables and four in terms of extended 
variables. They are specified by six actions displayed in Ta
ble II (Sec. 3) and by six measures summarized in Table III 
(Sec. 10). They are six equivalent ways for passing from the 
classical theory to the quantum theory. None of the parame
trized versions of this passage correspond to the standard 
procedures for quantizing gauge theories. We shall discuss 
this in detail in Sec. 9. This only underlines once again the 
depth of the issues involved in quantizing gravity. 

2. PARAMETRIZED NEWTONIAN SYSTEMS 

Our immediate goal is to reformulate classical dynam
ics of a Newtonian system in an extended phase space. In this 
process, absolute time and energy are adjoined as conjugate 
canonical variables to the dynamical variables of the system. 
The absolute time loses thereby its privileged role in parame
trizing paths, and it is replaced by an arbitrary label time. 
For this reason, the process is called parametrization. With 

TABLE I. Alternative forms of the action for general relativity. 

Extended canonical 
action, conditional 

Canonical 
variables Multipliers Action 

absolute time lifted among the configuration variables, one 
can introduce arbitrary coordinates in the configuration 
space-time. This underscores the geometric content of the 
parametrized theory. To reduce the theory back to its hum
ble physical origins, one should learn how to identify the 
original physical variables from the geometric structures 
and reinstate them as privileged variables into the action. 
This inverse process is summarily called a deparametriza
tion. Our goal is thereby set: First, parametrize the physical 
theory and geometrize it; second, deparametrize the geomet
ric theory and return to the physical starting point. 

We assume that the Newtonian space-time is endowed 
by a privileged foliation of hypersurfaces whose leaves are 
instants of absolute time. We label the hypersurfaces by a 
parameter t, not necessarily coinciding with the pace of a 
standard clock. We assume that each hypersurface carries a 
positive-definite metric. We do not insist, however, that this 
metric be flat or time-independent. We introduce into the 
space-time an arbitrary congruence of world lines transver
sal to the time foliation and label them by three coordinates. 
The congruence represents a choice of reference frame. 

The dynamical system which we have in mind might be 
a single point particle or a system of such particles subject to 
holonomic though in general rheonomic (time-dependent) 
constraints. (These constraints have nothing to do with the 
Hamiltonian constraint we introduce later.) Knowing the 
masses of the particles and the constraints to which they are 
subject, we can express the kinetic energy of the system in 
terms of the generalized coordinates qa, a = 1,2, ... ,n, and 
generalized velocities it and deduce thus the instantaneous 
metric gab (t,q) induced in the configuration space (qal ofthe 
system. The system is also subject to forces derivable from a 
scalar potential ifJ (t,q) and a vector potential ifJa (t,q). We do 
not need to distinguish "true" forces from "ficticious" 
forces, which are already contained in the expression for the 

Lagrangian, Hamiltonian, constraints 

Extended canonical 
action, with lapse 
and shift multipliers 

N, N" 

H(x) = 0 = Ha(x) 

S[ gab , pab , N, N"] H = N (x)H (X) + N" (x)Ha (xl 

Extended Lagrangian 
action, with lapse 
and shift multipliers 

Extended Lagrangian 
action, without the 
lapse multipliers" 

gab N,N" 

gab 

= S dt S d'X(pab gab 
- H( gab,pab, N, N")) 

S[gab' N, N"] 
= S dt S d 'xL (gab' gab' N, N") 

S[gab' N"] 
=s dt Sd'xL(gab,gab' N") 

L = Ng1l2[(KabKab - K2) + R] 
= ( _ 4g)1/2 4R + (divergence terms) 

Kab = ~ N - 1( - gab + Nalb + Nb la) 

L = [gR (Uab [J'" _ U 2)]1/2 

"The elimination of N" would lead to the homogeneous Lagrangian action without multipliers. The elimination cannot be carried out explicitly. 
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kinetic energy. We thus include both types of terms into the 
potentials <p, <Pa. 

An elementary example of such a system would be a 
charged particle moving on an expanding curved surface 
placed in an external electromagnetic field. The generalized 
coordinates qa might be any curvilinear coordinates on the 
surface. Another example, closer to actual systems studied 
in nonrelativistic quantum mechanics, would be a charged 
rigid rotator in an external electromagnetic field. The gener
alized coordinates qa might be the Euler angles. The kinetic 
energy of the rigid rotator expressed as a quadratic form of 
generalized velocities indicates that the configuration space 
of the rotator is curved, but the metric is time-independent. 

The dynamical evolution of the system takes place in 
the physical phase space t qa, Pa J which is a cotangent bun
dle over the physical configuration space ( qa j. The evolution 
of physical variables is governed by the canonical action 

s[q,p] = f dt (Pa d,qa - h (t,q,p)) 

with the Hamiltonian 

(2.1) 

h (t,q,p) = ~gab(Pa - <PaHPb - <Pb) + <p. (2.2) 

A new choice of the time labeling, t * = t *(t), or a change of 
the reference frame changes the Hamiltonian (2.2) into an
other Hamiltonian of the same type. The only features of the 
Newtonian system which are important for our purposes are 
the existence of a privileged foliation of the configuration 
space-time by leaves of absolute time and the fact that the 
Hamiltonian of the system is a quadratic function of canoni
cal momenta. There is no need to introduce other features 
usually associated with Newtonian physics like the presence 
of the Galilei group. 

We now parametrize a possible path along which the 
system moves in the phase space (qa, P a j by an arbitrary 
label time T and adjoin the originally chosen absolute time 
t (T) to the configuration variables qa(T): 

~ = (t, qaJ, ~ = ~ (T), A = 0,1,2, ... ,n. (2.3) 

The action (2.1) takes the form 

s[~'Pa] = f dT(Pait-h(Q,p)t) (2.4) 

when written in the T-parametrization. The dot denotes a 
derivative with respect to the label time T. Numerically, the 
expression (2.4) is equal to the expression (2.1) and so vari
ation with respect to qa, Pa yields equivalent equations of 
motion. Moreover, the variation of the parametrized action 
(2.4) with respect to t also yields a correct equation, namely, 
the energy balance equation 

h = a,h t. (2.5) 

The integrand of the action functional (2.4) is linear in 
the velocities (t = {t, qa j. By introducing a momentum 
Po = - h canonically conjugate to t and by putting 

PA = { Po, Pa J (2.6) 

we cast the action (2.4) into a suggestive form 

S[~,PA] = J dTPA(t. (2.7) 
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However, the variables PA cannot be varied freely, because 
Po is a mere abbreviation for the function - h (~ ,Pa)' To 
obtain correct equations of motion, we must vary the action 
(2.7) under the constraint 

H(Oi Po + h (~,Pa) = O. (2.8) 

In this way, a constraint on the variables of the enlarged 
phase space enters into the theory. It is called the Hamilton
ian constraint. 

The actual path of the system extremizes the action 
functional (2.7) in comparison to all neighboring paths 
which lie on the constraint surface (2.8). In other words, the 
actual path is selected by the conditions 

H(Oi(Q,p) = 0, 
(2.9) 

8S [Q,P] = 0 \;j 8Q, 8P: 8H(Oi = O. 

Equations (2.9) constitute a conditional variational princi
ple. 

The constraint function H(Oi is a quadratic function of 
extended momenta P A • This property is preserved if we mul
tiply the constraint by an arbitrary function A (~) > 0 of 
extended configuration variables, 

(2.10) 

The constraint function H (Q,P) is called a super-Hamilton
ian of the system. 

We shall now write the constraints (2.8) or (2.10) in a 
manifestly covariant notation. We introduce a covector field 

tA =t.A(Q)=(I;O, ... ,O) (2.11) 

normal to the instants of absolute time and a vector field 

uA = (1;0, ... ,0) (2.12) 

tangent to the world lines qa = const of our "configuration 
reference frame." We collect the potentials into a space-time 
covector field 

(2.13) 

and complete the spatial metric gab into a degenerate space
time metric 

(2.14) 

The metric ~B has the signature (0; + , ... , + ) and tA is its 
degeneracy direction, 

~BtB = O. (2.15) 

Of course, 

uA tA = 1. (2.16) 

When ~B and uA are given, Eqs. (2.15) and (2.16) determine 
tA • 

The super-Hamiltonian (2.8) can now be written in a 
manifestly covariant form 

H(Oi = uA (PA - <PA) + ~ ~B(PA - <PA )(PB - <pB).(2.17) 

After scaling the fields uA and ~B by the factor A (Q ), 

GAB A~B, UA AuA, (2.18) 

H= UA(PA -<PA)+!GAB(PA -<PA)(PB -<PB)·(2.19) 
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Up to now, theabsolutetimevariableQo = twasclearly 
separated from the configuration variables (l' = qa . At this 
stage, however, we can easily mix the space-time variables 
cr by an arbitrary transformation cr ° ((t), inducing there
by a transformation of the conjugate momenta: 

cro = crO({t), PAo = QBAOPB, 
(2.20) 

When we transform UA (or uA ) as a vector, GAB (or gAB) as a 
tensor, and <P A as a covector, the constraint (2.19) [or (2.17)] 
preserves its form. We shall omit the asterisks with the un
derstanding that Eqs. (2.17)-(2.19) are written in general co
ordinates. The action principle (2.9) then yields the actual 
motion of the system in general coordinates. 

In the special coordinates cr = [t, if} , the coefficients 
uA ,gAB assume the simplified form (2.12),(2.14). This implies 
that the scaled coefficients UA , GAB cannot be arbitrary 
functions of general coordinates cr . In a permissable para
metrized Newtonian theory, UA and GAB must be subject to 
two sets of restrictions which ensure that the physical theory 
can be recovered by deparametrization. These restrictions 
are: 

(I) The metric GAB must be degenerate, with signature 
(0; + , ... , + ). The degeneracy direction TA , 

GABTB = 0, TB #0, (2.21) 

must be surface-forming. This happens if and only if the 
metric GAB satisfies the integrability condition (Appendix A) 

{: G A [B.CIGA,B, GA"B" - 0 
UAA, ... A

n 
••• -. (2.22) 

(II) The inner product UA TA cannot vanish and, for a 
future-oriented TA , it must be positive, 

UA TA >0. (2.23) 

Equation (2.23) implies that TA can be normalized so that 

(2.24) 

The parametrized Newtonian system is characterized 
by a quadratic super-Hamiltonian (2.19) whose coefficients 
UA and GAB satisfy our restrictions (I) and (II). We complete 
our demonstration that the physical and parametrized ver
sions of the theory are equivalent by showing how to depara
metrize the system. To do this, we have to find the absolute 
time function and return back to the physical Hamiltonian 
(2.2). 

Notice first that the quadratic function (2.19) deter
mines the coefficient GAB uniquely, but the coefficients UA 

and <P A only up to a gauge transformation 

(2.25) 

*<PA=<PA+¢A' 
generated by a gauge variable ¢ A which satisfies the condi
tion 

(2.26) 

The transformation (2.25)-(2.26) expresses an arbitrary 
change of the configuration reference frame. We have dis-
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cussed the influence of such a gauge transformation on quan
tum description of a Newtonian system in an earlier paper.4 

Here, we shall simply assume that one reference field UA is 
chosen within the equivalence class (2.25H2.26). 

Return now to the problem of how to reconstruct the 
physical Hamiltonian. For the metric GAB with signature 
(0; + , ... , + ) all solutions TA ofEq. (2.21) fill a ray. The 
integrability condition (2.22) ensures that at least one solu
tion t A within this ray is a gradient of a scalar function, 

3 t(Q): tA = t.A. (2.27) 

In fact, all solutions which are gradients are related to one 
another by the transformations t * = t *(t). We select one 
which increases to the future, i.e., which satisfies the condi
tion 

UA t.A A (Q ) > 0 (2.28) 

for our time function t (Q). We then scale the super-Hamil
tonian (2.19) down by the factor A -1, scaling GAB down to 
gAB and UA to uA by Eq. (2.18). Equation (2.28) then implies 
Eq. (2.16). Of course, the scaled metric satisfies Eq. (2.15). 

We can now introduce within the reference frame uA 

comoving coordinates qa as any n functionally independent 
solutions qa(Q) of the equations 

(2.29) 

We take the time function (2.27) and the comoving co
ordinates (2.29) as our special coordinates cr = [t, if}. 
Equations (2.16) and (2.29) then ensure that uA in special 
coordinates has the components (2.12). Similarly, Eq. (2.15) 
ensures that the rescaled metric gAB has the components 
(2.14). Therefore, the rescaled super-Hamiltonian (2.17) re
duces back to the form (2.8), where h is our old Hamiltonian 
(2.2). When we solve the constraint (2.8) with respect to Po, 
substitute this solution into the action (2.7), and parametrize 
paths by the absolute time t, we return back to the physical 
action (2.1). In this way, we regain the physical action from 
the parametrized action (2.7) subject to the super-Hamilton
ian constraint (2.8). 

3. ALTERNATIVE FORMS OF THE ACTION 

We have transformed the canonical action (2.1 )-(2.2) on 
the physical phase space into a constrained action (2.7)
(2.10), (2.17), (2.19) on the extended phase space. Besides 
these forms of the action, there are still others which are 
frequently used in dynamical considerations. In particular, 
one can adjoin the Hamiltonian constraint (2.10) to the ex
tended phase space action (2.7) by a lapse multiplier, and one 
can cast the parametrized action into a Lagrangian form, 
either on the physical or on the extended configuration 
space, and either including or excluding the lapse multiplier. 

We have argued in the Introduction that any of these 
forms could serve as the starting point for the transition to 
quantum theory by path integrals. However, only in the 
physical phase space do we have a universal prescription for 
the measure. All other path integrals should be thus derived 
from the path integral in the physical phase space. To pro
ceed, we must first understand how the various forms of the 
action are connected to each other. We shall study this clas-
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sical problem now and postpone its application to path inte
grals to subsequent sections. 

In the beginning, we replace the conditional variational 
principle by a free variational principle by adjoining the con
straint (2.17) to the action (2.7) by a Lagrange multiplier N (0), 

S[Q,P,N(o)] = f dT(PA(r _N(O)H(O»), (3.1) 

or the scaled constraint (2.19) by a Lagrange multiplier N, 

S [Q,P,N] = f d1' (PA (r - NH). (3.2) 

All the variables ~ , PA , N(o) or ~ , PA , N may now be 
varied freely. 

The physical meaning of the multipliers N (0) or N fol
lows from the Euler-Lagrange equations. By varying Eq. 
(3.2) in the momenta PA , we get 

M :.4 AB ~ = N (U + G (P B - ~B))' (3.3) 

We multiply Eq. (3.3) by a degeneracy covector TA , Eqs. 
(2.21), (2.23), and calculate N: 

N= (TBUB)-ITAir. (3.4) 

In the special coordinates ~ = {t, rf}, Eq. (3.4) reduces to 

N=A -Ii (3.5) 

by virtue of Eq. (2.28). The same sequence of steps starting 
from the action (3.1) leads to the equation 

N(o) = (t.BUB)-lt,A (r = i, (3.6) 

We thus see that the multiplier N (0) equals the rate of change i 
of the absolute time t with respect to the label time 1'. For this 
reason, it is called the lapse function. We shall loosely use 
this name also for the scaled multiplier (3.5). 

The action (3.2) is the best starting point for further 
rearrangements. We group its arguments into several 
classes: 

extended configuration variables ~ 

= {physical time t, physical coordinates qa J, 
extended momenta variables PA 

= {physical Hamiltonian - Po, physical momentapa J, 
Lagrange multiplier = {lapse function N }. 

By eliminating one or more classes of variables from the 
action, we cast it into a number of alternative forms which 
lead to equivalent sets of equations of motion. The transition 
from the extended action (3.2) to the physical action (2.1) has 
this character: It is achieved by using the equations of mo
tion to eliminate the lapse multiplier N and the time-energy 
pair t, Po from the action. One can proceed one step further 
and eliminate all momenta variables from the canonical ac
tion (2.1). One arrives then at the physical Lagrangian action 

S[q] = f dtl(t,q,d,q) (3.7) 

by the Legendre dual transformation 
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I (t,q,d,q) = [Pa d,qa - h (t,q,p)]P=P("q,d,qp 

d,qa = !.!!.... 
aPa 
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(3.8) 

Because the physical Hamiltonian is nondegenerate, the sec
ond equation uniquely determines the generalized momenta 
Pain terms of the generalized velocities 
d,rf,Pa = Pa(t,q,dtq). For the Newtonian system (2.2), 

I (t,q,d,q) = !gabd,rfdtqb + ~adtrf - ~, 
(3.9) 

Pa = gabd,qb + ~a' 
Start now from the parametrized canonical action (3.2) 

instead of from the physical canonical action (2.1). Try to 
eliminate the momenta P A , but leave the lapse function N in 
the action. This time, however, the expression (3.3) for the 
velocities (r in terms of the momenta PA is not invertible 
because the metric GAB is degenerate. One can, however, go 
most of the way by defining the covariant metric GAB by the 
equations 

UBGBA =0, GABGBC =81:: - UBTc, (3.10) 

where Tc is the normalized degeneracy covector (2.21), 
(2.24). The metric GAB is again degenerate, with signature 
(0; + , ... , + ). After introducing the abbreviations 

~II ==~A UA, P II PA U
A, (3.11) 

we express the momentaPA in terms of the velocities (r and 
a single scalar P II 

PA =N-IGAB(r +(~A +~IITA)+PIITA' (3.12) 

After the Legendre transformation 

L=[P M -NH] . A ~ P A = PA(Q,Q,N,P11i 

=!N -IGAB(r (r + N~II + (~A - ~II TA)(r 
+PII(TA(r -N) (3.13) 

P II stays in the action as another Lagrange multiplier. How
ever, it can be eliminated by using the Euler-Lagrange equa
tion obtained by varying the lapse multiplier N, 

P II - ~II + !N- 2GAB (r (r = O. (3.14) 

This leads to the Lagrangian 

L (Q,Q,N) = (N- ' - !N-2Tc QC)GAB(r(r + ~Air 
(3.15) 

= - !(N-I(TcQC)I/2 - (TcQC)-I12)2GAB(r (r 

+!(TcQC)-IGAB(r(r +~Air. (3.16) 

It is not difficult to check that by varying ~ and N we 
obtain correct equations of motion. In special coordinates 
~ = {t, rf} with the lapse function N (0) = AN the Lagran
gian (3.15) reduces to 

L (t,q,q,N(O») = (N(O) -I _ !N(O) -2i) 

Xgabqaqb + ~aqa - ~i. (3.17) 

As a final transformation, we eliminate the lapse func
tion N from the extended Lagrangian (3.16). The Euler-La
grange equation obtained by varying N can be solved for N, 
with the result 

(3.18) 

This expression replicates Eq. (3.4) which was obtained from 
the canonical action. By substituting it back into the Lagran
gian (3.16), we get the reduced Lagrangian 

L(Q,Q)=!(TcQC)-IGAB(r(r +~A(r, (3.19) 
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TABLE II. Alternative fonns of the action. 

Physical canonical 
action 

Physical Lagrangian 
action 

Extended canonical 
action, conditional 

Action 

s[q) = f dt Itt, q, d,q) 

Lagrangian, Hamiltonian, super-Hamiltonian 

General 
coordinates 

Extended canonical 
action, with lapse 
multiplier 

S [Q, P, N) = f dr(PAQA - NH) Special 

Extended Lagrangian 
action, homogeneous 

Extended Lagrangian 
action, with lapse 
multiplier 

S[Q) =f drL(Q, Q) 

S[Q, N) = fdrL(Q, Q,N) 

which is a homogeneous function of the first degree in the 
extended velocities (r . In special coordinates et = It, qa J , 
the homogeneous Lagrangian assumes the form 

L (t,q,i,q) = !i -lgabqa qb + t/Jatia - t/Ji. (3.20) 

We display a summary of our results for the alternative 
forms of the action in Table II. 

4. PATH INTEGRALS IN PHYSICAL PHASE SPACE 

The canonical action (2.1 )-(2.2) on physical phase space 
is a logical starting point for path integration because the 
privileged Liouville measure d nq d np in this space induces a 
natural measure in space of skeletonized paths. We represent 
the quantum propagator by a path integral on the physical 
phase space following the procedure of Ref. 2. In subsequent 
sections, we transform this path integral into equivalent path 
integrals corresponding to alternative forms of the action. In 
this process, nontrivial and often quite complicated mea
sures are induced in alternative spaces of paths. 

The Hilbert space of our dynamical system is the space 
of scalar state functions 1/J(q,t ) with the scalar product 

( ¢I¢) = f dn q gI/2(t,q)¢*(t,q)1/J(t,q). 
1 2 1 2 

(4.1) 

Positions qa and momentapa are represented by Hermitian 
operators 

(4.2) 

The classical Hamiltonian (2.2) is turned into a covariant 
operator 

64 

h = !g-1/4(q)(Pa - t/Ja(q))g1/2~b(q) 

X (Pb - t/Jb (q))g-1/4(q) + t/J (q) 

= - ¥1 + i( rJa + ~t/J ala) + t/J + ~t/J at/Ja' (4.3) 
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coordinates, 
rescaled 

1 
General 
coordinates 

Special 
coordinates 

1 
General 
coordinates 

Special 
coordinates 

L (Q, Q, N) = -!(N -1(TcQ C)1/2 - (TcQ C)-1/2)2 

XGABQAQB + L (Q, Q) 

L (t, q, i, g, N) = - !(N -Ii 1/2 _ i -112)2 

Xgabgaq& + L (t, q, i, g) 

which is again Hermitian under the norm (4.1). The state 
function ¢(t,q) is evolved in time by the Schrodinger equation 

ig- 1/4J, (gI!4¢) = h¢. (4.4) 

The general solution ofEq. (4.4) is provided by the quantum 
propagator (t ",q"lt',q'), 

¢(t ",q") = f d Y (t ",q" It ',q')¢(t ',q'). (4.5) 

This propagator is a scalar in q" and a scalar density in q'.1t 
satisfies the Schrodinger equation 

ig" - 1/4J," (g" 1/4(t II ,q" It ',q'») = h" (t ",q" It ',q') (4.6) 

with the boundary condition 

(t",q"lt",q') =8(q"lq'). (4.7) 

We represent the quantum propagator by an integral 
over all phase space paths q(t ), pIt ) which start in the configu
ration q' at t' and end in the configuration q" at t " , 

(t",q"lt",q')dnq'= f DqDpeis[q(r),p(r ll . (4.8) 

Here, s[q(t ), pIt )] is the canonical action integral (2.1) and 
Dq Dp is a measure in the space of phase space paths. 

We interpret the formal expression (4.8) by a skeletoni
zation procedure in which the time between t ' and t " is sliced 
into small intervals and the measure becomes the product of 
the Liouville phase space measures on each slice. In the inte
grand, we need to skeletonize the action for each path in 
phase space. We replace the action functional by a sum of 
principal functions for getting from one phase space point on 
the skeletonized path to the next. These principal functions 
cannot be the Hamilton principal functions, because Hamil
ton's principal functions are determined by the initial and 
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final configurations and do not depend on momentum. A 
correct construction was discussed in Ref. 2. Evaluate the 
canonical action (2.1) along the actual path qO(t ) in configu
ration space and the momentum path Po (t) found by trans
porting an arbitrary initial momentum along the configura
tion space path by a specified rule. There results a principal 
function S(t(K + I)' q(K + Illt(K)' q(K), P(KI) which depends on 
the initial and final configurations and on the initial momen
tum. By summing such principal functions for all segments 
of the phase space path, one arrives at an action function 
which is manifestly covariant under point transformations 

qO' _ qO'(t q) P _ aqb (t,q*) P (4.9) 
- " a· - Jqa* b . 

There are, in fact, a variety of such skeletonization pro
cedures, depending on which rule is used to transport the 
momentum along the actual classical path. Each gives a dif
ferent quantum mechanical propagator. We shall use the 
rule of geodesic deviation transport. There are compelling 
reasons for such a choice: (1) A fortiori, the momentum vec
tor is Lie propagated by a flow of actual configuration paths; 
(2) a posteriori, the Schrodinger equation (4.4) does not con
tain any curvature term. 

Let us now describe this procedure in detail. The skele
tonized phase space path t(K pq(K) ,P(K)' K = 0,1 , ... ,N, starts 
at the configuration q' at t ' and ends in the configuration q" 
at t ", 

t(O) =t', q(O) =q', t(NI =t", q(NI =q". (4.10) 

The canonical action integral s[q(t), p(t)] is replaced by a 
chain 

N~I 

I S(t(K+ I) ,q(K + Illt(KI,q(KPP(KI) 
K~O 

(4.11) 

of phase space principal functions 
s( t(K + II ,q(K + II I t(K I ,q(K I' P(K I)' The skeletonized measure 
Dq Dp is taken as the product 

N~I IT (21T)~n dnq(KI dnp(KI (4.12) 
K~O 

of invariant Liouville measures on phase space. There is one 
such measure at each time t(KI' K = O,I, ... ,N - 1, with the 
exception of the final time t (NI' The integration is performed 
over all of the momentap(KI' K = O,I, ... ,N - 1, but only 
over the interpolated coordinates q(lI' 1= 1, ... ,N - 1. The 
differential d nq' thus remains unused in the integral (4.8) and 
appears on both sides of the equation. The asymmetric way 
in which q integrations and P integrations are performed re
flects the fact that the paths have fixed boundary configura
tions but free boundary momenta. The path integral (4.8) is 
defined as a limit of the described [Nno(N - l)n]-fold inte
gral (q' integration omitted) as N--+oo while the skeletoniza

tion is infinitely refined. That is, if 

.Jt MAX - max It(K + I) - t(KII, 
K~O .... ,N~ I 

(4.13a) 

then 

J
DqDP eiS(q(t)'P('II= lim JNif dnq(KI dnp(KI 

LI,MAX->O K ~ 0 

xC (t(K + Ipq(K + Illt(KI ,q(K), p(Kd· (4.13b) 
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The biscalar 

C(t(K+ l),q(K+ Illt(KI,q(KI,P(KI) 
=(21T) ~ neis(t(K + 1(,q(K + l(i'(K(,q(KI,P(K(1 (4.14) 

we call the classical propagator. 
The phase space principal functions(t ",q" It ',q',p')isde

fined as the canonical action integral (2.1) evaluated along 
the actual configuration path q(t ) between t ' ,q' and t ",q" giv
en by the equations 

V,(gob d,qb) = Fo -Bob d,qb + Eo, 
(4.15) 

Bob = aa¢lb - ab¢la' Eo = - ao¢l - a,¢lo' 

with the momentum Po propagated from its initial value Pa' 
by the equation of geodesic deviation with a force term, 

The phase space principal functions(t" ,q" It ',q', p') is a bisca
lar under point transformations (4.9). It is a quadratic func
tion of the initial momenta. 

At each step of the skeletonization procedure, the cor
responding phase space principal function enters into the 
classical propagator (4.14). In the limit (4.13), we need to 
know each function only up to terms linear in the time inter
val.J t(K I = t(K + I) - t(K I and quadratic in the instantaneous 
geodesic separation O"(K,(q(K I- Illq(KI)' 

To write such an approximate form of the phase space 
principalfunctions(t" ,q" It ',q',p'), weintroducetheconfigu
ration space Hamilton principal function sIt ",q" It ',q'). This 
function is the extremum ofs(t ",q" It ',q', p') with respect top' 
and it satisfies the Hamilton-Jacobi equations 

a,"s + h (t ",qa",PO" = aa"s) = 0, 
(4.17) 

- a"s + h (t ',qa',Pa' = - aa's) = 0. 

From the Hamilton principal function, we can find the ini
tial velocity d, qa' on the actual path from t ',q' to t ",q": 

(4.18) 

This velocity is of the order 0',' / .J t. The approximate form of 
the phase space principal function can be written in the sug
gestive form 

sIt ",q"lt',q',p') 
(4.19) 

;::;;(Pa' d,qO' - W'b'(Pa' - ¢la' HPb' - ¢lb') - ¢l') .Jt. 

The coefficient 

(4.20) 

differs from the metric g"'b' (t ' ,q') by a Riemann curvature 
term which is brought in by the geodesic deviation transport. 
This term is of the ordera-;,. The function (4.19) is construct
ed in the following way: (I) The initial value of the canonical 
Lagrangianpa' d,qa' - h (t ',q',p') is multiplied by the time 
interval.Jt = t" - t'; (II) the initial velocityd,qa' is expressed 
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as a function of the boundary data t' ,q' and til ,q", Eq. (4.18); 
(III) the metric in the initial Hamiltonian is replaced by the 
tensor-scalar coefficient (4.20). We call the modified Hamil
tonian Ii (t II ,q" It' ,q', p'). 

The description of the phase space integral is now com
plete. The approximate form (4.19)-(4.20) of the phase space 
principal function can be used in each classical propagator 
(4.14) and the path integral defined as the limit (4.13). One 
can prove l that the quantum propagator (4.8) represented by 
this path integral satisfies the Schrodinger equation (4.6) 
with the boundary condition (4.7). The geodesic deviation 
transport which induces the modification (4.20) of the metric 
ensures that no scalar curvature potential appears in the 
Schrodinger equation. 

5. PATH INTEGRALS IN PHYSICAL CONFIGURATION 
SPACE 

We pass from the phase space path integral (4.13)-(4.14) 
to a path integral on the physical configuration space by 
performing momenta integrations. The K + 1 step in the 
skeletonization process starts at t(K) ,q(K) ,P(K) and ends at 
t(K + I) ,q(K + I)' Generically, we call 

tIKI = t, q(K) = q, P(K) = P 

and (5.1) 
-

t(K + I) = t, q(K + I) = q. 

The phase space principal function (4.19) at each step can be 
completed into a square, 

s(t,qlt,q,p) = - Wb1Ta1Tb At + I (t,q,d,q)ijt. (5.2) 

Here, 

At=t-t, 

1Ta = Pa - gabd,qb -ifJa 

(5.3) 

(5.4) 

and / (t,q,d,q) is the physical Lagrangian (3.9). The initial ve
locity d,qa is still_expressed through the configuration space 
boundary data q,t,q,t: 

d,qa= _g"b(t,q)[abs(t,qlt,q)+ifJb(t,q)]. (5.5) 

Le! (4.14) be the phase space classical propagator from t,q, P 
to t,q, 

C (t,qlt,q, p) = (21T) - n eis(t,ql"q,p). (5.6) 

We define the configuration space classical propagator as an 
integral ofEq. (5.6) over the momenta, 

C(t,qlt,q)= I dnp C(t,qlt,q,p). (5.7) 

The integration over p can be replaced by integration over 1T. 
This leads to the Gaussian integral 

I d n1T e - (1/2)i~,g"b1Ta1Tb = ((21T) - I iA t ) - n12gI/2, 

where 

g(t,qlt,q)=det gab' 

Up to the first order terms in At, 

s(t,qlt,q) = / (t,q,d,q) At. 

(5.8) 

(5.9) 

(5.10) 

This leads to the configuration space classical propagator 
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(5,11) 

By integrating over all the momenta P(K) , 
K = O,I, ... ,N - 1, we transform the quantum propagator 
(4.8),(4.13) to a configuration space form 

(tl,q"lt',q')dV= IDqeiS[q(,)) 

lim INtI' dnq(K) C(tIK+ I) ,q(K + 1)lt(Kl'q(Kd· 
~tMAX----+O K=O 

(5.12) 

The integration takes place over the interpolated positions 
q(l)' I = 1, ... ,N - 1. 

The Lagrangian action integral s[q(t)] in Eq, (5.12) gets 
skeletonized by a chain of Hamilton's principal functions 

N-I 

s[q(t)]::::: L S(t(K+Il'q(K+I)lt(Kl'q(K)) 
K=O 
N-I 

::::: L / (t(K I'q(K) ,de q(K))A t(K I' 
K=O 

and the measure Dq is skeletonized by the product 

Each determinantg l/2 can be expressed as 

gl/2 =gI/2(t(Kl'q(K))(1 + Rab(q(K)) 

(5,13) 

(5.14) 

XAt(K)d,qa(K) At(K) d,qb (K))' (5,15) 

Under this measure, the quantum propagator (5.12) satisfies 
the Schrodinger equation without any curvature term. 

6. PATH INTEGRALS IN EXTENDED PHASE SPACE 

We shall now express the quantum propagator by path 
integrals in extended phase space. There are two ways of 
doing this corresponding classically to whether the con
straints are enforced explicitly or implicitly through a lapse 
multiplier. We begin by replacing each classical propagator 
C (t,ql t,q, p) by an extended propagator C (0 I Q,P) such that, 
in special coordinates (2.3),(2.6), 

C(t,qlt,q,p) = I dQOdPoC(OIQ,P). (6.1) 

The procedure then closely follows the parametrization 
process of classical action. First, we take the absolute time as 
a prescribed function t (1') ofa label time l' E [1",1'"] respecting 
the boundary conditions 

t(1") = t', t(1'") = til, 

To first order in A1', 

At = tAr, At t - t, .::11'=7 - 1', 

and, as a consequence of Eqs. (4.19) and (4.14), 

C (t,qlt,q, p) = (21T) - neil Pag" - h(t,ql',q, p);) ~I. 

(6.2) 

(6.3) 

(6.4) 

The initial velocity i/ in Eq. (6.4) is again expressed as a 
function of the boundary configuration data [cf. Eq. (5.5)]: 

i/=td,qa= -tg"b(abs + ifJb)' (6.5) 

We adjoin to it the quantity t and write 
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(6.6) 

In the expression (6.4), the variables q and q are arbi
trary, but t is considered as a given function of 7, t (7). To 
remove this asymmetry, we consider both t and q as indepen
dent variables ec = {t,q 1, but multiply the classical propa
gator (6.4) by a delta function 8 (Q 0 - t (7)). From now on, s 
and tPb in Eq. (6.6) are also considered as functions of ec , 
though t (7) is still a prescribed function of 7. 

We also extend the momenta variables by adding a vari
ablepo'PA = {Po,Pa J, and write the phase factorin Eq. (6.4) 
as the linear combination P A (r .J 7. To ensure that Po is 
-h, we mUltiply the classical propagator by the delta func

tion 8( H(O)) of the modified Hamiltonian constraint (2.8), 
-(0) - --H =Po+h(t,qlt,q,p). (6.7) 

These changes lead to the following classical propagator on 
extended phase space: 

C( 0 IQ,P) = (217")-n8(QO - t(7))8( H(O))eiPAQ< .17. (6.8) 

Integration of this propagator with respect to the newly in
troduced variables Q 0 and Po reduces it to the old propaga
tor, Eq. (6.1). 

The new propagator (6.8) can be written in a manifestly 
covariant form. We introduce fields t (Q) and uA (Q) by Eqs. 
(2.11) and (2.12) and a degenerate tensor-scalar gAB( 0 IQ) 
related to the coefficient (4.20) by a counterpart ofEq. (2.14). 
The super-Hamiltonian H (0) is thereby cast to the form (2.17) 
with gAB in place of gAB. 

In the same vein, Eq. (6.6) assumes the form 

(r =t(uA -gAB(aBs+tPB))' (6.9) 

The Hamilton-Jacobi equations which determine the Ham
ilton principal function 

S( 0 IQ) = s(r,qlt,q) (6.10) 

are obtained by substituting P A = - a A S and P-A = a AS 
into the Hamiltonian constraint at the initial and the final 
boundaries, 

- uA (aAS + tPA) + ~B(aAS + tPA )(aBS + tPB) = 0, 
(6.11) 

uA(ChiS - tfJA) + ~B(ChiS - tfJA)(anS - h) = O. 

The classical propagator (6.8) then takes on a manifestly co
variant appearance 

C (0 I Q,P) = (217") - n8(t (Q ) - t (7))8( H (O))eiPA Q< .17. 

(6.12) 

We can now mix the extended phase space variables ec ,PA 
by an arbitrary point transformation (2.20) and transform 
the classical propagator as a biscalar without changing its 
general form (6.12). 

In a final step, we scale H (0) into H by a positive scalar 
factor A (Q) as in Eqs. (2.18)-(2.19). In terms of the scaled 
quantities (2.18), S again satisfies the Hamilton-Jacobi equa
tions (6: 11), but the scaling factor enters into Eq. (6.9) by 
which ~ is interpreted in terms of the boundary configura
tions, 

(r = A -It [UA - GAB(aBS + tPB)]' (6.13) 

Because 8 ( H (0)) = 8(A - I H) = A 8( H), the scaling factor 
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also explicitly appears in the modulus of the classical propa
gator (6.12), which becomes 

C (0 I Q,P) = (217") - n A (Q )8(t (Q ) - t (7))8( H )eiPA Q< .17. 

(6.14) 

The absolute time function t (Q ) is covariantly charac
terized by Eqs. (2.21) and (2.27). The scaling factor A in ex
pressions (6.13) and (6.14) can then be interpreted by Eq. 
(2.28) or, alternatively, as the Poisson bracket 

A(Q)= [t(Q),H] = [t(Q),H]. (6.15) 

This completes a covariant characterization of the classical 
propagator (6.14). 

The quantum propagator can be represented by a path 
integral in the extended phase space, 

(Q "IQ')8(/(Q') - t') d n+ IQ' = f DQDPeiS[Q,P] 

(6.16) 

The integrations are performed over all the extended mo
mentaP(KpK = O,I, ... ,N - 1, but only over the interpolated 
extended coordinates Q(l)' I = 1, ... ,N - 1. Due to Eq. (6.1), 
we obtain in this way our old quantum propagator 
(4.8),(4.13). 

The new form (6.16) of the path integral corresponds to 
the conditional form of the action, Table II, line 3. The skele
tonized measure 

N-I 

DQDP - II d n+ IQ d n+ Ip 
- (KI (KI 

K=O 

X (217") - nA (Q(K 1)0 (t (Q(K I) - 1 (7(K I)) 

X8(H(Q(K+IIIQ(KPP(KI)) (6.17) 

contains a product of delta functions 8 (H (Q(K + IIIQ(KP 

P(K I)) which enforce the Hamiltonian constraint at each in
stant 7(KI of the skeletonized time. However, these con
straints are not simply classical Hamiltonian constraints at 
7(KI' but modified constraints in which the metric GAB(Q(KI) 
is replaced by the tensor-scalar coefficient 
GAB (Q(K + III Q(K I)' This modification is necessary for the 
quantum propagator (6.16) to satisfy the Schrodinger equa
tion without an additional scalar curvature potential. If the 
measure contained the unmodified super-Hamiltonian 
H (Q(K I ,P(K I)' the SchrOdinger equation would acquire the 
potential -bR. 

Besides the delta functions of super-Hamiltonians, the 
measure also contains the delta functions 8 (t (Q(K ,) 
- t (7(K I))' These delta functions ensure that the instants of 

the label time 7 correspond to the leaves of absolute time t. 
The configurations which the system has to select at an in
stant 7 are thus all simultaneous in the absolute sense. The 
labeling of the leaves of absolute time, however, is provided 
by an arbitrary parameter 7. Finally, the factor A (Q) in the 
measure takes care of an arbitrary scaling of the Hamilton
ian constraint. 

In addition to the choice of measure, one must also spe
cify how to skeletonize the action functional 
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S [Q,P) = s~ dr PAir. Our skeletonization says that 
S [Q,P] is to be replaced by the sum 

N-I 
S[Q,P)::::::: L P(K)AQ(K)A Lir(Ki' (6.18) 

K=O 

in which Q(KJ A is the actual extended velocity at r(K) on the 
actual path from Q(K) to Q(K + I). This actual velocity can be 
derived from the Hamilton principal function 
S(Q(K+ 1) IQ(K)) by Eq. (6.13). 

It is easy to introduce the lapse multiplier and pass from 
the conditional form of the path integral to an unconditional 
one. We just interpret each 8 (li) as the Fourier integral 

8(li) = I dNLir(21T)-le-iNH,Jr. (6.19) 

In other words, we extend the classical propagator C (Q I Q,P) 
into the Q, P, N space by the prescription 

C(Q IQ,P,N) = (21T) -In + I) Lir A (Q )8(t (Q) - t (r)) 
Xei(P,Q-< -NH)M (6.20) 

and connect it with the old propagator by the equation 

C(QIQ,P)= I DNC(QIQ,P,N). (6.21) 

The quantum propagator (6.16) can then be represented by a 
path integral in the Q, P, N space, 

(Q" IQ ')8(t(Q') - t') d n + IQ' 

= JDQ DP DN eiS [Q,P.N [ 

_ lim INnl 

dn+IQ(K) dn+lp(K) dN(K) 
.drMAX----+O K=O 

(6.22) 

The integration takes place over all N(K)' K = 0, 1, ... ,N - l. 
This corresponds to the fact that the lapse function is a La
grange multiplier which, like the momenta PA , can be freely 
specified at the ends. 

The skeletonized measure has the form 
N-I 

DQDPDN::::::: II dn+IQ(K) dn+IP(K) dN(K) 
K=O 

XLir(K) A (Q(K))(21T)-(n+ I) 

X8(t(Q(K)) - t(r(K)))· (6.23) 

The product N(K) Lir(K) A (Q(K)) which enters into the mea
sure is unchanged when we use a different label time; in fact, 
N Li r A is to be interpreted as the interval Li t of the absolute 
time, Eq. (3.5). 

Finally, the action functional (3.2) is replaced by the 
sum 

N-I 
S[Q,P,N)::::::: L (P(K)AQ(K)A 

K=O 

- N(K)Ii(Q(K + 1)IQ(K),P(K))) Lir(K)· (6.24) 

Here, Q(K)A is again given by Eq. (6.13) and Ii is the modified 
super-Hamiltonian. 

We have thereby transformed the path integral in phys
ical phase space into two equivalent forms in the extended 
phase space, one with and one without the lapse multiplier. 
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7. PATH INTEGRALS IN EXTENDED CONFIGURATION 
SPACE 

The path integral in physical configuration space was 
obtained from the path integral in physical phase space by 
evaluating all integrals over the momenta. Similarly, by inte
grating the extended classical propagator (6.14) over the ex
tended momentum variables we cast the path integral into a 
form corresponding to the homogeneous Lagrangian on the 
extended configuration space. To do this, we introduce for 
convenience mechanical energy and momenta 

(7.1) 

as new variables. The extended classical propagator (6.14) 
assumes the form 

C(Q IQ,il) = (21T)-nA (Q)8(t(Q) - t(r))8(Ii)eillA Q-<,Jr 
xei<l>AQ-< ,Jr, (7.2) 

with 

Ii = UA ilA + ~ GABilAilB. (7.3) 

Let Q ~ be n linearly independent covectors perpendic
ular to UA

, 

UAQ~=O, a=I, .. "n. (7.4) 

The projected coefficient 

Gab = GABQ~Q~ (7.5) 

is nondegenerate. The covectors I TA ,Q ~ I form a basis in 
the cotangent space. We split ilA into a longitudinal and 
transversal parts according to 

(7.6) 

The Jacobian J = det a lilA J lal illl,lla J of the transforma
tion (7.6) from the variables I illl,lla I to the variables ilA is 
(see Appendix B) 

(7.7) 

where 8a •... an is the alternating symbol. As a consequence, 

C(Q IQ,P) d n+ IP=J(Q)C(Q IQ,llIl,lla)dilll dnn. 
(7.8) 

In the new variables, 

Ii = illl + ~GabiIailb (7.9) 

and the integration with respect to illl is easily performed. 
We get 

C(Q IQ,ila) = I dilll J(Q)C(Q IQ,llIl,lla) 

= (21T)-nJ(Q)A (Q)8(t(Q) - t(r)) 
xe i4>AQ-< ,Jr/(llaQa_(1I2I1TcQcIGabl1al1bl,Jr, (7.10) 

where we have introduced the abbreviation 

The terms in ila can be completed into a square, 

(ilaQa - (TcQC)~Gabilailb)LiT 

(7.11) 

= (- !(TcQC)GablIj1b + !(TcQC)-IGabQaQb)Lir, 
(7.12) 

where 

J. B. Hartle and K. V. Kuchar 68 



                                                                                                                                    

na = IIa - (TcQC)-IGab(;t. (7.13) 

Moreover, 

GabQaQb = GABQA QB = GABQA QB. (7.14) 

One can replace the modified coefficient GAB by the metric 
GAB because, in special coordinates {t = I t,q a 1, 
(Racbd I1rit I1ril lit i/ = O. As a result, 

C(Q \Q,na) = (21T)-nJ(QJA (Q)8(t(Q) - t(r)) 
Xe -11I2)iIT&c)..:IT aabll)7beiLIQ,Q)..:I1·, (7.15) 

where L (Q,Q) is the homogeneous Lagrangian (3.19). The 
Gaussian integral over na gives 

(21T) - n J d nn e -(112)iIT &c)_' ..:IT aabllall. 

= (21TiTcQ c I1r) - n/2G 1/2 

with 

G=det Gab' 

The product 
JG 1/2 D -1/2 

(7.16) 

(7.17) 

(7.18) 

can be written directly in terms of the degenerate coefficient 
GAB (Appendix B): 

(7.19) 

This sequence of steps yields the classical propagator in ex
tended configuration space, 

C(Q\Q)= J dn+IPC(Q\Q,P) 

= J dnn C(Q \Q,na) 

= (21TiTcQ c I1r) - n/2 

XD -1/2(Q \QJA (Q)8(t(Q) - t(r))eiLIQ,Q)..:IT. 
(7.20) 

Note that by the interpretation (6.13) of QC we have 

TcQc=A -1(Q)t(r). (7.21) 

From Eq. (6.16), we obtain a representation of quantum 
propagator by a path integral in the extended configuration 
space, 

(Q" \Q ')8(t(Q') - t ') d n + IQ' = J DQ eiS[Q] 

(7.22) 

The integration takes place only over the interpolated ex
tended coordinates QII)' I = 1, ... ,N - 1. The homogeneous 
Lagrangian action S [Q] = S~: dr L (Q,Q) is skeletonized by 
the prescription 

N-I 

S [Q]:::: ~ (!(TdQIKdQ~d-1 
K~O 

XGAB (QIKdQ(1)Qi'i) + tPA (QIK))QtK) I1rIK ))· 
(7.23) 

The velocities QIK I are interpreted in terms of the configura
tion data at the ends of each step in Eq. (6.13). Note that the 
coefficient GAB in Eq. (7.23) is the ordinary degenerate met-
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ric unmodified by the curvature term. The modified metric 
coefficient enters only into the measure, but not into the 
phase of the path integral (7.22). The measure is skeletonized 
by the product 

N-I 

DQ:::: II d n + IQ (21TiTdQIK))Q~) I1rIK )) - n12 

K~O 

XD -1/2(QIK+ II\QIK)JA (QIK)) 

X8(t(QIKI) - t(TIK )))· (7.24) 

The modified metric coefficient appears in the determinant 
(7.19). 

In the special coordinates (2.3) all previous expressions 
considerably simplify. The Jacobian (7.7) reduces to 

J=A -I, (7.25) 

the determinant (7.19) goes over to 

D = A n + 2g -l, g=det gab' (7.26) 

and the classical propagator assumes the form 

C (r,q\t,q) = (21Tit (T) I1r) - n12 

XgI/2(r,q\t,q)8(t - t (r))eiL It,q,i,iI)..:IT. (7.27) 

Here, L (t,q,t,q) is the homogeneous Lagrangian (3.20). In the 
~xpression (7.24), t is an independent variable, while t (r) and 
t (T) are prescribed functions of T. The velocity qa is interpret
ed as a function of t,q, and t,q by Eq. (6.5). The measure (7.24) 
in path integral (7.22) reduces to 

N-I 

Dt Dq:::: II dtlKI d nq(KI [21Tit (T(KI) I1T(KI ] - nl2 
K~O 

Xgt/2(tIK+ II,q(K+ 1)\tIK ),q(K))8(t(KI - t(T(KI)),(7.28) 

while the Lagrangian action S [t,q] gets skeletonized by 
N-I 

S [t,q];::::; ~ [~i -1(r(KI)gab(t(KpqIKdq(K)qfK' 
K~O 

+ tPa(t(KI,q(KI)q(KI - ¢ (tIKI,q(K))t(T(K))] I1T(K)' 
(7.29) 

When we perform the integrations over til) , I = 1 , ... ,N - 1, 
and parametrize the paths by absolute time, t (T) = T, the 
path integral (7.22) reduces back to the path integral (5.12) in 
physical configuration space. 

8. PATH INTEGRALS IN EXTENDED CONFIGURATION 
SPACE WITH LAPSE 

The only form of the action remaining in Table I is the 
Lagrangian action on extended configuration space with the 
lapse multiplier, Eqs. (3.15)-(3.16). We now represent the 
quantum propagator by a path integral whose phase is this 
action. 

We start from the classical propagator (7.10) in which 
the integration over longitudinal part of the momentum IIII 
has been performed, but which still depends on the transver
sal momenta IIa. Instead of integrating over all transversal 
momenta IIa [which would lead us back to the classical pro
pagator (7.20)], we decompose IIa into a component parallel 
t.o the velocity Q a and n - 1 components perpendicular to 
Qa. We choose a l?asis Q~, a = 1, ... ,N - 1, in the subspace 
perpendicular to Q a, 

(8.1) 
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and write 

Ila =N-IQa +IlaQ~. (8.2) 

The Jacobian of this transformation is (Appendix B) 

alIla ] II-N-
2
Qa II det = det = - N - 2}, 

alN,Ila] Q~ 
(8.3) 

with 

The last equation is the counterpart ofEq. (7.7) in a space of 
lower dimension. 

Expressing the phase of the propagator (7.10) in terms 
of our new variables, we find 

[IlaQa_!(TcQc)GabIlaIlb +¢JA(t] LiT 

= - !(TcQc)GaPIlaIlp LiT 

+ [(N -I - !TcQ cN -2)Gab QaQb + ¢JA (t ] LiT 
. C - P . 

= -~(TcQ )Ga IlaIlp LiT+L(Q,Q,N)LiT. (8.5) 

The metric coefficient GaP is the projection 

GaP = GabQ~Q~ (8.6) 

andL (Q,Q,N) isthe Lagrangian (3. 15) with the lapse function 
N. The propagator (7.10) thereby assumes the form 

C(Q IQ,N,Ila) 
= - N- 2J(Q)C(Q IQ,Ila) 

= (21T) - n( - N -2-;t (Q)J (Q)A (Q )D(t (Q) - t (T)) 

(8.7) 

We now evaluate the Gaussian integral over the momenta 
Ila and find 

I dn-IIle-11I2)iITcQC)arGUf311allf3 

= (21Tt - 1)/2(iTcQ c LiT) -In - 1)/2 dee /2 Gap. 

Taking into account Eqs. (B24) and (7.14), 

JJ det l/2 Ga{3 = D -1/2(GAB(t QB)1I2. 

(8.8) 

(8.9) 

This sequence of operations leads us to the classical propaga
tor 

C(Q IQ,N) = dn-IIlC(Q IQ,N,Ila) 

( _ N -2)(21T)-1(21TiTcQ C LiT) -In - 1)12D -1I2(Q IQ) 

X (GAB(t QB) 1/2A (Q )D(t (Q) - t (T))eiLIQ,Q,N)ar. (8.10) 

All velocities (t in Eq. (8.10) are expressed in terms of 
boundary data, Eq. (6.13). 

We can now represent the quantum propagator by the 
path integral 

(Q" IQ ')D(t (Q /) - t /) d n + IQ / = f DQ DN eiS(Q,N] 

The integral in Eq. (8.11) is over all N IK ), K = O,l, ... ,N - 1, 
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but only over the interpolated Q (I)' 1= 1, ... ,N. This corre
sponds to the fact that the momentumlike multiplier N has 
free ends. 

The Lagrangian action S [Q,N] is skeletonized by the 
prescription 

N-I 
S [Q,N]:::::: L !(NIK)I - !TC!Q(K))Q1i)N IKn 

K=O 

XGAB(QIK))Q;k)Q~) + ¢JA (Q(K))Q;k)] LiT, 
(8.12) 

where QIK) are again interpreted in terms of the configura
tion data QIK I ,QIK + I) at the boundaries of each step by Eq. 
(6.13), 

The measure is skeletonized by the product 
N-I 

DQ DN:::::: II d n + IQIK) dNIK ) ( - N IK)2) 
K=O 

X(21T)-1 [21TiTc!Q(KdQ 1i) LiT(Kd -In - 1)/2 

XD -1/2(QIK + I) IQ(K))(GAB(Q(K))Q;k)Q~))1/2 
XA (QIK))D(t(QIK)) - t(TIK )))· (8.13) 

The modified metric coefficient enters into the measure 
(8.13) through the determinant (7.19). 

These expressions simplify considerably in the special 
coordinate system, but, before showing this, let us recover 
the path integral in the extended configuration space by per
forming the integrations over N IK ). To do this, we write the 
phase of the classical propagator (8.10) in the form 

L (Q,Q,N) LiT = L (Q,Q) LiT 

- ~(N -1(TcQ C)1I2 - (TcQ C)-1/2)2GAB(t Q B LiT, 

(8.14) 

whereL (Q,Q lis the homogeneous Lagrangian (3. 19). Were
place N by a new variable 

M = N -1(TcQ C)1/2 _ (TcQ C)-1/2 

and write 

C(Q IQ,N) dN = C(Q IQ,N)( - N2(TcQ C)-1/2) dM 

= dM e - (1I2)iGAse' QS ar M' 

X (21T)-I(TcQC)-1/2(GAB(t QB)1/2 

X (21TiTcQ C LiT) - (n - 1)12D -1/2A 

(8.15) 

XD{t(Q) - t(T))eiLIQ,Q)ar. (8.16) 

Integration over M yields the Gaussian integral 

I dM e -1112liGAse' Q" arM' = rW LiT)-1/2(GAB (t OS )-1/2, 

(8.17) 

and the classical propagator (8.16) reduces back to the classi
cal propagator (7.20), 

The classical propagator (8.10) again simplifies in spe
cial coordinates (2.3). Taking into account Eqs. (7.21), (7.26) 
and rescaling the lapse multiplier, 

N(o) = AN, (8.18) 

we get 
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C (i,qlt,q,N(O») dN(D) 

= - dN(O)N(D)-2(21T}-1(21Tit (r) Ar) -In - 1)/2 

xg l {2(i,ql t,qj[gab (q)q"qb ] 28(t _ t(r))eiLlt,q,<i,N'O)ILlr, 

(8.19) 
where L (t,q,q,N(D») is the action (3.17). 

The velocity qa is again interpreted by Eq. (6.5). The 
measure (8.13) in the path integral (8.11) reduces thereby to 

N-I 
DQ DN(O)-:::; II dt(K) dnq(KI dNiil 

K=O 

- N\k~'(21T)-1(21Tit (r(K») Ar(KI) -In - 11/2 

Xg1l2(t(K+ i),q(K+ II [t(KPq(KI) 

X (gab (qIKI)q(KlqtKd1l28(tIKI - t(r(KI))' (8.20) 

This completes our program, We have represented the 
quantum propagator by path integrals corresponding to all 
action functionals enumerated in Table II, 

9. PATH INTEGRALS: PARAMETRIZATION VERSUS 
GAUGE 

We have now learned how to write the quantum propa
gator for a parametrized system as a path integral in ex
tended phase space. Our prescription, Eqs. (6.16)-(6.17), re
cognizes the need to enforce the Hamiltonian constraint and 
to select a definite parametrization of the path, These two 
aims are achieved by the delta functions 8 (li (QIK + II [Q(K I ' 
P(KI)) and 8 (t (QIKI) - t (r(KI)) in the skeletonized measure. 

A similar need arises in gauge theories. One must en
force the constraints generating gauge transformations, and 
one should fix the gauge when writing the path integral in 
the space of redundant variables. It is of interest to compare 
the algorithm which we have obtained for a parametrized 
theory with the standard prescription for gauge theories. 

Let us first review the basic structure of gauge theories. 
To bring out the issues clearly, we consider again our old 
finite-dimensional nonrelativistic system. We can turn it 
into a gauge theory by adjoining an additional spurious 
gauge coordinate l/J to the physical coordinates qa. This 
brings us to the extended configuration space I qa,l/J J. As qa 
is kept fixed and l/J is varied, we move along a fiber over qa. 
We interpret all points in such a fiber as different descrip
tions of the same physical state. 

As the state of the system evolves in time, the choice of 
the gauge variable remains arbitrary. In other words, the 
velocity 

(9.1) 

can be freely prescribed at each step of the dynamical evolu
tion. Equation (9.1) can be obtained by varying the action 

U[l/J,1T;A.] = J:" dt(1Tdt l/J -..11T) (9.2) 

with respect to the gauge momentum 1T. By varying (9.2) with 
respect to A. and l/J, we learn that the momentum 1T is con
strained to vanish, 

1T= 0, (9.3) 
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and continues to vanish in the course of time. 
The evolution of the system in the extended phase space 

I qa,l/J,Pa ,1T J is then described by the action S which is the 
sum of the physical action (2.1) and the gauge action (9.2) 

S [qa,l/J,Pa ,1T;A. ] 

= L" dt (Padt~ + 1T dtl/J - h (t,q,p) - ..11T). (9.4) 

After an arbitrary point transformation in the extended 
phase space, 

{t = (t (qa,l/J), Pa = {t .aPA' 1T = (t ,,,,PA, (9.5) 

the action (9.5) assumes the form 

S[{t,PA;A.] = r" dt(PAdt{t -h(Q,P)-..17T(Q,P)). 

(9.6) 

The action (9.6) can be modified in two ways without 
changing the equations of motion. The constraint (9.3) can 
be scaled by an arbitrary factor A (Q ):;60, 

II = A (Q )1T(Q,P), (9.7) 

and it can be adjoined to the physical Hamiltonian h, 

h = h + [~(Q )PA + k (Q )]7T(Q,P). (9.8) 

We have chosen the coefficients A (Q) and ~ (Q )PA + k (Q) 
so that the new constraint II is still linear in the momenta P A 

and the new Hamiltonian h is still quadratic in the momenta 

PA' 
The constraints (9.3) or (9.7) generate the gauge trans

formation of the canonical variables {t ,PA . Such a transfor
mation does not change the physical state of the system. To 
single out a particular representative for each physical state, 
one can introduce a gauge fixing condition 

<P ({t ,PA ) = O. (9.9) 

Here, <P is any function which yields a unique value of the 
gauge coordinate l/J when Eqs. (9.3) and (9.5) are taken into 
account. 

We can write now the standard prescription for the 
quantum propagator as a path integral in the extended phase 
space I (t ,PA J of the gauge theory. The propagator has the 
form (4.13) with the classical propagator 

C(Q [Q,P) = (21T) - n8(<p )8(ll)[ [<P,ll] [eiS(t,Qlt.Q.PI, 
(9.10) 

corresponding to the skeletonized canonical action with the 
Hamiltonian (9.8). 

The prescription (9.10) is superficially similar in form to 
our result (6.14) for the classical propagator of a parame
trized theory. The gauge constraint II = 0 plays the role of 
the super-Hamiltonian constraint H = 0 and the gauge fix
ing condition (9.9) replaces the condition 

t (Q) - t (r) = 0, (9.11) 

which selects the parametrization of path. [Due to Eq. (6.15), 
the factor A in the measure (6.17) has the meaning of the 
Poisson bracket between the expression (9.11) and the super
Hamiltonian H]. However, there are two important differ
ences: 
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(I) The gauge fixing condition does not need to contain 
any reference to time. On the other hand, the condition (9.11) 
selecting the parametrization must introduce a prescribed 
function t (1') of 1'. 

(II) In gauge theories, any function (9.9) ofthe extended 
coordinates and momenta is permissible. On the other hand, 
in a parametrized theory t (Q) is a definite function on the 
extended configuration space. For our Newtonian system, 
the time function t (Q ) is obtained by the reconstruction pro
cedure discussed in Sec. 2. 

To see that the distinction (I) is vital, let us blindly apply 
a condition (9.9) appropriate for a gauge theory to our para
metrized theory. In the simplest case, this is achieved by 
puttingt (7) = Oand identifying t (Q ) with <P (Q,P). Of course, 
our derivation ofEqs. (6.16)-(6.17) for the quantum propa
gator is no longer valid because t (7) = 0 implies t I = 0 = t /I • 

When we insist that the expression (6.16)-(6.17) represents 
the quantum propagator from t I to t /I > t I even for t (7) = 0, 
we predictably end with an absurd result. On the other hand, 
when we put t (7) = 0 and simultaneously restrict ourselves 
to t '= 0 = t 1/, the expression (6.16)-(6.17) for the quantum 
propagator equally predictably yields a correct triviality: It 
reduces to the delta function because the dynamics is frozen 
at a single instant of time. 

The distinction (I) reflects the fundamental physical dif
ference between gauge theories and parametrized theories. 
The constraints which follow from gauge invariance gener
ate gauge changes of the extended phase space variables. 
These are unobservable; the physical state of the system is 
unchanged. The constraints which follow from reparametri
zation invariance generate the dynamics of the system. They 
are observable and the physical state does change. It makes 
sense to fix a gauge to get one representative to a physical 
state. It makes no sense to fix the time. 

The distinction (II) is more subtle. It means that the 
slices of a constant label time 7 coincide with the leaves of the 
absolute time foliation. Such a restriction follows naturally 
from our derivation of Eqs. (6.16)-( 6.17) for the quantum 
propagator. There is no simple modification of this deriva
tion which would introduce a different foliation, e.g., 

<P(Q,T) = o. (9.12) 

In fact, the Schrodinger equation ceases to be a first-order 
equation in the foliation label when we allow the general 
foliation (9.12) and the Hilbert space interpretation loses 
thereby its meaning. We thus consider it highly unlikely that 
the general foliation (9.12) would yield the correct quantum 
propagator when used instead of the absolute time foliation 
(9.11) in the expressions (6.16)-(6.17) for the path integral. 
We emphasize yet again that the choice of the time variable is 
a central decision in forming quantum theories and that, 
once made, it cannot be easily altered without altering the 
theory. 

10. SUMMARY 

The representation of the quantum propagator by a 
path integral of the exponentiated canonical action on the 
physical phase space is a natural starting point for quantum 
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mechanics. The measure in the space of paths is induced by 
the invariant Liouville measure in phase space. The geome
trically privileged transport of momentum by actual classi
cal paths of the system leads to the skeletonization of the 
canonical action by the chain of phase-space principal func
tions. This privileged skeletonization removes the ambiguity 
connected with the factor ordering. 

Unfortunately, not all classical theories are easily for
mulated in terms of the true physical degrees of freedom. 
Both gauge theories and parametrized theories use redun
dant variables. The dynamical evolution of the system takes 
place in extended spaces of variables. General relativity is 
the most prominent example of a system in which the simul
taneous presence of gauge and parametrization makes it ex
tremely difficult to return back to the physical phase space. 
It is thus essential to represent the quantum propagator by 
integrals over paths in such extended spaces of variables. 

We have accomplished this program for parametrized 
Newtonian systems moving in curved configuration spaces. 
Our point of departure was the path integral in the physical 
phase space of the system. We arrived at equivalent path 
integrals in alternative spaces by extending or restricting the 
variables. 

The extension of variables was always done so that inte
gration over the new variables yielded the integral we have 
started from. Typical devices for ensuring this property are 
delta functions introduced into the measure or representa
tions of known functions by integrals over a parameter. The 
restriction of variables was always carried out by integrating 
over them. Typically, the integrals involved were Gaussian 
integrals in the momenta which can be explicitly evaluated. 
Such integrals lead to nontrivial measures in spaces of re
maining variables. 

We summarize our results in Table III, which is a con
tinuation of our Table II for the alternative forms of the 
action. In the first column, we write down a symbolic expres
sion for the path integrals. The symbolic expression is inter
preted by skeletonizing the measure and skeletonizing the 
action. In the second column, we enter the measure associat
ed with a segment of skeletonized path between the gate 
dX = dXIKI at X = X IKI and the gate dX = dXIK + II at 
X = X IK + II in the space ! X 1 of appropriate variables. The 
total measure is the product of such elementary measures at 
all gates, K = 0, I , ... ,N - 1. In the following column, we give 
the number of the equation which introduces this measure in 
the main text. Some of the measures are quite complicated 
and do not follow a clearly recognizable pattern. On the oth
er hand, the classical action is always skeletonized in the 
same manner: For each step of the skeletonized path, we 
write the initial value LIK I of the appropriate Lagrangian 
and multiply it by the intervaL::1 TIK I = 71K+ II - 71KI of time. 
The initial values of velocities which enter into the Lagran
gian must be expressed in terms of the configuration data at 
the boundaries of each step. This is achieved by using the 
appropriate Hamilton principal function obeying the stan
dard Hamilton-Jacobi equations. Moreover, in the phase 
space versions ofthe theory, the initial metric entering into 
the Lagrangian must be replaced by a tensor-scalar coeffi
cient which takes into account the geodesic deviation trans-
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TABLE III. Alternative forms for path integrals. 

Quantum propagator represented 
Type of action by the path integral 

Physical canonical (t",q"lt',q') d"q' 
action = $ Dq Dp eis(q·p] 

Physical Lagrangian (t·,q·~',q') d"q' 
action = $ Dqeis(q] 

Extended canonical (Q"IQ')8(t(Q') - t') d"+ I Q' 
action, =$ DQDPeiS[Q.P] 
conditional 

Extended Lagrangian (Q"IQ')8(t(Q') - t') d"+ 1 Q' dN' 
action, with = $ lJQ DP DN eiS[Q. N] 

lapse multiplier 

Extended Lagrangian (Q"IQ')8(t(Q') - t') d"+ 1 Q' 
action, = $ DQ eiS[Q] 

homogeneous 

Extended Lagrangian (Q "IQ')8(t(Q') - t') d"+ I Q' dN' 
action, with = $ DQ DN eiS[Q. N] 

lapse multiplier 

port of momenta. The classical action is skeletonized by the 
sum ~~:6 L(K) ..::ir(K) of such contributions. Because the 
procedure follows a well-defined algorithm, there is no need 
to enter the skeletonized action into our table. We refer 
merely to the equation where it is discussed in the paper. 

While the measures are often complicated, they have 
one feature in common-the occurrence of {j (t (Q) - t (1')) 
which fixes the integrations to the leaves of absolute time 
that flows from the initial instant t ' to the final instant t " . The 
specific form of this delta function is characteristic of para
metrized theories and reflects the privileged role time plays 
in quantum mechanics. 
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APPENDIX A: INTEGRABILITY CONDITIONS ON THE 
DEGENERATE METRIC GAB 

A degenerate metric GAB with signature (0; + '''., + ) 
has a unique degeneracy direction, i.e., the solutions TA to 
the equation 

GABTB = 0 (AI) 

fill a ray. The ray determines a foliation if and only if it is 
surface forming, 
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Skeleton-
ized Skeletonized 

Elementary measure measure: action: 
of a segment of path Eq. number Eq. number 

d" q d" p(21T) - " (4.12) (4.11) 

d" q (21Ti LIt) - "/2 gl 12(t, W, q) (5.14) (5.13) 

d"+ I Qd" + I P(21T) -" A (Q) (6.17) (6.18) 
8(t(Q) - t(r))8(H(Q IQ, P)) 

dn+ I Qd"+ I PdN LIt A (Q) (6.23) (6.24) 
(217') -("+ I) 8(t(Q) - t (r)) 

d"+ I Q [21TiTC!Q)Qc Llrj- "/2 (7.24) (7.23) 
D -1/2(Q IQ) A (Q)8(t(Q) - t(r)) 

dt d" q[21Tii (r)..::lrj- "/2 g(t, iii t, q)8(t - t (r)) (7.28) (7.29) 

D" + I Q dN( _ N -2)(217')- I (8.13) (8.12) 
(21TiTc!Q )Qc Llr) -In - 1)/2 

D - 112(Q IQ)(G'<B(Q)e' QR)112 

A (Q)8(t(Q) - t(r)) 

dtd"qdN( _N(O)-2)(21T)-1 (8.20) 
(21Tii (r)..::lr) -In - 1)/2 gll2(t, lilt, q) 
(gab(q)i/"i!" )1/28(t - t (r)) 

MABC-TA T 1B.C 1+ TBT1c.A I + TcTIA.B 1= O. (A2) 

To be so, the metric GAB cannot be arbitrary, but it must 
satisfy certain integrability conditions which we are now go
ing to derive. 

Note that the equation 

TAXA =0 (A3) 

has n linearly independent solutions Q ~, a = 1 ,,,.,n and that 
the metric GAB is non degenerate on the vector subspace 
spanned by Q ~: 

(A4) 

Let UA be an arbitrary vector linearly independent of Q ~, 
i.e., 

(A5) 

The vectors! UA ,Q ~ J form a basis. Because Gab is nonde
generate, any equation MA = 0 can be replaced by an equi
valent set of equations 

GABMB = 0, UBMB = O. (A6) 

Handling each index of the completely antisymmetric tensor 
M ABC in this way, we can replace Eq. (A2) by an equivalent 
system of equations: 

G KAG LBG MCMABC = 0, 

GKAGLBUcMABC = O. 

(A7) 

(A8) 

Due to Eq. (A 1), the condition (A 7) is identically satisfied. 
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Further, because of Eqs. (AI) and (A5), the condition (AS) 
reduces to 

G KAG LBT[A.B 1 = O. (A9) 

Using Eq. (AI) again, we cast Eq. (A9) into the form 

G A [K.L lTA = 0, 

where 

G AK.L =G AK.B G BL. 

From Eqs. (A3) and (A5) we see that 

3 H KLa: G A [K.Ll = HKLaQ~. 

An alternative way of writing Eq. (AI2) is 

(AlO) 

(All) 

(AI2) 

{j G A [B.C1GA,B'· .. GAnBn = O. (AI3) 
AA., .. A" 

Here {j AA , ... An is a completely antisymmetric tensor density of 
weight - 1 with {jOI2 ... n = 1. Note that in a Newtonian 
space-time we cannot introduce the more usual Levi-Civita 
pseudotensor EAA, ... An because the metric GAB is degenerate. 

Equation (AI3) is equivalent to the condition (AI2) 
which is a necessary and sufficient condition for the degener
acy covector TA determined by Eq. (AI) to be surface-form-
ing. 

APPENDIX B: DETERMINANTS WITH DEGENERATE 
METRICS 

The metric GAB is degenerate, and its determinant thus 
vanishes. However, we can project GAB into the subspace 
orthogonal to the degeneracy direction TA and take the de
terminant of the projected metric. 

For a given GAB and UA, Eqs. (2.21) and (2.24) have a 
unique solution TA . Furthermore, the equation 

UAXA =0 (BI) 

has n linearly independent solutions Q ~, a = l, ... ,n: 

UAQ~ = O. (B2) 

The covectors I TA ,Q ~ I form a cobasis. Of course, Q ~ can 
be changed by a transformation 

Q~' =A nQ)Q~. (B3) 

We introduce the alternating symbol {jan ... an which trans
forms as a tensor density of weight - I under theA transfor
mations (B3). Besides it, we have at our disposal the alternat
ing symbol ~A, ... An, which transforms as a tensor density of 
weight 1 under transformations of extended coordinates. 

The projection 

Gab=GABQ~Q~ (B4) 

of the degenerate metric GAB is nondegenerate, and we can 
write its determinant as 

(B5) 

In terms of the original metric, 

G -I = (l/n!){ja, ... anQ~', ... Q:: 

G A B GAnBn{j Qb, Qbn X I I... b., .. b
n 

B. ••• Bn' (B6) 

Study now the expression 

D=(I/nll)\ UAUBGA,B, .. ·GAnBn{j . 
°JVAA.···An BBI,··B" 

(B7) 
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The tensor density UA {j AA, ... A n has two properties: (I) It is 
completely antisymmetric in A 1' ••• .,4n' and (2) it is orthogo
nal to UA 

• As a consequence, we must have 

(B8) 

To determine the proportionality factor J -I, we multiply 
Eq. (BS) by {jBA,··-An. Because 

(B9) 

we get 

n!UB = J -I{j Qa, ... Qa. {jBA, ... An. 
al,··o" A I An (BlO) 

Multiplication by TB yields 

J= (l/n!){j T Qa, '''Qan{jAA, ... An. (BII) 
Ql"'O" A AI An 

By introducing Eqs. (BS) and (BII) into the expression (B7), 
we learn that 

(BI2) 

Any covector ilA can be split into a part along TA and a 
part perpendicular to UA 

, 

(B13) 

Equation (B 13) can be considered as a transformation from 
the variables illl ,ila to the variables ilA . The Jacobi matrix 
of this transformation is 

alilA I II TA II 
alilll,lla I = Q~ . 

(B14) 

We see thatJis nothing else but thelacobian of the transfor
mation (B 13). 

We can replace the metric GAB by the tensor-scalar 
coefficient GAB and introduce appropriate quantities (B4), 
(B5), and (B7). We place bars over symbols denoting these 
quantities: G ab,G,D. The modified quantities are again con
nected by the equation 

G -I = J 2D. (BI5) 

Mutatis mutandis, the same line of reasoning applies to 
nondegenerate metrics. Take a regular metric Gab, 
a = l, ... ,n, and a vector it'. Let Q:, a = l, ... ,n - 1, be a 
basis in cotangent space orthogonal to it' : 

QaQ: = O. (BI6) 

Project the metric Gab, 

Gall GabQ:Q~. (BI7) 

The projected metric Gall is again regular, and we can intro
duce its inverse Gap. Greek indices are raised by GaP and 
lowered by Gap. Similarly, Latin indices are raised by Gab 
and lowered by Gab' With this convention, 

Gab = GaIlQ:Q~ + Q -2QaQb' (BI8) 

with 

Q2 gabQaQb. 
We take the determinant ofEq. (BI8). Because 

Gap Q : Q ~ and Qa Qb are degenerate matrices, 
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G = (l/n!)8aa , ... a. - 'G G ... G 8bb, ... b. - I 
ab a.b. a" _ Ibn _ I 

= [l/(n _I)!]Q-28aa, ... a.-18bb, ... b.-1 

XQ' 8aa , ... a._ IQa, •.• Qa._ 1 
a Q. an_I 

As in Eqs. (BS) and (B 11), 

(B2I) 

with 

1= [l/(n _I)!]8aa , ... a.- IQ· Qa, ... Qa.- 18 . (B22) 
a o. On_I Q'.,··an_1 

As a result, 

(B23) 
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We multiply Eq. (BI2) by Eq. (B23) and conclude that 

lJ dee /2 Gap = (GAB(;t (;;t )1/2D -1/2. (B24) 

'The literature on the implementation of quantum dynamics by path inte
grals for nonrelativistic and relativistic systems in curved and flat configu
ration spaces is extensive and too large to be cited here. A useful general 
survey with extensive references to the original literature is L. S. Shulman, 
Techniques and Applications of Path Integration (Wiley, New York, 1982). 

2K. Kuchar, J. Math. Phys. 24, 2122 (1983). 

3L. Faddeev, Toor. Mat. Fiz. 1,3 (1969); L. Faddeev and V. Popov, Phys. 
Lett. B 25,30 (1967); L. Faddeev and V. Popov, Usp. Fiz. Nauk Ill, 427 
(1973)[Sov. Phys. Usp.16, 777 (1974)]; E. S. Fradkin, and G. A. Vilkovisky 
"Quantization of Relativistic Systems with Constraints, Equivalence of 
Canonical and Covariant Formalisms in the Quantum Theory of the Gra
vitational Field," CERN Report TH-2332, 1977; L. Faddeev and A. Slav
nov, Gauge Fields: Introduction to Quantum Theory (Benjamin, Reading, 
MA,1980). 

4K. Kuchar, Phys. Rev. D 22, 1285 (1980). 
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Quantum energy-entropy inequalities: A new method for proving the absence 
of symmetry breaking 

M. Fannes,a) P. Vanheuverzwijn,b) and A. Verbeure 
Instituut voor Theoretische Fysica. Universiteit Leuven, B-3030 Leuven, Belgium 

(Received 25 January 1983; accepted for publication 10 June 1983) 

For quantum systems we develop a new method, based on a general energy-entropy inequality, to 
rule out spontaneous breaking of symmetries. The main advantage of our scheme consists in its 
clear-cut physical significance and its new areas of applicability; in particular we can handle 
discrete symmetry groups as well as continuous ones. Finally a few illustrations are discussed. 

PACS numbers: 03.65. - w, 05.50. + q, 02.20. + b 

I. INTRODUCTION 

In the case of classical lattice systems we derived recent
ly I correlation inequalities expressing the balance between 
energy and entropy for an equilibrium state. These inequal
ities were shown to reproduce easily the sharpest results con
cerning spontaneous magnetization in long range Ising mod
els2 and they gave a more direct and intuitive understanding 
of the underlying physics. Maybe even more important is the 
applicability to continuous as well as to discrete symmetry 
groups. In particular we proved translation invariance for 
one-dimensional systems under very weak conditions on the 
potential. I 

Here we are concerned with the quantum-mechanical 
situation. The well-known method to prove absence of sym
metry breaking is based on the Bogoliubov inequality. The 
first results along this line are the celebrated theorems of 
Mermin-Wagner3 and Hohenberg. 4 Recently there was a 
revival of interest in the field. The best results along this line 
can be found in Ref. 5. It is important to remark that this 
method is restricted to continuous symmetry groups as the 
occurrence of an infinitesimal generator is essential for the 
method. On the contrary our method allows also for discrete 
symmetries. To stress this fact we will concentrate on the 
applications to discrete symmetries. 

Our main tool is the correlation inequality [see formula 
(2) below] which has a clear physical significance as being an 
expression for the change of free energy under a dissipative 
perturbation of the equilibrium state. l

.
n 

One should mention here also the results based on rela
tive entropy considerations. 7 This technique as well allows 
for the treatment of discrete symmetries; however, our meth
od based on the inequality seems to us more direct and intu
itive. 

II. ABSENCE OF SYMMETRY BREAKING 

Let (sf',a t ) be a C *-dynamical system, i.e., sf' a C *
algebra and at (tER) is a strongly continuous one-parameter 
group of*-automorphisms of .w. A state OJ of.if satisfies the 
KMS condition for the evolution at at inverse temperature 
/3, if OJ(x ai{j(Y)) = OJ(Yx) for all X,Y in a norm dense, at-in
variant *-subalgebra of sf'. LetS) be the GNS representation 
space of the state OJ and flE~) the cyclic vector; we denote by 

., Bevoegdverklaard navorser NFWO, Belgium. 
bl Aangesteld navorser NFWO, Belgium. 

, II the von Neumann algebra sf''' and by H the infinitesimal 
generator of the time evolution on,S). As OJ is time invariant 
we have flEg (H) (domain of H) and Hfl = O. 

If 

H = JX x A dE (A ) 

is the spectral decomposition of the Hamiltonian H, define 
for all xEJ( the measures on R 

df-lx (A ) = (xfl,dE (A )xfl ), 

dVx(A) = (xfl,dE( -A )x*fl). 

As OJ is a KMS state the measuresf-lx and Vx are equiva
lent with Radon-Nikodym derivative 

df-lx (A ) = e{3,l 

dVx(A) 

(see, e.g., Ref. 8, Proposition 5.3.14), 

(1 ) 

We start with an easy derivation of an inequality for 
KMS states which was stated implicitly for the first time in 
Ref. 9. 

For all XEd such that xflE!iJ (H), 

/3 (xfl,Hxfl) S /3A df-lx (A) 

(xfl,xfl) S df-lx (A) 

_ In exp _ S /3A df-lx (A) 

S df-lx (A ) 

Se-{3,l d (A) 
;;, -In f-lx 

S df-lx (A) 

= _ In S dv x (A ) 
S df-lx (A ) 

= In (xfl,xil ) 

(x*fl,x*fl) 

by the Jenssen inequality. Hence 

/3OJ(x*Hxfl );;'OJ(x*x)ln(OJ(x*x)/OJ(xx*)). (2) 

Lemma Il.l: Let I be a finite interval of R, If for 
O#xEJ(n!iJ ([H,.])supp f-lx CI then if OJ satisfies the KMS 
condition, 

OJ(x*x) 
O</3OJ(x*Hx) - OJ(x*x)ln --</3OJ(x*x)..1, 

OJ(xx*) 

where..1 is the length of the interval I. 
Proof Let I = [A I ,A 2], A;ER; using (1) and (2) we com-

pute 
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0<J3w(x*Hx) - w(x*x)ln w(x*x) 
w(xx*) 

= /3 fA d/-l x (A) - f d/-l x (A )In f d/-l x (A) 
f e- f3Ad/-l x (A) 

</3A2 f d/-l x (A) - f d/-lx (A )In _I_ 
e -f3AI 

= /3 (A2 - Ad f d/-lx (A ). • 
Now we proceed to our main objective, namely, the de

velopment of a theory for the absence of spontaneous sym
metry breaking. We suppose that we have a symmetry repre
sented by a *-automorphism r of sff satisfying the following 
conditions: 

(a) r is approximately inner, i.e., there exists a sequence 
(un )n>1 of unit aries in sff such that for all xEsff, 

lim Ilr(x) - u~xun II = o. 
n~oo 

This condition implies 

lim w(u:xun) = w(r(x)) (3) 
n~oo 

for all states w of sff. This notion of approximately inner 
automorphism has been introduced in Ref. 10. As far as the 
physics is concerned it means that the automorphism can be 
approximated by local unitary transformations. 

(b) As r represents a symmetry ofthe system we have 
[a"r] = 0 for all tER. Furthermore, we suppose that the lo
cal approximations almost commute with at in the sense 
that for all m: umEg)([H,.]) and 

K = sup II [H,u!] II < 00. (4) 
m 

This is essentially the condition used in Ref. 7. 
Theorem 112: Let w be a KMS state with respect to the 

evolution at at inverse temperature/3; let r be a symmetry as 
above. Then there exists a constant C such that for all xEsff, 
w(xx*)<Cw(r(xx*)) holds. 

Proof ForfEC ;'(R) (the space of infinitely differentia
ble functions with compact support) and for any XEsff we 
denote 

x(f) = f dt/(t )at(x), 

wheref(A) = f dt/(t )eitA . 

For E> 0 one finds a decomposition of the identity by a 
sequence (h n )n> I of positive functions in C;' such that 
pointwise 2n> I h ~ = 1 and such that the support of each hn 
is contained in an interval of length E. 

By a straightforward computation one gets 

w(xx*) = f dvx ( -A) = ~ f hn(A fdvx ( -A) 

= L w(x(hn )x(hn )*). (5) 

Substitute in the correlation inequality (2) the observable x 
by u!x(hn) for each n such thatx(hn)#O; adding and sub
tracting a term and using time in variance 
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w(x(h )*x(h ))In w(x(hn )x(hn )*) 
n n w(u!x(hn )x(hn )*u",) 

- /3w(x(hn )*um [H,u! ]x(hn)) 

<f3w(x(h
n
)*Hx(hn)) - w(x(h

n 
)*x(h

n 
))In w(x(hn )*x(hn)) 

w(x(hn )x(hn )*) 

</3Ew(x(h n )*x(hn )), 

where the last inequality is obtained from Lemma 11.1 as the 
support of hn is contained in an interval oflength less than E. 

Hence by (4), 

w(x(hn )x(hn )*)<eIK + E)f3w(u!x(h n )x(hn )*um), 

and by (3) 

w(x(hn )x(h n )*)<eIK + E)f3w(r(x(h n )x(hn )*)). 

As [r,a t ] = 0 one has r(x(f)) = (rxHf); hence after summa
tion over n, using (5) one gets 

w(xx*)<e f3IK + E)w(r(xx*)). • 

At this point it might be interesting to remark that this 
result of absolute continuity of states is obtained through the 
use of the correlation inequality. It is worthwhile to mention 
the work of Araki II and of Sakai. 12 They are interested in the 
problem of unicity of KMS states. Sakai is also working 
towards a result expressing absolute continuity of states but 
by explicit calculations using the Gibbs form of the state. 
Araki's technique is based on the notion of relative entropy 
and leads to quasiequivalence of states. 

Finally one gets as an easy consequence the invariance 
of the equilibrium states under the symmetry group. 

Corollary 113: Under the conditions of Theorem 11.2 

Proof It is sufficient to prove the corollary for extremal 
KMS states. Suppose that w is such an external state. Then, 
as [r,a t ] = 0, wOr is also an extremal KMS state. By 
Theorem 11.2 and a well-known property (Ref. 8, Theorem 
5.3.29) there exists TEsff"nsff' such that 

w(r(x)) = (flw I Txflw ). 

As w is extremal T = 1 and therefore w = wOr. • 

III. ILLUSTRATION 

We prove the absence of breaking of translation sym
metry in one-dimensional lattice systems for long-range in
teractions. This result was announced in Ref. 13. The alge
bra of observables is the usual tensor product algebra 

generated by the local algebras sff A = ® 86' (S»), where S) is 
kEA 

a finite-dimensional Hilbert space. 
Consider the local Hamiltonian 

N 

HN = 2: L J rs (Ii - jl)d;" oj + L hr L d;", 
- N,i < j<N rs r i = - N 

where {d;" I r = 1, .. . ,d} are the spin matrices for the lattice 
site i; the interaction energies Jrs (k ) satisfy 

oc 

L IJrs(k)1 < 00. 
k~1 

(6) 
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This condition guarantees a good thermodynamic behavior 
of the system. 

Now we want to apply Theorem 11.2. The symmetry '1' is 
the translation over one lattice site, i.e., '1'( if;) = if; + I . Note 
that '1' is approximately inner since it can be approximated by 
'1' m standing for the cyclic translation of the lattice interval 
[- m, + m] such that 

'1'm (if;) = if;+ I if - m<i<m, 

Tm(a'm) =a'_m, 

Tm(oj) =oj ifUI>m. 
It is easy to check that there exist unitary operators um such 
that T m (x) = u! xUm for all elements of .xl. Clearly for all 
XEUA.xI A one has 1"(x) = '1' m (x) when m is large enough. 
Therefore formula (3) holds. Furthermore, because of condi
tion (6) the time evolution automorphisms at are well de
fined as8 

() 1· -itHN -irHN at x = 1m e xe 
N 

on the C· -algebra generated by U A .xl A and clearly 
[ap '1'] = O. Suppose now that for all r,s = 1, .. . ,d, 

"" L k IJ,..(k) -Jrs(k - 1)1 < 00; 
k~1 

then 

supH (H,u! ] II = supHum [H,u! 111 
m m 

<? {2 ktl k IJrs(k) -J,s(k - 1)1 

+ 12 ktIIJ,s(k)l} < 00. 

(7) 

Hence (4) is satisfied and by Theorem 11.2 each KMS state w 
satisfies 

78 J. Math. Phys .• Vol. 25. No.1. January 1984 

w(XX*)';;;; CW(1"(xx*)). 

By Corollary 11.3 w = W 0 '1' and we proved that any equilibri
um state of the system is translation invariant if the interac
tion energies satisfy condition (7). It is instructive to realize 
that in the ferromagnetic or antiferromagnetic case [i.e., the 
Jrs (k) have the same sign] condition (7) follows from condi
tion (6) if the function k_Jrs(k) is monotonic for large k. 

Finally we remark that, although we considered here 
only a one-dimensional system, our method extends to high
er-dimensional ones, e.g., it provides a short proof of the 
absence of breaking of internal symmetries in two-dimen
sional quantum lattice systems. 7 Furthermore, the proof of 
Theorem 11.2 relies on an estimate for w(x*u m [H,u! Jx) 
given by condition (4). Depending on the particular model 
under consideration more refined estimates might be ob
tained weakening condition (4) on the interaction and hence 
extending the range of applicability of the theorem. 
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Quantum measuring processes of continuous observables 
Masanao Ozawa 
Department of Information Sciences, Tokyo Institute of Technology, Oh-Okayama, Meguro-ku, Tokyo 152, 
Japan 

(Received 3 May 1983; accepted for publication 23 June 1983) 

The purpose of this paper is to provide a basis of theory of measurements of continuous 
observables. We generalize von Neumann's description of measuring processes of discrete 
quantum observables in terms of interaction between the measured system and the apparatus to 
continuous observables, and show how every such measuring process determines the state change 
caused by the measurement. We establish a one-to-one correspondence between completely 
positive instruments in the sense of Davies and Lewis and the state changes determined by the 
measuring processes. We also prove that there are no weakly repeatable completely positive 
instruments of nondiscrete observables in the standard formulation of quantum mechanics, so 
that there are no measuring processes of nondiscrete observables whose state changes satisfy the 
repeatability hypothesis. A proof of the Wigner-Araki-Yanase theorem on the nonexistence of 
repeatable measurements of observables not commuting conserved quantities is given in our 
framework. We also discuss the implication of these results for the recent results due to Srinivas 
and due to Mercer on measurements of continuous observables. 

PACS numbers: 03.65.Bz, 02.50. + s 

1. INTRODUCTION 

In the last decade, some attempts were developed to 
construct a satisfactory theory of the quantum mechanical 
measurement of an observable with continuous spectrum. 1-9 

However, we have found no satisfactory solution of the fun
damental problem to determine the state changes caused by 
measurements of continuous observables. In spite of these 
difficulties in continuous spectrum, the theory for discrete 
spectrum has a conventionally accepted solution since the 
pioneering work of von Neumann. 10 

LetA = .I; A; P; be an observable with simple discrete 
spectrum AI' A2,··. Then von Neumann iO showed the fol
lowing: 

(1) By the repeatability hypothesis, the state change 
p_p' caused by the measurement of A is determined as 
p' = .I;P; pP;. 

(2) The above state changep-p' is compatible with the 
Hamiltonian formalism in the description of the measuring 
process in terms of the time evolution of the composite sys
tem of the observed system and the measuring apparatus. 

In the present paper, we shall show the following: 
(1) The description of measuring processes has a satis

factory generalization to continuous observables. 
(2) Every measuring process determines a state change 

caused by the measurement. 
(3) There are no measuring processes of a nondiscrete 

observable whose state changes satisfy the repeatability hy
pothesis. 

In order to clarify the present situation, we shall review 
some developments on the problem so far. In the early stage, 
Umegaki and Nakamura ll showed that the state change 
p---+p' = .IjPj pPj is just an example ofUmegaki's noncom
mutative conditional expectations12 onto the von Neumann 
algebra generated by A, and they conjectured that the state 
change caused by the measurement of a continuous observa-

ble would also be such a noncommutative conditional expec
tation. However, it is shown by Areveson 13 that such condi
tional expectations do not exist for continuous observables. 

In view of these results, Davies and Lewis I established the 
mathematical concept of instruments which enables us to 
treat statistical correlations of outcomes of successive mea
surements, and formulate the repeatability hypothesis for 
continuous observables. They conjectured the nonexistence 
of repeatable instruments for continuous observables and 
proposed the more flexible approach to measurements of 
continuous observables abandoning repeatability hypothe
sis. Recently, Srinivas8 generalized the concept of instru
ments and showed the existence of such generalized instru
ments for continuous observables which satisfy the 
repeatability hypothesis. He proposed a generalized collapse 
postulate which determines such repeatable generalized in
struments to describe the state changes caused by measure
ments of continuous observables. More recently, Mercer9 

considered a wider class of state transformations than condi
tional expectations and proposed the state change should be 
described by such a transformation with the locality intro
duced by him. It is a remarkable fact that these attempts are 
concerned only with the first half of von Neumann's work 
cited above. An operator theoretical analysis on von Neu
mann's second result was done by Kraus. 14 He established 
the complete positivity of state changes caused by the gen
eral measuring processes, but his result is concerned only 
with the yes-no measurements. 

In this paper, we shall show that the state changes de
termined by measuring processes naturally correspond to 
completely positive instruments and vice versa. We prove 
Davies and Lewis's conjecture for completely positive in
struments, i.e., completely positive instruments cannot be 
weakly repeatable unless the corresponding observable is 
discrete. These results show that Srinivas's generalized col-
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lapse postulate cannot be compatible for continuous obser
vables with the Hamiltonian description of measuring pro
cesses. We shall also show that if they can be realized by 
some measuring processes, Mercer's local transition maps 
correspond to repeatable measurements, and hence they 
cannot exist for continuous observables. 

The nonexistence of repeatable measuring processes of 
continuous observables suggests that we should investigate 
the approximately repeatable measuring processes as models 
of measurements in quantum mechanics. Moreover, this di
rection of investigation is appropriate not only for contin
uous observables. Indeed, even in measurements of discrete 
observables, it is known that the repeatable measurement is 
impossible unless observed quantity commutes with con
served quantity under some conservation law (see Refs. 15 
and 16, also Sec. 8). The author believes that, in future inves
tigations on really existing approximately repeatable mea
surements, our framework of measuring processes will pro
vide a nice basis. However, we shall discuss these problems 
elsewhere. 

In Sec. 2, we give some preliminaries on semiobserva
bles and conditional expectations. Our concept of observed 
quantities allows the non orthogonal resolutions of identity, 
called semiobservables. In Sec. 3, we generalize von Neu
mann's measuring processes to continuous observables and 
show that every measuring process determines the state 
change caused by the measurement. In Sec. 4, we provide a 
dilation theorem and a decomposition theorem of complete
ly positive instruments which are useful in the later sections. 
In Sec. 5, we shall establish the one-to-one correspondence 
between measuring processes and completely positive in
struments. If the observed quantity is a usual one, the ob
tained correspondence is reduced to very simple form by the 
decomposition theorem, that is, measuring processes are de
termined by their transitionp--+p'. In Sec. 6, we study the 
repeatability hypothesis and prove the nonexistence of 
weakly repeatable completely positive instruments for non
discrete observables in the standard formulation of quantum 
mechanics. In Sec. 7, we study the local transition maps and 
prove the nonexistence oflocal transition maps correspond
ing to measuring processes of nondiscrete observables. In 
Sec. 8, we shall give a proof of the Wigner-Araki-Y anase 
theorem in our framework, which states the nonexistence of 
repeatable measuring processes of the observables which do 
not commute with the conserved quantity. In Sec. 9, we shall 
give a characterization of the measuring processes discussed 
in the conventional measurement theory among our general 
measuring processes. 

2. OBSERVABLES AND CONDITIONAL EXPECTATIONS 

Let eW' be a Hilbert space. Denote by .!f (J¥) the algebra 
of bounded operators on eW' and by Y(J¥) the space of trace 
class operators on eW'. A state p on eW' is a positive trace one 
operator on eW'. Denote by ~ (J¥) the space of all states on 
eW'. Let (IJ,!!lJ) be a Borel space. A semiobservable X on eW' 
with value space (IJ,!!lJ) is a positive operator valued measure 
X: !!lJ--+.!f(J¥) such thatX(IJ) = 1. An observable Xis a se
miobservable which is projection valued. Denote by !!lJ (R" ) 
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the Borel u-field ofR" . By the spectral theory, we shall iden
tify an observable X on eW'with value space (R" ,!!lJ(R")) and 
the corresponding mutually commutable family I x\, ... ,x" J 
of self-adjoint operators on eW'such that 

Xi = ( A.X(RX"·Xd~ X···XR). JR I 

(2.1) 

An observableXwith value space (R,!!lJ(R )) is called bound
ed if X = f R A. X (dA. ) is bounded. Let X be a semiobservable 
on eW' with value space (IJ,!!lJ). If the system is in the state p 
at the instant before a measurement of X, then the probabil
ity distribution Prob( X E B;p) of the outcomes of this mea
surement is given by 

Prob( X E B;p) = Tr[ pX(B)], (2.2) 

for any B in !!lJ. For a semiobservable X, we shall denote by 
X (!!lJ) the range of X, i.e., X (!!lJ) = I X (B );B E !!lJ J. A condi
tional expectation Ton .!f(J¥) onto a von Neumann algebra 
JI on eW' is a normal completely positive linear map Ton 
.!f(J¥) with rangeJl such that T(axb) = aT( x)b foralla,b 
in JI, x in .!f(J¥).1t is known\7 that an ultraweakly contin
uous linear map Ton .!f(J¥) is a conditional expectation if 
and only if it is a projection of norm 1 onto JI. 

Let JV be another Hilbert space. Let u be a state on JV. 
Then the formula 

Tr[ pEa ( x)] = Tr[(p ® u).x], (2.3) 

where x E .!f (eW' ® JV) and p E Y(J¥), defines a normal 
completely positive linear map Ea: .!f(eW' ® JV)--+.!f(J¥) 
such that Ea(a ® 1) = a for any a in .!f(J¥). Thus the for
mula x--+Ea( x) ® 1, for x in .!f(eW' ® JV), defines a condi
tional expectation on .!f(eW' ® JV) onto .!f(J¥) ® 1(;1. It is 
easily seen that the mapEa is theadjointofthemapp--+p ® u 
from Y(J¥) into Y(eW' ® JV). The formula 

Tr[Ey(tP)a] =Tr[tP(a®l)], (2.4) 

where tP E Y(eW' ® JV) and a E .!f(J¥), defines a completely 
positive linear map Ey: Y(eW' ® JVl-Y(J¥), which is 
called the partial trace over JV. The partial trace E y also 
satisfies that for any S,1/ in eW', and any orthogonal basis 
{ tfJi J, we have 

(2.5) 

for any p in Y(eW' ® JV). It is easily seen that the adjoint of 
Ey is the map a-a ® 1 from .!f(J¥) into .!f(eW' ® JV). 

The following lemmas can be verified by easy computa
tions. 

Lemma 2.1: Let p E Y(J¥), u E Y(eW' ® JV), and 
bE .!f(JV). If we have Tr[ap] = Tr[(a ® b )u] for any 
a E .!f(J¥), then we have 

p = Ey [(1 ®b jul. (2.6) 

Lemma 2.2: Let T: Y(J¥)--+Y(J¥) be a bounded linear 
map, and let U E .!f(eW' ® JV), bE .!f(JV), and u E Y(JV). 
Then 

T(p) =Ey [U(p®u)U*(l ®b )], 

for any p in Y(J¥) if and only if 

T*(a) = Ea [U*(a ® b)U], 
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for any a in .2"(JY). 
Lemma 2.3: Let a- = ~)'i lSi) (Si I be the spectral de

composition of a- in ~ (JY). Then 

(2.9) 

for any A in .2"(dY' ® %), where the sum is convergent in the 
weak operator topology. 

3. MEASURING PROCESSES 

In order to determine the possible transformations of 
states associated with the measurement of an observable, we 
shall consider the description of the measuring process in 
terms of the interaction between the observed system and the 
apparatus, which is a generalization of von Neumann's de
scription of the measuring process for an observable with 
discrete spectrum (Ref. 10, Chap. IV), Our mathematical 
formulation of the measuring process is as follows, 

Definition 3.1: Let dY' be a Hilbert space and X be a 
semiobservable on dY' with value space (fl,f:%J). A measuring 
process M of X is a 4-tuple M = (% ,X,a-, U) consisting of a 
Hilbert space %, an observable X on % with value space 
(fl,f:%J), a statea-on%, and a unitary operator UondY' ® % 
satisfying the relation 

X(B) =Eu [U*(l ®X(B))U] (3,1) 

for any B in f:%J. 
Now we shall explain the physical interpretation of the 

measuring process M = (% ,X,a-, U) of a semiobservable X 
of a Hilbert space dY' with value space (fl,f:%J). The Hilbert 
space dY' and % describe, respectively, the measured system 
I and the apparatus II. The semi observable X is to be mea
sured by this measuring process. The observable X is to show 
the value of X on a scale in the apparatus which is actually 
measured by the observer, i.e., X is the position of the pointer 
on this scale, The state a- is the initially prepared state of the 
apparatus. The measurement is carried out by the interac
tion between the observed system and the apparatus during a 
finite time interval from time 0 to t. The unitary operator U 
describes the time evolution of the composite system, i.e., 

U = exp[ - it(H I ® 1 + 1 ®H II + Hint)], (3.2) 

where H I and H II are Hamiltonians of the observed system I 
and the apparatus II, respectively, and Hint represents the 
interaction. Suppose that at the instant before the interaction 
the measured system is in the (unknown) state p. Then the 
composite system is in the state p ® a- at time 0 and by the 
interaction it is in the state U (p ® a-) U * at time t. Thus the 
probability distribution Prob(X E B;p) of the outcomes of 
this measurement must coincide with the probability distri
bution Prob(X E B;t ) of the observable X at time t. Since 
Prob(X E B;p) = Tr[pX(B)] and Prob(X E B;t) = Tr[U(p 
® a-)U *1' (B )], we should impose the requirement 

Tr[ pX(B)] = Tr[ U(p ® a-)U*1' (B )] (3.3) 

for any B in f:%J ,p in ~ (JY). It is easy to see that the require
ment (3.3) is equivalent to the requirement (3.1) in Definition 
3.1. 

We shall now show that the measuring process 
M = (% ,X,a-, U) determines a unique state change caused 
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by this measurement. Suppose that a measuring process 
M = (% ,X,a-, U) of X is carried out in the initial state p of 
dY'. Let B E f:%J • Denote by pB the state, at the instant after 
the measurement, of the subensemble of the measured sys
tem in which the outcomes of the measurement lie in B. In 
order to determine the state pB , suppose that the observer 
were to measure the simultaneously measurable observables 
A in I andX in II, whereA is an arbitrary bounded observable 
with value space (R,f:iJ (R)). Then we have the joint probabil
ity distribution of their values: 

Prob(A E dA.'x E dcu) 

= Tr[ U(p ® a-)U*(A (dA.) ®X(dcu))]. (3.4) 

Thus, ifProb(X E B )#0, we have also the conditional prob
ability distribution of A conditioned by the value of X lying in 
B, 

Prob(A E dA. IX E B ) 

= Prob(A E dA.'x E B )lProb(X E B ) 

= Tr[ U(p ® a-)U*(A (dA.) ®X(B ))]lTr[ pX(B )],(3.5) 

and the conditional expectation Ex(A IX E B ) of A condition
ed by the value of X lying in B, 

Ex(A IXEB) 

= 1 A. Prob(A EdA.IXEB) 

= Tr[ U(p ® a-)U*(a ®X(B ))]lTr[ pX(B)], (3.6) 

where a = S R A.A (dA. ). On the other hand, by the probabilis
tic interpretation of the statepB, the statepB must satisfy the 
relation 

Prob(A E dA. IX E B) = Tr[ pB A (dA.)] 

or, equivalently, 

Ex(A IX E B ) = Tr [ pB a]. 

(3.7) 

(3.8) 

By the arbitrariness of A, we can determine the state pB 
uniquely by Eqs. (3.6) and (3.8). That is, by Lemma 2.1, we 
have 

pB = !l/Tr[ pX(B )llE,;. [U(p ®a-)U*(l ®X(B ))], 
(3.9) 

where E;,: Y(dY' ® %)-Y(JY) is the partial trace over 
%. In particular, we have 

p[]=Ey[U(p®a-)U*]. (3.10) 

Therefore, we have determined the state change p_pB 
caused by the measuring process M = (% ,X,a-, U) of the 
semiobservable X on dY' with value space (fl,f:%J). 

Let M = «~ ,X,a-, U) be a measuring process of a se
miobservableX. For any a in .2"(JY), EXM (aIB;p) will denote 
the conditional expectation of the outcome of a measure
ment of a at that instant after the measuring process M under 
the condition that the measuring process M of X has been 
carried out in the initial statep on dY' and its outcome lies in 
B E f:%J. Then from the above discussions, we have 

EXM (aIB;p) = Tr[ pB a] 

= (lITr[ pX(B)ll 

XTr[ U(p ® a-)U*(a ®X(B ))]. (3.11) 

Masanao Ozawa 81 



                                                                                                                                    

Conclusion: Every measuring process 
M = (% ,%,0", U) of a semiobservable X determines a state 
change p-+pB caused by the measurement, where pB is the 
state, at the instant after the measurement, of the subensem
ble of the measured system in which outcomes of the mea
surement in the initial state p lies in B E fJJ . 

4. COMPLETELY POSITIVE INSTRUMENTS 

From the investigations of von Neumann's repeated 
measurements, Davies and Lewis 1 introduced a mathemat
ical notion of instruments which represents statistical corre
lations of outcomes of successive measurements. For the the
ory of instruments, called operational quantum probability 
theory, we refer the reader to Refs. 1 and 4. In the present 
section, we shall provide some general results on instru
ments imposed complete positivity. 

Our setting for operational quantum probability theory 
consists of a von Neumann algebra j( on a Hilbert space JY 
and a Borel space (fl,fJJ). A state p of j( is a normal state on 
j/. Denote by j( * the predual of j( and by L (j() the space 
of all normal states on j(. A semiobseruable X in vI( is a 
semi observable on £' whose range is contained in j(. A 
subtransition map Ton j( is a normal completely positive 
linear map T: j( ---+j( such that 0< T (I) < I. A transition map 
Tis a subtransition map such that T(I) = I. We define the 
right action of a subtransition map Ton j( * by the duality 

(p,Ta) = (pT,a), (4.1) 

forallainj(,p inj( *. A CPinstrument f onj( with value 
space (fl, fJJ) is a sub transition map valued measure on 
(fl,fJJ) such that (i) for each countable family I Bi l of pair
wise disjoint sets in fJJ , 

(p,f(~Bi)a) = I (p,f(Bi)a), 
I 

(4.2) 

for all a in j(, p in ~I( * and that (ii) f(fl ) 1 = 1. The condi
tion (i) is equivalent to countable additivity of the right ac
tion in the strong operator topology on x(j( *,j( *). In 
what follows we shall also use the notation f(.,.) for a CP 
instrument f in such a way f(B,a) = f(B)a for all B in fJJ, 
a in j(. By the same argument as in Ref. 1, Theorem 1, we 
can prove the following. 

Proposition 4.1: For every CP instrument f on j( with 
value space (fl, fJJ) there is a unique semiobservable X in j( 
with value space (fl, fJJ) such that X (B ) = fIB, 1) for all B in 
fJJ. Every semiobservable is determined in such a way by at 
least one CP instrument. 

Let f be a CP instrument. We say that a semiobserva
ble X is the associate semiobseruable of f, if X (B) = fIB, 1) 
for any B in fJJ and that a transition map T is the associate 
map of f if T(a) = f(fl,a) for any a in j(. Let Xbe a se
miobservable. A CP instrument f is called X-compatible if 
X is the associate semiobservable of f. A transition map Tis 
called X-compatible if the range of T is contained in X (fJJ)'. 

The following proposition is very useful in dealing with 
CP instruments which is a modification of the Stinespring 
theorem on completely positive maps.18 

Proposition 4.2: For any CP instrument f of j( with 
value space (fl, fJJ) there is a Hilbert space £'0' a spectral 

82 J. Math. Phys., Vol. 25, No.1, January 1984 

measure E: fJJ---+x(JYo), a nondegenerate normal*-repre
sentation 1T: j( ---+x(JYo) and a linear isometry V: JY ---+JYo 
satisfying 

f(B,a) = V*E(B)1T(a)V, (4.3) 

E (B )1T(a) = 1T(a)E (B), (4.4) 

for any B in fJJ and a in j(. 
Proof Denote by B (fl ) the space of all bounded fJJ -mea

surable functions on fl. Consider the algebraic tensor pro
duct B (fl ) ® j( ® JY. We define a sesquilinear form (.,.) on 
B (fl ) ® j( ® £' as follows: 

(s,1]) = ~ L gj(w)*I;(w)(f(dw,b ja;)Si,1]j), 

for S = Li I; ® ai ® Si' 1] = Lj gj ® bj ® 1]j in 
B (fl ) ® j( ® JY. Then we can prove that (S,S );;;'0 by just a 
similar way as the proof of Ref. 18, Theorem 4, and thus 
s---+llsll = (s,s )1/2 is a seminorm. Define actions 1Tof j( and 
E of fYJ on B (fl ) ® j( ® £' as follows: 

1T( x)s = II; ®xa i ® 5;, 
i 

E(B)S = IXB I; ®ai ® S;. 
I 

for x in j/, B in fJJ, and S = Li I; ® ai ® Si' Then we have 
that 111T(x)sll<llxllllsll and IIE(B)sll<llsll. Thus the 
both actions are well defined also on the II'II-completion £'0 
of the quotient space B (fl ) ® j( ® £' / .. /V, where 
.r = lsi lis II = 0l· Define a map V: £' ---+£'0 as 
V ifJ = (1 ® 1 ® ifJ ) + c' V, for any ifJ in £'. Then the assertions 
can be checked in a routine manner (Ref. 18 and Ref. 19, p. 
194). QED 

A CP instrument f is called decomposable if it is of the 
formf(B,a) = X(B )T(a) for allB in fJJ, a inj(, where Xis 
the associate semi observable of f and Tis the associate map 
off. 

Proposition 4.3: A CP instrument f is decomposable if 
its associate semiobservable X is projection-valued or if its 
associate map Tis homomorphic [i.e., T(a*a) = T(a)*T(a) 
for all a in j(]. 

Proof First suppose that Tis homomorphic. We can 
suppose that f is of the form f(B,a) = V*E(B )1T(a) Vas in 
Proposition 4.2. Since T(a) = V*1T(a)V and V* V = 1, we 
have 

(1T(a)V - VT(a))*(1T(a)V - VT(a)) 

= T(a*a) - T(a)*T(a) = 0. 

Thus1T(a)V = VT(a) for all a inj(, and hence we obtain that 
f(B,a) = V*E(B)1T(a)V= V*E(B)VT(a)=X(B)T(a)forany 
Bin fJJ, a in j(. The proof for the case that X is projection
valued is similar. QED 

Proposition 4.4: LetXbe an observable in j( with value 
space (fl,fiJ). Then there is a one-to-one correspondence 
between X-compatible CP instruments f on j( and X-com
patible transition maps Ton j(, which is given by 
f(B,a) = X(B )T(a) for any B in fJJ, a in j(. 

Proof If a CP instrument f is decomposable, then its 
associate map T is X-compatible, since X (B )T(a) 
= (X(B )T(a))* = T(a)X(B) for any a;;;'O in j(, B in:!iJ. 
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Conversely, if T is an X-compatible transition map then it is 
easy to check that the relation f(B,a) = X (B )T(a), where 
a E J( and B E f!ll, defines an X-compatible CP instrument. 
Thus the assertion follows immediately from Proposition 
4.3. QED 

5. CLASSIFICATION OF MEASURING PROCESSES 

Let JIt" be a Hilbert space and X be a semiobservable on 
Jlt"with value space (fl,f!ll). We say that two measuring pro
cesses Ml and M2 of X are statistically equivalent if 

ExM, (aIB;p) = ExM, (aIB;p), (5.1) 

for any a in .2"(eW}, B in f!ll, p in ~ (eW). Since every two 
statistically equivalent measuring processes give the same 
state change, it is desirable to classify these equivalence 
classes by more tractable mathematical objects concerned 
only with the observed system. In this section, we shall carry 
out such classification. 

Let M = (% ,1',0', U) be a measuring process of X. 
Consider the following relation: 

f(B)a = Ea [U*(a ®X(B ))Ul. (5.2) 

for any B in f!ll, a in .2"(eW}. Then it is not hard to check that 
Eq. (5.2) defines an X-compatible CP instrument f on 
.2"(eW}. By Lemma 2.2, Eq. (5.2) is equivalent to 

pf(B) = E~" [U(p ®O')U*(l ®X(B ))], (5.3) 

for all B in f!ll, pin Y(eW}. By Eqs. (3.1) and (3.9), we have 

X(B) = f(B,l), (5.4) 

pB = (lITr[pf(B)])Pf(B), 

whenever Tr[ pX(B)] #0, (5.5) 

for allp in ~ (eW), B in f!ll. Thus the CP instrument f defined 
by Eq. (5.2) retains the all statistical data of the measuring 
process M, that is, the probability distribution of outcomes 
of the measurement and the state change caused by the mea
surement. The following theorem shows that every CP in
strument on .2"(eW} arises in this way. 

Theorem 5.1: Let X be a semiobservable on JIt" with 
value space (fl,f!ll). Then there is a one-to-one correspon
dence between statistical equivalence classes of measuring 
processes M of X and X-compatible CP instruments f on 
.2"(eW}, which is given by the relation 

Tr[ pf(B)]ExM(aIB;p) = Tr[ pf(B )a], (5.6) 

for all B in f!ll, p in ~ (eW), a in .2"(eW}. 
Proof: Let M = (% ,1',0', U) be a measuring process of 

X. Then it is easy to see that the CP instrument f defined by 
Eq. (5.2) is a unique CP instrument which satisfies Eq. (5.6). 
It follows that the statistically equivalent measuring pro
cesses determine the same CP instrument by Eq. (5.2). Now 
it suffices to construct a measuring process of X which deter
mines by Eq. (5.2) a given X-compatible CP instrument. Let 
f be an X-compatible CP instrument on .2"(eW} with value 
space (fl, f!ll). Let ,}Yo, E, 7T, and V be such as obtained in 
Proposition 4.2 for the CP instrument f. Since every nonde
generate normal*-representation of .2"(eW} is unitarily equi
valent to the multiple of the identity representation (Ref. 4, 
Lemma 9.2.2), there is a Hilbert space Jlt"1 such that 
,}Yo = JY' ®,}YI and that 17(a) = a ® 1 for any a in .2"(eW}. 
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Then by Eg. (4.3) and by the commutation theorem of von 
Neumann algebras, for any Bin f!ll there is a projection E 1 (B ) 
in .2"(JIt"tJ such thatE (B) = 1 ® E1(B). Obviously, thecorre
spondence E I: B-+E I (B ) is a projection-valued measure from 
f!ll to .2"(,}YtJ. By Eq. (4.3), we have 

f(B,a) = V*(a ®E1(B ))V, 

for any B in f!ll, a in .2"(eW}. Let 1]0 be a unit vector in Jlt"o and 
1]1 be a unit vector in Jlt"1' Define an isometry Vo on 
JIt" ® [1]1] ® [1]0] into JIt" ® Jlt"1 ® Jlt"o by the relation 

Vo(s ® 1] 1 ® 1]0) = Vs ® 1]0' 

for any 5 in JIt". Then, since dim(JIt"o) = dim(JIt" ® Jlt"1)' by 
the usual computations of cardinal numbers, it is easy to 
show that 

dim(cW'®JIt"I ®cW'0 - cW'® [1]1] ® [1]0]) 

= dim(JIt" ® cW'1 ® £"0 - Vo(JIt" ® [1] I] ® [1]0]))' 

It follows that there is a unitary operator U on 
JIt" ® Jlt"1 ® Jlt"o which is an extension of Vo. Now let %,0', 
and X be such that 

%=JIt"I®JIt"O' 0'= 11]1 ®1]0)(1]1 ®1]ol, 

and X(B)=E 1(B)®1 on Jlt"1®JY'0' 

for any B in f!ll. Then we shall claim that (JY ,1',0', U) is a 
measuring process which determines the CP instrument f 
by Eqs. (5.2). For any a in .2"(eW}, 5 in JY', and Bin f!ll, we 
have that 

(f(B,a)s,s) = (V*(a®E1(B))VS,S) 

= ((a ® EdB ))VS, VS) 

= ((a ® E1(B)) Vs ® 1]0' Vs ® 1]0) 

= ((a ® E1(B) ® I)U(S ® 1]1 ® 1]o),U(s ® 1]1 ® 1]0)) 

= (U*(a ®X(B ))U(S® 1]1 ® 1]o),S® 1], ® 1]0) 

= Tr[ U*(a ®X(B))u(IO(s I ®O')] 

= Tr[ Is > (5 lEa [U*(a ®X(B))U]] 

= (Ea [U*(a ®X(B ))U]S,S)' 

It follows that 

f(B,a) = Ea [U*(a ®X(B))U], 

for any a in .2"(eW} and B in f!ll. Therefore, (% ,1',0', U) is a 
measuring process of X which determines f by Eq. (5.2). 
QED 

We say that a measuring process M is a realization of a 
CP instrument f if M and f satisfies Eq. (5.6). The above 
theorem asserts that every CP instrument has its realization. 
In the conventional theory of quantum mechanics, it is al
ways assumed that the Hilbert space is separable and the 
value space is a standard Borel space, i.e., a Borel space 
which is Borel isomorphic to a separable complete metric 
space.20 Thus it is desirable that the realization is also with a 
separable Hilbert space in such circumstances. We say that 
realization M = (JY ,1',0', U) of a CP instrument f is sep
arable if the Hilbert space JY is separable. 

Corollary 5.2: Let f be a CP instrument on .2" (eW) with 
value space (fl,f!ll). If cW'is separable and (fl, f!ll) is a standard 
Borel space, then there is a separable realization of f. 
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Proof (the notations are the same as in the proof of 
Theorem 5.1): It is easy to see that we can assume that JY'0 in 
Proposition 4.2 is spanned by {E (B )1T(a) Vs; B E f)J , 

a E .2"(jf'), and S E JY'}. Since JY' is separable, there is a 
countable family {an} of an in .2"(jf') which is dense in 
.2"(jf') in the strong operator topology. Let {Bn } be a count
able generator of f)J and {s n } be a countable dense subset of 
JY'. Then it is easy to see that the countable family {E (B; ) 
X 1T(aj ) Vsk; i,j,k = 1,2,.··} spans JY'0, so that JY'0 is separa
ble. Since JY' ® % = JY'0 ® JY'0, % is separable. QED 

We say that a measuring process M = (%,X,(J,U> is 
pure if (J is pure state, i.e., there is a unit vector t in % such 
that (J = Is> (t I. In the conventional argument of quantum 
measurement, the assumption that the prepared state of the 
apparatus is pure has been justified in some contexts. The 
following is one of such justification from a most general 
point of view. 

Corollary 5.3: Every measuring process is statistically 
equivalent to a pure measuring process. 

Proof The assertion is immediate from the construction 
of the measuring process in the proof of Theorem 5.1. QED 

Let M = (% ,X, 17J > ( 7J I, U > be a pure measuring pro
cess. Define an isometry V: JY' ---+JY' ® % by Vt = U (S ® 7J) 
for aIlS in JY'. Let f be the corresponding CP instrument. 
Then it is easy to see that 

f(B,a) = EO" [U*(a ®X(B ))U] = V*(a ®X(B ))V, 

for all a in .2" (jf'), B in dJ . 
The following result justifies our postulate, which is 

tacit in Eq. (2.2), that semiobservables can be measured. 
Corollary 5. 4: For any semiobservableX, there is a mea

suring process of X. 
Proof By proposition 4.1, for any semiobservable X, 

there is an X-compatible CP instrument f. Then any real
ization of f obtained by Theorem 5.1 is a measuring process 
ofX. QED 

Consider the case that X is an observable. In this case 
the classification of measuring processes is surprisingly 
simpler, that is, the measuring processes of X are determined 
by their total state changes p---+pfl . 

Theorem 5.5: Let X be an observable on JY' with value 
space (fl,dJ). Then there is a one-to-one correspondence 
between statistical equivalence classes of measuring pro
cesses M of X and X-compatible transition maps Ton 
.2"(jf'), which is given by the relation 

Tr[ pX(B )]ExM(aIB;p) = Tr[ pX(B )T(a)], (5.7) 

for any a in .2"(jf'), p in ~ (jf'), B in dJ. 
Proof The assertion follows immediately from Proposi

tion 4.4 and Theorem 5.1. QED 

6. REPEATABILITY 

Consider von Neumann's repeatability hypothesis (Ref. 
10, pp. 214, 335): 

(M) If the physical quantity is measured twice in succes
sion in a system, then we get the same value each time. 

Let M = (% ,X,(J, U > be a measuring process of a se
miobservable X. If X is discrete, then it is easy to see that (M) 
is equivalent to 
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(M') ExM(X({A lllf,u};p) =0",1" 

for all p in ~ (jf') and all A,,u in fl, whenever 
Tr[ pX ({,u ) )] i= O. We say that a measuring process M of X is 
weakly repeatable if 

(R) ExM(X(C)IB;p) = Tr [pX(BnC)]!Tr[ pX(B)], 

foranypin~ (jf'),B, CindJ, whenever Tr[pX (B )]#0. Then 
it is easy to see that if X is discrete the condition (M') and (R) 
are equivalent. The condition (R) appeared first in Ref. 1 for 
instruments. We say that a CP instrument f is weakly re
peatableiff(B )X(C) = X(BnC)forallB,Cin f)J, whereXis 
the associate semiobservable of f. It is easily seen that a 
measuring process M is weakly repeatable if and only if the 
corresponding CP instrument f is weakly repeatable, In 
Ref. 1, p. 247, it is conjectured that the existence of repeata
ble instruments for continuous observables is doubtful even 
in the case of standard quantum theory. In the present sec
tion, we shall prove this conjecture, that is, we shall prove 
that there is at least one X-compatible weakly repeatable CP 
instrument on !./'(JY') if and only if X is discrete. 

Let j( be a von Neumann algebra on JY' and (fl, dJ ) be a 
Borel space. Let f be a weakly repeatable CP instrument on 
ji with value space (n,dJ), X its associate semiobservable, 
and Tits associate map. We can assumethatf is of the form 
f(B,a) = V*E(B )17'(a) V for any Bin dJ ,ainji, asinPropo
sition 4.2. 

Lemma 6.1: For any B,C in 9J. a in j(, we have 
(1) T(X(B)2) =X(B), 
(2)f(BnC,a) =f(C,aX(B)) =f(C,X(B)a), 
(3)f(B,a) = T(aX(B)) = T(X(B)a). 
Proof Sincef(B,x (B)) = X (B) by the weak repeatabil

ity of f, a routine computation leads that 

(17'(X(B))V - E(B )V)*(17'(X(B))V 

-E(B)V) = T(X(B)2) -X(B), (6.1) 

for any Bin f)J. Thus we have T(X(B n;;,X(B). On the other 
hand, we have X (B )2.;;X (B ), since O.;;X (B ).;; 1. By weak re
peatability, T (X (B )) = X (B ), so that X (B) = T (X (B )) 
;> T (X (B )2). Thus we have the relation (1). It follows that the 
left-hand side ofEq. (6.1) is 0, so that we have 
1T(X(B))V = E(B )Vand V*17'(X(B)) = V*E(B). Thus for any 
B,Cin 9J, a in ji, we have f(BnC,a) = V*E(BnC)17'(a)V 
= V* E (B)E (C )17'(a)V = V*17'(X (B))E (C )17'(a)V 
= V*E(C)17'(X(B)a)V =f(C,X(B)a). By the analogous 
way we can show that f(BnC,a) = f(C,aX(B )). Thus we 
obtain the relation (2). The relation (3) is obtained by putting 
C = fl in (2). QED 

Let p be the least projection in X (dJ )" such that 
T(p) = 1. 

Lemma 6.2: For any x in ji, T( x) = T( xp) 
= T(px) = T(pxp). 

Proof For any S, 'Tj in JY', we have 
I(T( x - px)s,'Tj) I = 1(V*1T(1 - p)17'( x)Vs,7J) I 

= 1(17'(X)Vt,17'(1-p)V7J)/';;//17'(X)VS// //1T(I-p)V7J11 
= 1117'( x)Vsll 11(V*17'(1 - p)V7J,7J)111/2 
= 1117"( x)Vsll(T(l - p)7J,7J)1/2 = O. 
Thus we have T( x) = T(px). The rest of the assertions 

are immediate. QED 
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Lemma 6.3: For every x in X(BB)" with x;;;.O, if 
T( x) = 0, thenpxp = O. 

Proof Let e be the range projection ofx. Since e is a limit 
of polynomials of x not containing the constant term in the 
strong operator topology, we have T(e) = O. Thus 1 - e;;;.pso 
that ep = pe = O. It follows that pxp = O. QED 

Define a positive operator valued measure P: 
BB -x (BB)" by the relation P (B ) = pX (B Jp for all B in BB. 

Lemma 6.4: P is a projection valued measure such that 
P (B ) = pX (B ) = X (B Jp for any B in BB . 

Proof By Lemma 6.2, we have T(P(B)) = T(pX(B Jp) 
= T (X (B )). By Lemmas 6.1 and 6.2, we have 
T(P(B f) = T(pX(B JpX(B )p) = T(X(B )pX(B)) 
=J(B,pX(B)) =J(BnR,p) =J(B,p) = T(pX(B)) 
= T(X(B)). It follows that T(P(B) - P(B )2) = O. Since 

P(B) - P(B f belongs toX(BB)", we haveP(B)2 = P(B )by 
Lemma 6.3. Thus P is a projection-valued measure. We have 
T ((P (B) - X (B Jp)*{P (B) - X (B Jp)) = 0, by the routine 
computations. Thus, by Lemma 6.3, P (B) = X (B Jp, since 
P(B) -X(B)p is inX(9J)". By the positivity, we have 
P(B) =pX(B). QED 

Theorem 6.5: For any weakly repeatable CP instrument 
Jon JI with value space (n,:!J), there is a projection-val
ued measure P: 9J -X (BB)" such that 

J(B,a) = T(aP(B)) = T(P(B)a) 

and that 
P (B) = P (n )X (B) = X (B )P (n ), 

for any B in :!J, a in 2'($). 
Proof The assertion follows immediately from Lemmas 

6.1 and 6.4. QED 
We suppose for the rest of this section that the value 

space (n,:!J ) is a standard Borel space and that the Hilbert 
space JY is separable. We say that a positive operator valued 
measure P is discrete if there is a countable set no c;;;. n such 
that P (n \. no) = 0 and that a CP instrument is discrete if the 
associate semi observable is discrete. 

Theorem 6.6: Let (n, BB) be a standard Borel space, and 
let JY be a separable Hilbert space. Then every weakly 
repeatable CP instrument J on 2'(JY) with value space 
(n,.%') is discrete. 

Proof Let Pbe a projection-valued measure obtained in 
Theorem 6.5. BytherelationX(B) = J(B,I) = T(P(B ))for 
every Bin.%', we have only to show that Pis discrete. By Ref. 
4, Lemma 4.4.1, there is a countable set Bo such that 
B_P (BnRo) is a discrete projection-valued measure with val
ues in 2'(P (Bo)JY) and B_P (B \.Bo) is a continuous projec
tion-valued measure with values in 2'(p(n \.Bo)JY). Let Q 
be such that Q = P (n \.Bo). Then it suffices to prove that 
Q = O. Let Tbe the associate map of J and To be such that 
To(a) = QT(a)Q forallain2'(QJY). Then To(Q ) = QT(Q)Q 
= QT(X(n \.Bo))Q = QX(n \.Bo)Q = Q, and hence To is 

a transition map on 2'(QJY). Thus there is a trace-preserv-
ing linear map S: Y(QJY)--+Y(QJY) such that S * = To. For 
any a in 2'(QJY), B in BB, pin Y(QJY), we have 

Tr[aP(B \.Bo)S(p)] = Tr[To(aP(B \.Bo))p] 
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= Tr[QT(aP(B \.Bo))Qp] = Tr[QT(P(B \.Bo)a)Qp] 

= Tr[To(P(B \.Bo)a)p] = Tr[P(B \.Bo)aS(p)]. 
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It follows that P (B \.BoJS ( p) = S (p)P (B \.Bo) for any 
B in .%', p in Y(QJY). Since B--+P (B \.Bo) is a continuous 
projection-valued measure, we can conclude that S = 0 (see, 
Ref. 4, Theorem 4.3.3), and hence Q = To(Q) = O. QED 

7. LOCALITY 

Let JY be a Hilbert space and JI a von Neumann alge
bra on JY. Let X be an observable in JI with value space 
(n, BB). A transition map Ton JI is called X-local if 
T(X(B)) = X(B) for any Bin.%'. It is easy to see that TisX
local if and only if Tx = x for any x in X (BB)" . 

Let! x)!" .. ,xn J be a mutually commutable family of 
self-adjoint operators on JY corresponding to a family of 
simultaneously measurable observables of a quantum sys
tem. Suppose that X is the joint spectral measure of 
! x P ... 'Xn J on JY with value space (Rn ,BB (Rn)). Recently, 
Mercer9 proposed that the total state changep-p' caused by 
a simultaneous measurement ofx i, ... ,Xn should be described 
by an X-local transition map Ton 2'(JY) in such a way 
p' = pT (see Ref. 9, p. 244). However, we should notice that 
the X-locality is not sufficient for describing state transfor
mations caused by measurements. In fact, the identity trans
formation on 2'(JY') is obviously an X-local transition map 
for any observable X, in spite of the fact that we cannot mea
sure any nontrivial quantum observable unchanging every 
state of the system. Thus we have to impose some further 
requirements for eliminating such physically irrelevant X
local transition maps in order to describe a state change 
caused by the measurement of X. A moderate one of such 
requirements seems the existence of a measuring process for 
observables xi,. .. ,xn , whose state change is the given X-local 
transition map. The following result is an easy consequence 
of the results obtained in the previous sections, but shows 
that such requirement cannot be fulfilled unless all observa
bles x i" •• 'Xn are discrete. 

Proposition 7.1: Let JI be a von Neumann algebra on a 
Hilbert space JY and X an observable in JI with value space 
(n,BB). There is a one-to-one correspondence between X
compatible X-local transition maps Ton JI and X-compati
ble weakly repeatable CP-instruments J on JI, which is 
given by 

J(B,a) =X(B)T(a), (7.1) 

for any Bin BB, a in JI. 
Proof It is known in the proof of Ref. 1, Theorem 7, that 

a decomposable CP instrument J is weakly repeatable if 
and only if 

T(X(B)) =X(B) and X(BnC) =X(B)X(C), 

for any B,C in BB. Since every X-compatible CP instrument 
is decomposable, the assertion follows immediately from 
Proposition 4.4 QED 

Theorem 7.2: Let X be an observable on a separable 
Hilbert space JY whose value space is a standard Borel space 
and Tbe an X-local transition map on 2'(JY). If there is a 
measuring process M = (.5Y ,x,CT, U > of X such that 
pn = pTforanypin~ (JY)[seeEq. (3.10)], then Xis discrete. 

Proof It is obvious that T is the associate map of the CP 
instrument J determined by the measuring process M. 
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Thus, by Proposition 7.1, the CP instrument f is weakly 
repeatable and hence by Theorem 6.6 the corresponding ob
servable X is discrete. QED 

8. THE WIGNER-ARAKI-YANASE THEOREM 

It was pointed out by Wigner l5 that the presence of a 
conservation law puts a limitation of the measurement of an 
operator which does not commute with the observed quanti
ty. A proof of the above assertion was given by Araki and 
Yanase l6 in the conventional framework of measurement 
theory. In this section, we shall give another proof in our 
framework and under somewhat general assumptions. Our 
assertion is the following. 

Theorem 8.1: Let Xbe an observable on a Hilbert space 
2with value space (fl,,qg). LetM = (% ;X,u,U) bea weak
ly repeatable measuring process of X. Suppose that there is 
Ll in .2"(£") and L2 in .2"(%) such that [U,L] = 0, where 
L =L 1 ® 1+ 1 ®L2. ThenL I EX(,qg)'. 

For the proof we use the following. 
Lemma 8.2. Let M = (% ,X,u, U ) be a measuring pro

cess of an observable X on 2, and u = I-;A; 11];) (1]; I be the 
spectral decomposition of u. Then for any i, M; = (%,X, 
11];) (1]; I, U) is a pure measuring process of X such that 

E,,[U*AU] = LA;EI11)(11,1 [U*AU], (8.1) 

for any A in .2"(2 ® %). If Mis weakly repeatable, then M; 
is also weakly repeatable for every i. 

Proof The formula (8.1) is obtained from Lemma 2.3. 
Let B E ,qg. Then 

X(B) = Eu [U*(l ®X(B))U] 

= LA;E1'1,) ('II [U*(l ®X(B))U]. 
; 

Since any projection is an extreme point of the positive part 
of the unit sphere of .2"(£,,), we have that 

X(B) = Ei'I,) ('II [U*(1 ®X(B))U], 

for any i. Thus M j is a measuring process of X. Since Mi is 
weakly repeatable if X(B) = EI'I),) <'1),1 [U*(X(B) ® l)U] for 
any B in ,qg by Proposition 7.1, the assertion for the weak 
repeatability follows from the same reasoning. QED 

Proof of Theorem 8.1: By Theorem 5.5, there is an X 
compatible transition map T such that 
Eu[U*(a ®X(B ))U] = X(B )T(a)foranyBin,qg ,ain.2"(£"). 
Then we have 
T(Ld + Eu [U*(l ®L2)U] 

= Eu [U*(LI ® 1 + 1 ®L2)U] 

=Eu[Ll®1 + 1®L2] 

= Ll + [Tr(uL2)] 1. 

Since T is X-compatible, T (L I) E X (,qg)'. Thus we have only 
to show thatEu [U*(1 ®L2)U] EX(,qg)'. By Lemma 8.2, we 
can assume without any loss of generality that there is a unit 
vector 1] in % such that u = 11]) (1] I, so that there is an 
isometry V:2~2®%such that Eu[U*AU] = V*AV 
for all A in .2" (2 ® %), where Vs = U (S ® 1]) for any S in 
2. Let B E ,qg. Since the CP instrument f such that f(B,a) 
= V*(a ®X(B))V is weakly repeatable, we have 
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v *(X (B) ® 1) V = f(fl,x (B )) = X (B). Thus by the simple 
computations we have 

((X (B) ® 1)V - VX(B ))*((X(B) ® 1)V - VX(B)) = 0, 

and hence (X(B) ® 1)V = VX(B) and V*(X(B) ® 1) 
= X (B )V *. It follows that 

V*(l ®L2)VX(B) = V*(X(B)®L2)V=X(B)V*(1 ®L2)V. 

Thus we conclude that Eu[U*(1 ®L2)U] EX(,qg)'. QED 

9. CONVENTIONAL MEASURING PROCESSES 

In the conventional theory of quantum measurement, 
the only class of measuring processes studied at all seriously 
is as follows. Let 2 be a separable Hilbert space and X be a 
discrete observable on 2 with value space (R,,qg (R)). Let 
ISij J be a complete orthonormal set of eigenvectors of X 
where the eigenvalue of Sij isA;. Let % be another separable 
Hilbert space with complete orthonormal vectors I 1]i J. Let 
1] be a unit vector of % and U be a unitary operator on 
JY ® % satisfying 

U(Sij®1])=Sij®1]; (9.1) 

for any i,j. ThenM = (% ;X, 11] ) (1]I,U) isameasuringpro
cess of X, where X = I-;A; 11];) (1]i I. In the sequel, we call 
this measuring process a conventional measuring process of 
X. The total state change corresponding to M is of the form 

p~p' = L P; pPi , 

where P; = XUA; j), i.e., Pi = I-j ISij) (Sij I. In fact, for 
p = I-ijkl flijkllSij) (Ski I in ~ (£,,), we have 

p' = E~ [U(p ® 11]) (1]I)u*] 

L flijklEy [ISij ® 1]i) (Ski ® 1]k I] 
ijkl 

Lflijkl(1];,1]k)ISij) (Ski I 
ijkl 

= LP;pP; 
; 

(9.2) 

[see Eq. (3.10)]. Conversely, every state change given by Eq. 
(9.2) is realized as the above measuring process M as shown 
by von Neumann (see Ref. 10, p. 442). By Eq. (9.2) the corre
sponding CP instrument f is of the form 

f(B,a) = L PiaP;, (9.3) 
AlE B 

for any B in ,qg (R), a in .2" (£,,), and the corresponding transi
tion map T is a conditional expectation onto X (,qg (R))'. 

In the present section, we shall give a characterization 
of the above conventional measuring processes up to statisti
cal equivalence. A similar problem is considered in Refs. 1 
and 21 in different methods. 

Definition 9.1: Let X be a semiobservable on 2 with 
value space (R,,qg (R)). A measuring process M of X is called 
standard if it satisfies the following three conditions. 

(WR) (Weak repeatability) M is weakly repeatable. 
(MD) (Minimal disturbance condition) The set 

I p E ~ (£");pR =/p J is minimal in the set inclusion among all 
measuring process of X. 
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(ND) (Nondegeneracy condition) For any B in !!IJ (R) 
with X (B ) =1= 0, there is some p in ~ (In such that 
Tr[ pRX (B)] =1=0. 

Let Mbe a measuring process of X Denote by F (M ) the 
set of all nondisturbed states, i.e., F(M) = I p E oiJn;pll 
= p J . Obviously, M satisfies (MD) if and only if for any 

measuring process M' of X, F (M) ~ F (M ') implies 
F(M')~F(M). 

Proposition 9.2: Let Mbe a conventional measuring pro
cess of a discrete observable X Then M is standard. 

Proof It is well known that M is weakly repeatable. The 
condition (ND) is easy to check. Thus we shall prove that M 
satisfies the condition (MD). Let M' be a measuring process 
of X such that F(M)~F(M'). Denote by T and S the 
transition maps corresponding to M and M', respectively. 
Let p E Y(Jn be such that pS = p. Then it suffices to show 
thatpT = p. Since Tis a conditional expectation onto 
X (!!IJ (R))' and by the X-compatibility of S the range of Sis 
contained in X (!!IJ (R))" we have TS = S. Since T2 = T, we 
have( pT)T = pTsothatpT E F(M). Thusbytheassumption 
that F(M)~F(M'),pTEF(M'). It follows that 
pT = pTS = pS = p. This concludes the proof. QED 

Theorem 9.3: Let cW' be a separable Hilbert space and X 
be a semiobservable on cW' with value space (R,!!IJ (R)). Let M 
be a standard measuring process of X Then X is a discrete 
observable, and M is statistically equivalent to a convention
al measuring process of X 

Proof Let J be the CP instrument corresponding to a 
standard measuring process M of X Since J is weakly re
peatable, by Theorem 6.6, X is discrete and, by Theorem 6.5, 
there is an orthogonal family I p;. ;A E R J of projections in 
X (!!IJ (R ))" such that 

J(B,a) = T (I p;. ap;.), 
;'EB 

(9.4) 

for allB in!!IJ, a in .2"(Jn. Let Qbea projection inX(!!IJ(R))" 
such that Q = 1 - ~;. E R p;.. Then we have T(Q) = O. Itfol
lows from the condition (ND) that Q = 0 so that ~;. E R p;. 
= 1. ThusbyLemma6.4wehaveX(B) = ~;'EB p;. foranyB 

in !!IJ (R). It follows that X is an observable. Let M' be a con
ventional measuring process of X and J' be the correspond
ing CP instrument. Then 

J'(B,a) = I p;. aP;., (9.5) 
AEB 

for any B in !!IJ, a in .2"(Jn. Denote by T and S the corre
sponding transition maps of M and M', respectively. Since T 
is X-compatible, we have T(a) = ~AER p;. T(a) 
= ~A E R p;. T(a)P;. = ST(a), for any a in .2"(Jn. On the 

other hand, by Eq. (9.4) we have T = TS. It follows that 
T = ST = TS. For any pin Y(Jn, if pT = p, then 
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pS=pTS=pT=p and henceF(M)~F(M'). Thus by the 
condition (MD),F(M') = F(M). Letp E Y(Jn. Then since 
S 2 = S,pS E F (M 'I, so thatpST = pS. It follows thatS = ST. 
Thus we have T = S. Therefore, by Theorem 5.5, Mis statis
tically equivalent to a conventional measuring process M' of 
X QED 
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for SchrOdinger equations8
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The Darboux transformation, a method used to transform a Schrodinger-type equation to a 
Schrodinger equation with a new potential, is discussed. An exactly solvable double-well potential 
model for the one-dimensional Schrodinger equation is obtained. 
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I. INTRODUCTION 

Much effort has been made to look for exactly solvable 
models for the one-dimensional Schrodinger equations. 
Double-well potential problems occur in the quantum the
ory of molecules. Because the Fokker-Planck equation is 
closely related to the Schrodinger equation,) the solution of 
the above problem can be directly applied to the problem of 
diffusion in a bistable potential field. Recently, great atten
tion has been put on constructing exactly solvable bistable 
models. 

In general, there are four ways to devise potentials. The 
first is to use piecewise potentials),2 such as the double 
square well and the double oscillator, this being the most 
common method. Its main difficulty, however, is that to ob
tain eigenvalues from the matching conditions, one needs to 
solve transcendental equations, for which analytic solutions 
of eigenvalues are not available unless in some limiting cases 
expansion formulas can be applied to find approximate solu
tions for the low-lying eigenvalues. The second3 is to con
struct potentials from the wave functions which are solu
tions to two or more Schrodinger equations with simple 
potentials at the same eigenvalue. Since the potentials are 
made to fit given wave functions, a set of different eigenfunc
tions cannot be obtained in this way. The third4 is to solve the 
Schrodinger equation directly for specially chosen poten
tials; for example, the potential with three parameters, /3, 5, 
and a positive integer n: 

V(x) = (fz2/3 212m) [~5 2 cosh 4/3x 

- (n + 1)5 cosh 2/3x - is 2]. (1) 

For this potential, the low-lying eigenfunctions can be found 
analytically in a form of finite-term summation of simple 
functions. The fourth method is to transform the Schro
dinger equations to be solved to known solvable differential 
equations. There are many examples of this given in text
books5

; so far it appears that no example dealing with a dou
ble-well potential has been solved in this way. 

In this paper two systematic methods, the Darboux 
transformation6 and a new one, will be presented for trans
forming known solvable Schrodinger-type equations to 
Schrodinger equations with new different potentials. As an 
example, a double-well potential model will be obtained 
from the Weber equation,? and other interesting applica
tions of the transformations will be given. 

a) Supported in part by the Robert A. Welch Foundation. 
b) On leave of absence from the Institute of Theoretical Physics, Academia 

Sinica, Beijing, China. 

II. THE DARBOUX TRANSFORMATIONs 

The Darboux theorem: If the general solution cp = cp(x) 
of the equation 

d 2 --f + k - U(x)]cp = 0 (2) 
dx 

is known for all values of £ and for a particular value of 
£ = £0' the particular solution is cp = CPo{x). Then the general 
solution of the equation 

d2~ + [E- V(x)]¢=O (3a) 
dx 

with 

d
2 

( 1 ) V(x) = CPo(x) -2 -- , 
dx CPo(x) 

E=£-£o 

for E #0 is 

¢(x) = CPo(x)(cp (x)/CPo(x))' 

cp~(x) 
= cp'(x) - -- cp (x). 

CPo(x) 

(3b) 

(3c) 

(4a) 

(4b) 

The Darboux transformation (4a) was previously used 
to transform the Schrodinger equations with the potentials 
given by Eq. (1).4 It should be emphasized that the Darboux 
transformation is very general in the sense that the original 
equation (2) need not be a physical Schrodinger equation. 

As an example, we consider the Weber equation? 

d
2
y (X2 ) 

dx2 - 4 + a y = O. (5) 

For any given parameter a, this equation has the particular 
solution 

y)(a,x) = e -x'/4 )F)(a/2 + !;!;x2/2), (6) 

where )F)(a; /3;x) is a Kummer function. Here we have 

Eo = 0, U(x) = x2/4 + a. (7) 

From the asymptotic behavior of the Kummer function, we 
know that the positive definite functiony)(a,x) does not 
satisfy the natural boundary conditions, i.e., it does not van
ish at infinity, so it is not a "physical" solution. Equation (5) 
is only a Schrodinger-type equation. According to Eq. (3b), 
the transformed potential is 
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= 2[Y; (a,x)] 2 _ (X2 + a) . (8) 
Yl(a,x) 4 

This potential has been considered in the discussion of the 
Fokker-Planck equation for diffusion of a Brownian particle 
with a particular initial a-function distribution peaked at 
X=0.8 

The curvature of Va (X) at x = 0 is 

V;(X)/x=o = 4a -! 

{ 

>0, 
X =0, 

<0, 

a > 1/2v2 or a < - 1/2v2, 

a = ± 1/2v2, (9) 

- 1/2v2 < a < 1/2v2. 

The shapes of the symmetric functions Va (X) are shown for 
different values of a in Fig. 1. One can see that for / a I = 0.5, 
Va (x) is a single well; for a = - 0.25, Va (x) has a double-well 
structure; for a = 0.25, the shape of the curve is relatively 
complex. 

The generated Schrodinger equation for the trans-
formed potential Va (x) is 

d
2

7/1 + {E_2[y;(a,x)]2 +(X2 +a)} 7/1=0. (10) 
dX2 Yl(a,x) 4 

It is easy to verify that function [Yl(a,x)]-l satisfies Eq. 
(10) for E = O. The function [YI(a,x)]-1 has no node (as long 
as a is not less than - 0.5) and is a square-integrable func-

-0.5 

v(x) 

0.5 a zOO 

0.25 

0.25 

o~----~~~--+-~----

-0.25 

-05 

FIG. I. Shape of V(x). 
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tion (see Sec. IV) satisfying the natural boundary conditions, 
so it is the ground state of Eq. (10). The higher eigenvalues 
and eigenfunctions can be obtained from Eqs. (3c), (4a), and 
(5): 

En = n + a +!, n = 0,1,2,···, (Ila) 

(Ilb) 

where the Weber function D n (x) can be expressed in terms of 
the Hermite polynomial Hn (xf 

Dn(x) = 2 -nI2e -X'/4H n(xlv2). (12) 

We have thus found all the eigenvalues and eigenfunctions of 
Eq. (10). Furthermore, the normalization factor for 7/1 n (x) can 
be obtained analytically (see Sec. IV). 

III. A NEW TRANSFORMATION 

The solutions to Eq. (3a) can also be given in another 
form: 

1 JX 7/1(x) = -- qJ (x)qJo(x) dx. 
qJo(x) 

(13) 

By substituting 1/qJo into Eq. (3a), one can directly verify 
that it is the solution to Eq. (3a) for eigenvalue E = O. If we 
reinterpret Eq. (3a) as the original untransformed equation, 
then from the Darboux theorem we have the transformed 
potential 

- 1 d 2 

V(x) = - ---.!£2.. = U(x) - Eo 
qJo dX2 

and the transformed equation 

d 2¢ _ 
dX2 + [(E + Eo) - U(X)] 7/1 = 0, 

(14) 

which is the same as Eq. (2) if one notices E = E - Eo. Thus, 
from Eq. (4a), we obtain 

(I5a) 

or 

(I5b) 

To guarantee 

')p'- 1 ')p' = ')p' ')p'- I = ..F, 

where..F is the identity operator, we should choose the lower 
limit Xo for integration in Eq. (15b) such that qJ(xo) = O. How
ever, the undetermined constant in the indefinite integral 
(13) is of no importance because the eigenvalue correspond
ing to 1/ qJo equals zero. 

IV. DISCUSSION 

(1) From the two forms of7/1(x), Eqs. (4a) and (13), we 
have the general relation 

Lx [(qJ (X))' ] qJn(x)qJO(x) dx = C qJo(x) _n - - d qJo(x), (16) 
o qJo(x) 

where 
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d = 970(0) (97n(X))' 
97o(X) x=o 

and c is a constant independent of x. By differentiating both 
sides ofEq. (16), we reobtain Eq. (2); thus the constant c is 
determined as c = - 1/ En. 

(2) Calculation of the normalization factor for rPn de
fined by Eq. (4a) is as follows: 

In == f: '" tfn (x) dx 

= - 2En L'" [970(:: r] 
X [~o (LX 97n97odx' + d)] dx 

= - 2En {[ :: (LX 97n97odx' + d)] I: -L'" 97~dX} 
= 2E [97n(O) d + ('" 2dX]. (17) 

n 970(0) Jo 97 n 

Thus for the example given in Sec. II we have 

From 

Dn(O).D ~(O) = 0, 

YI(a,O) = 1, Y; (a,O) = 0, 

and 

L'" D~(x)dx = ~n!(21T)1/2, 
we obtain finally 

In = (n + a + ~)n!(21T)1/2. (18) 

(3) Calculation of the normalization factor for the 
ground state is as follows: For the ground state E = 0, from 
Eq. (11), we have 

n= -a-!, 
1 _ k ( ) d (D_ a_ 1I2 (X) -D_ a- I/2( -X)) 

---- yla,x - , 
YI(a,x) dx 2YI(a,x) 

(19) 

where k is a constant. Because 

( 0) 1 D ) _ 2v /2 + 112 /ii YI a, =, ~(O = 
F( -212)' 

(20) 

we have, from Eq. (19), 

k = - 2al2 - 114F (a/2 + l)l /ii. (21) 

Therefore 

f'" dx 

- '" ~(a,x) 
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=2k ('" d(D-a-1I2(X)-D-a-I/2(-X)) 
Jo 2YI(a,x) 

D (x)-D (-x) I'" = 2k -a-1I2 -a-l/2 

2YI(a,x) 0 

= _ k lim (D_ a _ I/2( -X)) 
x~'" YI(a,x) 

= V2F (a/2 + A) 
F(a/2 +~) 

(22) 

This result was derived previously in a quite different way.9 
To our knowledge, this integral is not found in tables. 

(4) The exact solutions obtained by means ofthe trans
formations can be used to test approximate methods of solu
tions. For example, applying the WKB approximation to the 
energy levels below the top of the barrier in a symmetric 
double well, 10 one can find that at low transmission the ener
gy levels appear in close pairs. The spectrum of our model is 
one in which all the energy levels higher than the lowest two 
are equally spaced. Thus the model is an example where the 
WKB approximation fails. 

(5) Choosing a linear combination of aYI(a,x) + /3Yz(a,x) 
instead ofYI(a,x) for 97o(X), one can construct an asymmetric 
potential similarly. The discussion will be made elsewhere. 

(6) The methods can be applied to solve the Fokker
Planck equation II and other problems. In addition, the ex
actly solvable double-well potential model has some peda
gogic value. 
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1. INTRODUCTION 

In Ref. 1 it is shown how Gel'fand-Levitan (GL) equa
tions can be obtained by minimizing a certain quadratic 
functional Q (t,K). The motiviation to consider Q (t,K) came 
from a problem in optics2 involving a feedback mechanism 
and statistical averaging but no motivation could be pro
vided within scattering theory to consider Q (t,K). Thus the 
process producing GL equations appeared to simply involve 
a mathematical trick which was naturally considered to be 
"unsatisfactory" in Ref. 1 and the "meaning" of such proce
dures seemed to be worth pursuing further. In the present 
article we will provide an interpretation of such minimizing 
processes in the context of transmutation theory which leads 
us eventually to minimize a quadratic functional essentially 
the same as Q (t,K). This involves a characterization of trans
mutation kernels themselves in terms of a minimization pro
cedure, and we sketch the development for a classical situa
tion (a more extensive and general treatment for operators 
and transmutations as in Ref. 3 is clearly indicated and will 
appear later). Let us remark that there is a discrete version 
(which does not directly generalize) of a related minimiza
tion in the context of orthogonal polynomials, but without a 
connection to Q (t,K) nor any explicit link to transmutation. 4 

Although our characterization of transmutation kernels via 
a minimization is of interest in itself, and moreover provides 
"motivation" for some constructions in Ref. 1, there seem to 
be some deeper relations still beneath the surface. In particu
lar, one knows that various connections between spectral 
measures, transmutation, autocorrelation functions, sto
chastic analysis, least squares optimization, etc., are all in
volved here.4-8 Thus, hopefully this article will provide a 
contribution toward unifying some of this material as well. 

2. BASIC CONSTRUCTIONS 

In classical (half-line) inverse scattering theory in quan
tum mechanics,9.lo one connects eigenfunctions of the 
Schrodinger operator Q = D 2 - q(x) (q real here) with eigen
functions of D 2 via certain (triangular) transmutation kernels 
oftheformp (.v,x) = 8 (x - y) + K (.v,x), whereK (.v,x) = Ofor 
x> y (such K will be called causal here). Thus let rp ¥(x) [resp. 
(J ¥(x)] be solutions of 

Qu = -A 2U (2.1) 

satisfying rp ¥(O) = 1 and D x rp ¥(O) = 0 [resp. (J ¥(O) = 0 and 
Dx (J ¥(O) = 1]. We will writes(A,x) forrp ¥ or(J ¥ and think of 

connecting S(A,x) to a(A,x) = cos AX or a(A,x) = sin AX/ A by 
a formula 

S(A,y) = (1 + K)a = a(A,y) + J: K (.v,X)a(A,xjdx, (2.2) 

which we know to be valid for the GLkernelK = Ko. We can 
assume Ko exists here and our procedure is designed to char
acterize it via minimization. For simplicity now let us think 
of S = (J ¥ and a = sin AX/A, and remark that a systematic 
theory of transmutation operators B: P-+Q can be developed 
for much more general differential operators P and Q (Ref. 
3); the techniques of this article will be correspondingly ex
tended at another time. Now one knows that associated to Q 
and the eigenfunctions (J ¥ = S is a spectral measure 
dO) = dO)Q which we assume here for convenience to be of 
the form dO) = 0) dA (no bound states). Thus one can sup
pose, e.g., 

fO (J ¥(x)(J ¥(.v)dO)(A ) = 8(x - y) (2.3) 

(acting on suitable functions) and we write 
dO) = dO" + U 2dA I1rwithSO'a(A,x)a(A,y)dO" = n (x,y). Thus 

m(x,y) = fO a(A,x)a(A,y)dO) 

= 8(x - y) + n (x,y) = (1 + n )(x,y), (2.4) 

where a = sin AX/ A [we write 1 for the identity operator 
with kernel 8 (x - y)]. Now consider the expression (Tarbi
trary and fixed) 

E(T,K) = iT f'" 1 [(1 + K)a(A,.)] (.v) - s(A,yWdO)(A )dy. 

(2.5) 

Note that when K is the GL kernel Ko [which makes (2.2) 
correct], then formally E(T,K) = O. We can think here ofQ, 
s, a, and dO) as given and the (causal) kernel K (.v,x) in (2.5) as 
unknown. It will be shown formally that: 

Theorem 2.1: The kernel K is obtained by minimizing 
E (T ,K ) over a suitable class of admissible causal kernels sat
isfies the GL equation and represents the transmutation ker
nel Ko connecting S and a via (2.2). 

3. FORMAL ARGUMENTS 

We proceed formally and refer to standard sources3•9.10 

for information about natural properties of K (.v,x), etc. Thus, 
from (2.5), for causal K, 
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E(T,K) = iT fO { [a(A,y) -S(A,y)]2 

+ 2a(A,y) I: K (y,x)a(A,x)dx 

- 2s(A,y) J: K (y,x)a(A,x)dx 

+ I: K (y,x)a(A,x)dx 

X I: K (Y,s larA,s )ds } dW(A )dy. (3.1) 

Now one integrates in A, using (2.4), and the convention 
f~fJ (y,y)dy = Tr fJ, for example, to obtain (note that the 
trace Tr depends on T) 

B(T,K) = B(T) + 2 Tr K + 2 iT I: K(y,x)fJ (x,y)dx dy 

- 2 iT I: K (y,x).8 (y,x)dx dy 

+ iT I: I: K (y,x)K (Y,sll8(x - s) 

+ fJ (x,s)}ds dx dy, (3.2) 

where we have written E(T) = f~{ a(A,y) - S(A,y)}2dw dy 
which we know makes sense [in fact 

B(T) = f~fo(KrP)2dw dy = f~fbf~Ko(y,x)Ko(y,sll8(x - s) 
+ fJ (x,s)}ds dx dy = Tr{Ko(1 + fJ )K~}-seecalculations 

below]. Here the term,8 (y,x) = (S(A,y),a(A,x) w is a standard 
object in general transmutation theory3 which !ppears in 
extendedGLequations [e.g., (f3 (y,! ),&(t,x) = /3 (y,x)] and in 
particular,8 (y,x) = 0 for x <y (Le., it is anticausal) wi.th a 
8 (x - y) term arising along the diagonal. 11 Thus the/3 term 
contributes - 2f~K (y,y)dy = - 2 Tr K to (3.2). We can 
write now 

KfJg(y) = I: K (y,x) 1'0 fJ (x,s)g(s)ds dx 

= 1'0 g(s) {I: K (y,x)fJ (X,S)dX} ds (3.3) 

(for suitable g) so that Tr KfJ = f~{f~K (y,x)fJ (x,y)dx}dy. 
Similarly ker K * = K (·,x) on [x, 00 ) since 
fog(y)f~K (y,x)h (x)dx dy = fo h (x)f;'g(y)K (y,x)dy dx, and 
hence 

KK *g(y) = I: K (y,x) 1'0 K (s,x)g(s )ds dx 

= LX' g(s)iminIY,si K(y,x)K(s,x)dxds. (3.4) 

Consequently Tr KK * = f~{ f~K (y,x)K (y,x)dx }dy. Finally 
we have 

KfJK *g(y) = I: K (y,x) L" fJ (x,s) 

92 

X 1'" K (s,s)g(s )ds ds dx 

= I: K (y,x) Loo g(s) f fJ (x,s)K (s,s)ds ds dx 

= .r g(s) {I: K (y,x) is fJ (x,s)K (s,s)ds dX} ds· 

(3.5) 

J. Math. Phys., Vol. 25, No.1, January 1984 

It follows that Tr KfJK * = f6{ f~K (y,x)f!; 
fJ (x,s)K (y,s)ds dx Jdy. Now go back to (3.2) and inser!. the 
information just derived from Eqs. (3.3)-(3.5) plus the/3 con· 
tribution, to obtain 

Lemma 3.1: The expression E (T,K) defined in (2.5) can 
be written 

E(T,K) =B(T) + Tr{K(I + fJ )K* + KfJ + fJK*}. 
(3.6) 

Proof One obtains from (3.2), E(T,K) = B(T) 
+ Tr {2KfJ + KK * + KfJK * J. But K (1 + fJ )K * 
= KK * + KfJK * with Tr KfJ = Tr fJK * (note fJ * = fJ ). 

Q.E.D. 
Written in the form (3.6), B (T,K) is essentially in the 

same form as the expression Q (t,K )(orD ) in Refs. 1 and2. We 
now formally examine a variational argument to minimize 
E = B(T,K). Thus [noteB;;.O from (2.5)] we know there is a 
minimizing K = Ko in some additive class oR' of admissible 
(causal) ker~els. Then consi~er K = Ko + EL in 
E(T,K) = E(T) + EK(T) [E(T) is independent ofK] for L E oR' 
and E a real number. Formally we set DeEk (T)le ~ 0 = O. 
This leads to Tr {L (1 + fJ )K~J + Tr{Ko(1 + fJ)L *J 
+ Tr LfJ + Tr fJL * = 2 Tr{ [Ko(1 + fJ) + fJ ]L *} = 0 

for L E oR'. If we write now A = Ko( 1 + fJ ) + fJ with kernel 
A (y,x), then evidently ker AL * = f~inls,YiA (y,x)L (s,x)dx [cf. 
(3.4)] and Tr AL * = f~{ fbA (y,x)L (y,x)dx Jdy. The state· 
ment that Tr AL * = 0 for all L E oR' will be true if A (y,x) = 0 
for x <y, and heuristically we conclude here the converse. 

Theorem 3.2: The (unique) minimizing kernel Ko satis· 
fies the GL equation Ko(Y,x) + fJ (y,x) + f!;Ko(Y,S)fJ (s,x)ds 
= o for x <yo 

One knows that the GL equation has a unique solution 
and this is the transmutation kernel of (2.2).3 Hence 
Theorem 2.1 is verified formally. 

Remark 3.3: Let us note also the following calculation 
which will specify (again) the minimum Eo of E (T,K) 
achieved at the G L kernel Ko. Thus given the G L equation in 
Theorem 3.2 we can say Ko + fJ + Krfl = B *, where B is a 
causal operator. It follows easily that 1 + B * = (1 + Ko) 
(1 + fJ), and thus 

(1 +B*)(I +K~)=(I + Ko)(1 +fJ)(1 +K~) (3.7) 

which is formally self·adjoint. But the left side of (3.7) is 
1 + an anticausal operator so both sides of (3.7) must be 1 (cf. 
Ref. 1). Hence [recal1~(T) = Tr{Ko(1 + fJ )K~J], 
Eo = min E (T,K ) = E (T) + min E K (T) 

= Tr{2Ko(1 + fJ )K~ + Krfl + fJK~J 
= Tr{2(1 + Ko)(1 + fJ)(I + K~) - 2(1 + fJ) - 2Ko 
- 2K~ - Krfl- fJK~J = - Tr{2fJ + 2Ko + 2K~ 
+ Krfl + fJK~J = - Tr{B + B * +Ko + K~J 
= Tr{B ·K~ + KoB J = 0 (sinceKo andB are causal-cf. 
Ref. 1). This is the desired conclusion. 12 
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The inverse scattering problem is solved for the two-dimensional time-independent SchrOdinger 
equation. That is, the potential is reconstructed from the scattering amplitude, which is assumed 
to be known for all energies and angles. 

PACS numbers: 03.65.Nk 

INTRODUCTION 

Our goal here is to solve the inverse scattering problem 
for the Schrodinger equation in two dimensions. That is, we 
recover the potential from the scattering data, which we take 
to be the entire scattering amplitude as a function of the 
energy and two angles. 

Actually, there are a number of aspects to the inverse 
scattering problem: uniqueness, reconstruction, construc
tion, and characterization. The uniqueness problem deals 
with the question, "Does the scattering amplitude uniquely 
determine the potential?" The reconstruction problem is the 
problem of constructing a potential from scattering data that 
are known to come from an underlying potential, whereas 
the construction problem is to construct the potential with
out this knowledge. And finally, the characterization prob
lem is to determine what scattering data actually arise and to 
correlate properties of the potential with properties of the 
data. 

In the one-dimensional case, solutions to all these ques
tions via the Gel'fand-Levitan and Marchenko methods are 
well known. Moreover, in the 25 years since their discovery, 
one-dimensional inverse scattering techniques have been 
found to have important applications not only to particle 
physics but also to geophysics and to certain classes of non
linear differential equations, the so-called soliton equations, 
which themselves describe a wide range of phenomena. 

The popularity of one-dimensional inverse scattering 
has inspired much interest in the construction ofhigher-di
mensional inversion theories; nevertheless, the uniqueness 
question was for many years the only one of the higher-di
mensional inversion questions that was answered satisfacto
rily: although in the one-dimensional case additional bound 
state information is needed for uniqueness, in three dimen
sions the scattering data alone do indeed determine the po
tential uniquely. The other three inversion questions, how
ever, are so much more difficult than their one-dimensional 
counterparts that for 25 years attempts to solve even the 
simplest one, the reconstruction problem, met with only par
tial success. 

The first of these reconstruction attempts was made by 
Kay and Moses,1.2 whose generalization of the Gel'fand
Levitan method accomplished inversion in a class of poten
tials which includes those that are nonlocal (i.e., are not mul
tiplication operators) in the angular variables. This class, 

-) This is based on the author's Ph.D. thesis, "Quantum Mechanical Scatter
ing and Inverse Scattering in Two Dimensions," Indiana University, 
1982. 

however, was never shown to include the local potentials. 
Another attempt, made by Faddeev3 and Newton,4 depend
ed on a new, direction-dependent Green's function which 
had been constructed by Faddeev.s.6 This Faddeev-Newton 
method, however, was awkward and cumbersome, and was 
hampered by a number of unanswered questions concerning 
exceptional points. A third attempt at multidimensional in
verse scattering was made by Prosser,7-9 who attacked all 
three of the remaining inversion problems using essentially 
an iterative scheme that applies only to weak potentials and 
to scattering data that are small in a certain norm. Recently, 
Morawetz lO has found a generalization to higher dimensions 
of the Deift-Trubowitz one-dimensional method. II Her 
scheme, which is also iterative, has yet to be shown to con
verge for any specific class of potentials. Then, beginning in 
1980, Newton published a series of papers 12-14 containing 
successful and elegant generalizations of both the Gel'fand
Levitan and Marchenko methods to three dimensions. Both 
his methods solve the reconstruction problem; his Mar
chenko method, in addition, solves the construction problem 
and gives a partial solution to the characterization problem. 
In this paper, we shall adapt Newton's generalized Mar
chenko method to dimension two. 

Newton's ideas could, in fact, be applied to inverse scat
tering in any dimension provided that the relevant estimates 
hold; the success of Newton's inverse scattering techniques 
in two dimensions thus depends on estimates that can be 
considered part of the direct scattering problem. 

The first five sections therefore contain the necessary 
results concerning direct scattering. Section 1 sets up the 
problem and contains basic facts and definitions for scatter
ing in two dimensions. Also contained in Sec. 1 is a result on 
the behavior of the wave function for large energy. Section 2 
contains the investigation of the wave function's small ener
gy behavior. 

Knowledge of the energy dependence of the wave func
tion is crucial to our method of inverse scattering. In fact, the 
behavior at zero and infinity, which is heavily dimension
dependent, is the reason that later estimates must have 
proofs quite different from those of the corresponding esti
mates of Newton. 12.13 The behavior in two dimensions 
differs from that in three dimensions in its faster decay at 
infinity and in the presence of zero-energy singularities that 
appear in the derivatives. 

The properties of symmetry and analytic continuation, 
however, are exactly the same as in three dimensions. These 
properties are recorded in Sec. 3. 
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Another ingredient essential to inverse scattering is a 
good deal of spectral theory. Fortunately many of the needed 
results have already been proved by Agmon IS and are merely 
quoted in Sec. 4. These include not only the unitarity oftheS 
matrix but also the eigenfunction expansion theorem, which 
is used in Sec. 5 to prove that the scattering operator maps 
incoming to outgoing wave functions. This relation, when 
combined with the analyticity properties of the wave func
tion, forms a Riemann-Hilbert problem or a Wiener-Hopf 
factorization problem. This is the key to the Marchenko 
method of inversion. 

We arrive at Sec. 6 having proved all the estimates nec
essary for the generalized Marchenko method of inverse 
scattering. The inverse scattering results, therefore, are all 
contained in this section; in fact the reader interested only in 
the results might readjust Sec. 6, referring to Sec. 1 for nota
tion. Section 6 is intended merely to give the reader a taste of 
the inverse scattering theory that is more fully developed in 
Newton's series of papers and which is generally dimension
independent. Nevertheless, in Sec. 6, the uniqueness 
theorem is proved, the Marchenko equation is derived, and 
the potential is extracted from the solution of the Mar
chenko equation. Thus the results of Sec. 6 solve only the 
reconstruction problem; the reader interested in construc
tion should refer to Newton's work. 13.14 

Notation 

In what follows we denote by 11·lIp the usual L P norm; if 
confusion is possible, we will add as a superscript the vari
able with respect to which the L P norm is being taken. 

The symbollHlm.p denotes the norm ofthe Sobolev 
space W m

•p , the space of functions with m derivatives in L p. 

We shall writeH2 = W 2,2. 

The symbols fJ,fJ ',fJ" ,t/J, etc., in most places denote unit 
vectors, although occasionally they will be used as simple 
angles in carrying out integrations. Where confusion is pos-

sible, the unit vectors will be decorated with hats, e.g" O. 

1. PRELIMINARIES 

Two-particle scattering in the center of mass system is 
governed by the time-independent Schrooinger equation 

- ..::1tf!(k,x) + V(x)tf!(k,x) = k 2tf!(k,x). 

HerexE R 2, the potential V(x) is real-valued, and k is a posi
tive scalar, 

Scattering solutions are defined by the Lippmann
Schwinger equation 

tf!(k,fJ,x) = exp(ikfJ.x) + I G(k,lx - yllV(y)tf!(k,fJ,y) d 2y, 

(1.1) 

where fJ denotes a unit vector in R 2 and the function G is a 
fundamental solution of..::1 + k 2. We take G to be 

G(k,r) = - (i/4)H~)(kr), 

where Ho is the zero-order Hankel function and r = Ix I, 
In order to apply Fredholm theory, we multiply the 

Lippman-Schwinger equation by I V (x) II 12 and make the fol
lowing definitions: 
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s (k,fJ,x) = I V(X)11/2",(k,fJ,x), 

SO(k,fJ,x) = I V(X)11/2 exp(ikfJ.x), 

VI/2(y) = V(y)W(y)I-1/2, 

K(klf(x) = II V(X)11/2G(k,lx - yllVI/2(ylf(y) d 2y. 

With this notation, the Lippmann-Schwinger equation be
comes 

s (k,fJ,x) = s O(k,fJ,x) + K (k )S (k,fJ,x). (1.2) 

For k bounded away from zero, we recall l6 the follow
ing result concerning the operator K (k ): 

Proposition 1,1: Suppose VEL 2 with f f I V (x) V (y) I Ix 
- yl-I d 2x d 2y = M < 00. Then for each ko>O the esti

mate 11K (k )IIH.8. <ck -1/2 holds for k > ko, where c depends 
only on ko and on V. 

Henceforth we will usually assume that Vbelongs to 
L InL 2 because l6 this assumption allows us to apply Fred
holm theory to (1.2); we obtain a unique solution S (k,fJ,x) 
provided the operator K does not have the eigenvalue 1. Note 
that for k large enough, the operator norm of K (k ) is less than 
1, which certainly implies that (1.2) is uniquely solvable (by 
iteration, in fact). 

We recall 16 that for Vbelonging to L InL 2 with 
fW(x)llxI 4 d 2X < 00, the large x behavior of scattering states 
is given by 

I/J(k,fJ,x) = exp(ikfJ.x) 

+ exp( - 31Ti/4)(81T)- 1/2A (k,x,fJ) 

Xexp(ik Ixl)(k Ixl)-1/2 + h (k,fJ,x), (1.3) 

where x =xllxl, 

A (k,fJ,fJ') = I exp( - ikfJ.xlV(x)l/J(k,O ',x) d 2X, (1.4) 

and 

h (k,fJ,x)eL 2(X) uniformly in fJ. 

The quantity A (k,fJ,fJ ') is called the scattering ampli
tude; it essentially gives us the large x behavior of the wave 
function. We let the scattering amplitude act on L 2(S I) via 
(A (k If)(fJ') = f s,A (k,fJ,fJ 'If(fJ') dfJ;theoperatorA (k )isthen 
bounded 16 and linear on L 2(S I). We also define the scattering 
operator or S matrix S (k ) on L 2(S I) by 

S (k) = I - i(41T)-I(sgn k)A (k). 

In later sections we will also need the following infor
mation on the large k behavior of "'. 

Lemma 1.2: Let VeL 2n W2
,I and suppose that for some 

xo, I V(x - xo)l, IVV(x - xo)l, and 1..::1 V(x - xo)1 are all 
bounded by a decreasing positive radial function F (Ix I) with 

1"" F (r)r dr<cll V 112, I , 

and for some E> 0, F (r) < Mr - I + £ near r = O. Let ko be so 
large that, fork> ko, IIK(k )11 <a < 1. Thenfork> ko, we have 
the estimate 

ltf!(k,fJ,x) - exp(ikfJ.x)l<c k -(I +£/2)12, 

where c depends only on ko and V. 
Proof See Appendix A. 
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2. BEHAVIOR AT k = 0 

Since the kemal of the operator K (k ) contains a Hankel 
function with a logarithmic divergence at the origin, one 
might expect the operator K (k ) and the wave function f/!(k ) to 
diverge logarithmically in some sense at the origin. How
ever, as we shall see, the logarithmic divergence of K (k ) is due 
entirely to a rank-1 piece, and this prevents f/!(k ) from diverg
ing at k = O. 

We recall 16 that properties of the Hankel function allow 
us to write K (k ) = L (k ) + P log k, where 

L (k }fIx) = ~ i JIV(x) I 1/2 

X(H~)(klx-YI)-: logk) 

X V1/2( y}f( y) d 2y, 

Pf(x) = (21T)-11 V(X)II12(V1/2,J). 

If Vis inL I with SIV(x)llxl d 2x and SSIV(x)v(y)llloglx 
- y I 12 d 2X d 2y finite, then L is a Hilbert-Schmidt operator 

and is well behaved at k = O. 
To investigate the behavior of f/! for k near zero, we will 

need the followimg lemma and its corollary: 
Lemma 2. 1: Suppose VEL I with SlxI 2a lV(x)1 d 2X finite 

for some 0 <a < 1. Then II(exp(ikO.x) - 1)1V11/2112 <ck a for 
k near zero. 

Proof Note that exp(ikO.x) - 1 = (kO·xtha (kO·x), 
where ha(it) = (exp it - l)t - a. The function h is bounded 
because it is continuous and decays to zero for both large and 
small t. Thus 

II(exp(ikO.x) - 1)1 V 11/211~ 

= J(ko.x)2ah ~ (ikO.x) I V (x) I d 2X 

..;;k 2ac flxI2alV(x)1 d 2X. QED 

Corollary 2.2: Suppose VEL InL 2withSlxl2al V(x)1 d 2x 
finite for some 0 < a < 1, and suppose (I - L (0))-1 exists. 
Then for to(k) = exp(ikO.x) I V(X)11/2 and for k near zero, 

11(1 - L (k ))-ltO(k) - (I - L (k ))-11V1 1/2112..;;ck a. 
Proposition 2. 3: Let VEL InL 2withSlxllV(x)1 d 2x< 00, 

and suppose (I - L (0))-1 exists. Then t (k) satisfies 

t(k) = (I - L (k ))-ltO(k) 

(VI/2,(I - L (k ))-It O(k)) log k 
+ 21T - (V1/2,(I - L (k ))-11 V11/2) log k 
X (I - L (k ))-IIVI I12. (2.1) 

The L 2 norm is bounded by 

IIt(k)1I2";;c(logk)-1 ifao#O, 
..;;C ifao = 0, 

where ao = (VI/2,(/ - L (0))-11 V 11/2). 
Proof We shall solve the equation (I - K (k ))t = to as

suming that (I - L (k )) -I exists in a neighborhood of k = O. 
Rewriting the equation in terms of the operators PandL, we 
have 

(I - L (k ))t - (log k IPt = to. (2.2) 

Since P is a rank-1 operator, it will tum out that 
Pt = a I V (x) 11/2, where the constant a is given by 

a = (21T)-I(V1/2,t). (2.3) 

We will determine a at the end of our calculation. In the 
meantime, writing Pt = al V 11/2, we can solve Eq. (2.2): 

t = (I - L (k ))-1 [SO + a(log k)1 VII/2]. (2.4) 

It now remains to determine the value of a. To do this, we use 
(2.3) and (2.4): 

a = (21T)-1(V1/2,(I - L (k ))-I[tO + a(log k)1 VII12]) 

= (21T)-I(V1/2,(I - L (k )-ISO) 
+ a(21T)-I(log k )(VI/2,(I - L (k ))-11 VII/2). 

Solving this linear equation for a gives 

a = (V1/2,(I - L (k ))-ltO) 
21T - (log k)( VI/2,(I - L (k ))-11 V 11/2) 

Substitution of this value for a back into our expression for t, 
(2.4), gives us (2.1). 

We now compute the limit as k-D of (2.1). We write 
SO = 1V1 1/2 + (SO - 1V1 1/2);byCorollary2.2, the inner pro
duct in the numerator of (2.1) is (VI 12,(/ - L (k )) - II V 11/2) 
plus something that decays like k a as k-D. In the limit as 
k-D, we may therefore replace the tOby I VII12. We recall16 

that differentiability of (I - L (k )) - I allows us to write 
(V1/2,(I - L (k ))-11 V 11/2) = ao + alk, where 

ao = (VI/2,(/ - L (0))-11 V 11/2) 

and a I is bounded for small k. With this in mind we compute 

t (0) = (I - L (0)) -IIV 11/2 if ao = 0, 

= 0 ifao#O. 

We will also need a bound for Ilt(klllz. Equation (2.1) 
yields 

t(k) = (I - L (k ))-I(tO(k) - I V11/2) + (I - L (k ))-11 VI I/2 

(
1 [(V1/2,(/ - L (k ))-11 V11/2) + (V1/2,(I - L (k ))-I(tO -I V11/2))] log k ). 

X + 21T _ (V1/2,(I - L (k ))-IIV 11/2)log k 

Corollary 2.2 then gives 

..;; c(log k )-1 if ao#O 

..;; c if ao = O. 
QED 
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3. SYMMETRY AND ANALYTIC CONTINUATION 

So far the wave function 1/J has been defined only for 
positive k-the speed of the incoming particle. However, the 
Lippman-Schwinger equation makes sense for other values 
of k as well. 

Invariance of the fundamental solution and of the plane 
wave under simultaneous complex conjugation and substitu
tion of - k for k shows that the wave function satisfies 

1/1( - k,(),x) = 1/I(k,(),x). 

This equation defines the wave function for negative k. 
Similarly there is a relation between the incoming and 

outgoing waves 

1/J-(k,(),x) = 1/1( - k, - (),x). 

We will also need the reciprocity theorem, which is an 
expression of time reversal invariance of the scattering pro
cess. 

Proposition 3.1 (Reciprocity Theorem): Let VEL InL 2. 
Then A (k,(),() ') = A (k, - () " - () ). 

Proof See Appendix B. 
Next we tum to the analyticity properties of the wave 

function as a function of k, which we now consider as a 
complex variable. Since we obtain the wave function only by 
means of the Lippman-Schwinger equation, we must ana
lytically continue the integral equation. 

First we note that the operator GV is Hilbert-Schmidt 
in the open upper half k-plane. 

Proposition 3.2: Let VEL 2. Then for 1m k > 0 the opera
torG(k)VgivenbyG(k)Vf(x) = (- iI4)SHo(k Ix - yl)v(y) 
fly) d 2y is Hilbert-Schmidt, and IIG(k )VIIH.S. <clk I-I. 

Proof 

IIGVII~.s. = cf flHo(k Ix - yl)v(yW d 2xd 2y 

= cll VII~ flHo(k IzlW d 2z 

= cllVll~ Ik 1-2f IHo(lz'lk Ilk IW d 2z' 

<clk 1- 2
• QED 

Similarly we have: 
Proposition 3.3: Let VEL 2. Then the operator K (k) (de

fined in Sec. 1) is Hilbert-Schmidt for 1m k~O, k #0. 
Proof The proof is similar to that of Proposition 

3.2. QED 
However, the inhomogeneity in Eq. (1.2) is not in L 2 for 

1m k> 0; we multiply the equation by exp( - ik().x) to obtain 

X(k,(),x) = I V(X)11/2 + %(k )X(k,(),x), 

where 

X(k,(),x) = I V(X)11/21/J(k,(),x) exp(ik().x) 

and where %(k ) depends on (): 

97 

%(k )fIx) = ~ i f lV(x)11/2Hbl)(k Ix - yl)V1/2( y) 

X exp( - ik().(x - y))f( y) d 2y. 

Proposition 3.4: Let VEL 2 with 
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ff 
lV(x)v(y)1 d 2xd 2y< 00. 

Ix-yl 
Then the operator %(k ) defined above is Hilbert

Schmidt for 1m k~O, k # 0, and satisfies 
11%(k )IIH.S. <clk 1- 1/2. 

Proof We apply the definition of the Hilbert-Schmidt 
norm to the operator %: 

1I%(k)II~.s. = c f flV(X)v(Y)IIH~)(k Ix - ylW 

X exp(2 1m k().(x - y)) d 2X d 2y = c(II + 12), 

where II and 12 are the integrals over the sets Ik I Ix - yl < 1 
and Ik I Ix - yl > 1, respectively. 

First we consider II' We use the small-argument behav
ior of the Hankel function to bound II by 

II<f r I V(x)v(y)lllog k Ix - yW 
J1kllx-YI<l 

Xexp(2 1m k()·(x - y)) d 2x d 2y. 

Next we let z = x - y and note that for Ikzl < 1, 
1m k()·z< Ikzl < 1. Thus we have 

II<cfr lV(z+Y)V(Y)1110gklzI12d 2zd 2y 
J1kZi < I 

< cllV II~ r Ilog k Izl12 d 2Z < cllV II~ Ik 1-2. 
J1kzl <I 

We now tum to 12 , We use the large-argument behavior 
of the Hankel function to bound 12 by 

12<f r lV(x)v(y)lexp( - 2 1m k (Ix - yl 
J1kllx-YI>1 

+ ().(x - y)))(lk Ix - yl)-I d 2x d 2y. 

Note that the coefficient of - 2 1m k in the exponent is al
ways positive; thus the exponential is bounded by 1. Use of 
this fact gives us 

12<lk I-Iff lV(x)v(y) I d 2x d 2y<clk I-I. QED 
Ix-yl 

Corollary 3.5: Let VEL InL 2. Then, for each (), 
X(k,(),x) = I V (x) 11I21/J(k,(),x)exp(ik().x) is a meromorphic L 2_ 
valued function of k for 1m k > O. 

Remark 3.6: A similar argument shows that, for 
VEL InL 2andforeach(),x-(k,(),x) = I V(x)11/21/J-(k,(),x)exp
( - ik().x) is a meromorphic L 2-valued function of k for 
Imk<O. 

4. AGMON'S SPECTRAL THEORY RESULTS 

In this section we shall quote various results of Ag
mon 15 that will be used in the next section. 

Let L 2'S(R 2) denote the space of complex-valued func
tions u(x) on R 2 with (1 + Ixl2y12 u(x)EL 2(R 2), and let the 
weighted Sobolev spaces H m.s consist of L 2,s functions with 
the first m derivatives also in L 2,s. 

Agmon proves the following three theorems: 
Theorem 4.1: Let H = - Ll + V, where VEL ~ with 

V(x) = 0 (Ixl- I
- E) as Ixl~oo. Consider the resolvent 

(H - E) -I as an analytic operator-valued function on 
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C\a(H) with values in B (L 2",H 2. - ') for any S> !. Then for 
real E #0, the limits 

lim(H - E ± i€)-I 
E->O 

exist in the uniform operator topology of B (L 2",H 2, - '). 

Theorem 4.2: Let H = - A + V, where VeL ~oc with 
V(x) = 0 (Ixl- 3/2 - £) as Ixl-oo. Then there exist two fam
ilies t/J ± (k,O,x) of generalized eigenfunctions of H such that 
for every fixed k and 0, t/J ± (k,O,x) as a function of x belongs 
to C (R 2'y:lH ~oc (R 2) and satisfies the Schrodinger equation. 
Furthermore, for almost all fJES I, t/J ± satisfies 

t/J ± (k,O,x) - exp(ikO.x) 

= -lim(H - k 2 ± i€)-I(V(X) exp(ikO·x)). (4.1) 
E->O 

The eigenfunctions t/J are continuous in k,O, and x. 
Theorem 4.3: LetH = - ..1+ Vwhere VeL ~oc with 

V(x) = O(lxl - 3/2 - J as Ixl-oo, and let t/J ± be the above 
family of generalized eigenfunctions. Let P(a2,b 2) for a > 0 de
note the usual spectral projection. Then for any feL 2, 

(P(a'.b2!)(X) = (21T)-2fllt/J ± (k,O,x) 

X I t/J ± (k,O,y)f( y) d 2y dO k dk. 

We must now relate Agmon's generalized eigenfunc
tions t/J to our wave functions t/J ± . We first obtain a rela
tion bet~een the full and free resolvents by multiplying the 
relation - A + V + E = ( - A + E) + Von the left by 
(- A + E)-I and on the right by ( - A + V + E)-I. This 
gives us the relation 

(-A +E)-I = (-A + V+E)-I + (-A +E)-I 

XV(-..1+V+E)-I. 

Multiplication on the left by (I + ( - A + E) - I V) - I gives us 

(-A + V+E)-I = (I + (-A +E)-IV)-I 

X( -A +E)-I. 

In Agmon's notation this is 

- (H - k 2 ± i~)-I = (I - G( +k + i€)V)-1 

XG(+k+i€). 
Upon composition with the multiplication operator V1/2, 
this is 

- (H - k 2 ± i~)-IVI/2 
= (I - GV)-IIVI-1/21V11/2GVI/2 

= IVI- 1I2(I-K(+k+i€))-IK(+k+i€). (4.2) 

The formula (4. I) can then be expressed as (4.2) applied totO, 

t/J± (k,O,x) 

= exp(ikO.x) - lim(H - k 2 ± i€2) - I( V (x)exp(ikO.x)) 
£--+0 

= (lV(x)I-1/2I + lV(x)I-1/2(I -K =i=)-IK =i=)tO 

= lV(x)I-1/2(I + (I -K =i=)-IK =i=)r 

= 1V11/2(I-K=i=)-lr 

= IV 1I/2t =i=(k,O,x) 

=t/J=i=(k,O,x). 
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5. THE SCATTERING OPERATOR 

In this section we investigate some of the properties of 
the scattering operator. 

The Marchenko method of inverse scattering rests on 
the following theorem (see Ref. 17). 

Theorem 5.1: Let VeL ~oc with V(x) = 0 (Ixl- 2 - £) as 
Ix 1-00. Let the scattering amplitude act on L 2(S I) via 

A (k )f(0) = r A (k,O ',0 )f(O') dO', JSI 
and let the scattering operator S (k ) be defined as an operator 
onL 2(SI) by 

S(k) = I - i(41T)-1 sgn k A (k). (5.1) 

Then 

S(k )t/J-(k,O,x) = t/J+(k,O,x). (5.2) 
Remarks: The factor sgn k in (5.1) is needed to make 

(5.2) hold for negative k. 
We shall show that the equality in (5.2) holds in the 

sense of H 2, -, for some s > ~; however, we recall (Theorem 
4.2) that t/J+ and t/J- are continuous in x. Equation (5.2) 
therefore holds for each x. 

Proof We use Theorem 4.2 to write out the expression 

t/J+(k,O,x) - t/J-(k,O,x) = lim((H - k 2 + i€)-I 
£--+0 

- (H - k 2 - i€)-IHV(x)exp(ikO.x)), 

where the limit is in the H 2, -, norm for some x > !. By 
Stone's formula, 18 the jump in the resolvent is the spectral 
projection, which in tum is given by Theorem 4.3: 

- (H - k 2 - i€)-1)2k dk (V(x)exp(ikO·x)) 

= - P 2 8)') (V(x)exp(ikO·x)) 
(ko,(k.,+ 

= - (21T)_2{o+8 L t/J-(k,O',X)I t/J (k,O',y)V(y) 

X exp(ikO·y) d 2y dO' k dk. 

Because of the symmetry properties of the wave function and 
scattering amplitude set forth in Sec. 3, the y integral is pre
cisely A (k,O ',0). To remove the integration over k, we next 
multiply by 1/8 and take the limit as 8 approaches zero. 
Provided that the 8 and € limits are interchangeable, contin
uity in k gives us 

t/J+(k,O,x) - t/J-(k,O,x) 

= -i(41T)-d t/J-(k,O',x)A(k,O',O)dO'. JSI 
This proves the theorem, provided we can show that we 

may interchange the 8 and € limits. In other words, we must 
show that the following expression approaches zero as 8 goes 
to zero: 
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1(£5) 

= II~( ! ) f:+Il((H - k 2 - iE)-1 - (H - k 2 + iE)-I) 

x (V(x)exp(ikO.x))k dk 

_ 2k lim((H - k 2 - iE)-1 - (H - k 2 + iE)-I) 
E-oO 

X (V(x)exp(ikO.x)) 112,2, _.' 

where the norm is the H2, -s norm. We write the second 
term as the integral of a constant vector times 1/£5. Then 
continuity of the norm allows us to bring the E limit outside; 
since the k integral is a limit of sums, the triangle inequality 
tells us that we can only increase I (£5) by bringing the norm 
inside the integral. We shall consider only II, the - E term; 
the + E term is similar. We have 

IM)< ~ lim f III((H - k 2 - iE)-1 
£5E---+O 

- (H - k ~ - iE)-I)(V(x)exp(ikO,x))112,2,_s 

+ II(H - k ~ - iE)-I(V(x)(exp(ikO.x) 

- exp(ikoO.x))) II 2,2, _s}k dk 
<2lim max (lI(H - k 2 - iE)-1 

E---+O (1eo,1eo + III 

- (H - k~ - iE)-lllllVllo,2,s 

+ II(H - k~ - iE)-IIIIIV(x)(exp(ikO.x) 

- exp(ikoO.x)) 110,2, _ s), 

which goes to zero by continuity of the resolvent. [The hy
pothesis V(x) = O(lxl- 2 -, insures that II V(x)(exp(ikO.x) 
- exp(ikoO.x))lIo,2,s-o.] QED 

The following estimate on the scattering operator will 
allow us to define a Fourier transform in the next section: 

Proposition 5.2: Let VE W 2,1, and suppose that, for some 
xo, I V(x - xo)l, IVV(x - xo)l, and l.:i V(x - xo)1 are all 
bounded by a decreasing positive radial function F (Ix I) with 
fO'F(r)rdr<cll Vlb,l andF(r) <Mr- I 

+E near 0 for some 
!>E>O. Then 

Loo 00 (II(S (k ) -llfll!:I)2 dk<c(ilfll!:'f 

Proof Tum to Appendix C. 

6. INVERSE SCATTERING 

This section is devoted to methods discovered by New
ton 12 of extracting the potential V (x) from the scattering am
plitude A (k,O,O '). 

We note first that the scattering amplitude does indeed 
uniquely determine the potential: 

Theorem 6.1 (Uniqueness): Suppose the scattering am
plitudeA (k,O,O ') is constructed from a potc;...ntial V (x) belong
ingtoL InL 2. Then the Fourier transform Vcan be recovered 
by means of the formula 

V(x) = lim A (k,O,O '). (6.1) 

kIO-O'I=x 

This limit, an ordinary pointwise limit, is uniform in the 
sense that the difference 

V(k (0 - 0')) - A (k,O,O') (6.2) 
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goes to zero uniformly in both angles as k goes to infinity. 
Proof We write out the definition of each term of (6.2) 

and apply the Schwarz inequality: 

IV(k (0 - 0')) - A (k,O,O ')1 

= If exp(ikO.x)V(x)(exp(ikO '·x) - tP(k,O',x)) d 2X I 

<IIVIIIIIIVI I/2(t/I(k,O',x) - exp(ikO'·x))1I2· 

In the notation ofEq. (1.2), the second factor of this last 
expression is S - so. We write (1.2) as S = (1- K)-ISo 
= SO + K(I- K)-ISo. This allows us to bound (6.2) by 

IV(k (0 - 0 ')) - A (k,O,O ')1 

<IIVIII IIK(k )1111(1- K(k ))-IIIIIVIII' 
(6.3) 

By Proposition 1.1, the right side of(6.3) goes to zero as k 
becomes infinite. 

QED 
Remark: Formula (6.1) is the well-known Born approxi

mation. It gives a simple solution ofthe inverse scattering 
problem provided that the scattering amplitude is known for 
all k. In fact, this method of inversion depends exclusively on 
the high energy scattering data, which in practice may be 
known only approximately. There is, therefore, reason to 
investigate other inversion techniques, especially those 
whose dependence on high energy data might be less severe. 
One such technique is given in the following theorem. 

Remark 6.2 (Notation): We shall use the following nota
tion. We define the operator Q: L 2(S I)-+L 2(S I) by 
Qf(O) = I( - 0). We use.'7 for the vector-valued Fourier 
transform in k, 

.'7 J(a) = (21T) -1/2 f: 00 exp( - ikalf(k ) dk, 

where for I belonging to L 2(S I), the limit inherent in the 
integral is taken in the norm topology. 

We write,8(k,O,x) = t/I(k,O,x)exp( - ikO·x) and 
1](a,O,x) = .'7 k(f3 (k,O,x) - 1); we note that Lemma 1.2 im
plies that,8 - 1 is a square-integrableL 2(S I)-valued function 
of k, and thattherefore 1] is asquare-integrableL 2(S I)-valued 
function of a. 

We define the operator Y(k): L 2(S I)-+L 2(S I) by 

Y(k) = exp(ikO.x) S(k) exp( - ikO·x), where the exponen

tials act as multiplication operators and S (k ) denotes the 
integral operator whose kemal is the complex conjugate of 
that of S (k ). For any I belonging to L 2(S I), we write 
G (alf = .'7 k- 1((Y(k) -llf); by Proposition 5.2, G (alfis a 
square-integrableL 2(S I)-valued function of a. We note that 
G depends on x; this dependence will, however, be sup
pressed in what follows. Explicitly, G (a) is given by 

G(a)/(O) 

= (21T)- 1/2f: 00 exp(ik (a + O.x))i(41T)-I(sgn k) 

X r A (k,O ',0) exp( - ikO '.xlf(O') dO' dk. (6.4) JSl 
Theorem 6.3 (The Marchenko Equation): Suppose VEW2,I 
with V(x) = 0 (ixl- 2 -, as Ixl-+oo, and suppose that, for 
somexo, lV(x - xo)l, IVV(x - xo)!, and!.:i V(x - xo)! are all 
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bounded by a decreasing positive radial function F (Ix I) with 
SO'F(r)rdr<:;cll Vlb andF(r)<Mr- 1 Hnearzeroforsome 
0< E <!. Suppose further that -..::1 + V has no bound or 
half-bound states. Then in the notation of the above remark, 
the following equation in L 2(R + xS I) holds for positive a 
and for fixed x 

1/(a,O,x) = Loo G (a + {3 )Q7J(f3,O,x) d{3 + G (a) 1. (6.5) 

Remark: The above hypotheses on Vallow, for exam
ple, radial potentials with logarithmic singularities at Xo' Ab
sence of bound states can be ascertained by means of the two
dimensional Levinson theorem. 16 Inversion in the presence 
of bound states can be accomplished with the use of further 
dimension-independent techniques developed by New-
ton. 12-14 

Proof Theorem 5.1 gives us the relation 

S(k )lp-(k,O,x) = f/!+(k,O,x); (6.6) 

Sec. 3 allows us to eliminate f/!- from (6.6): 

S(k)Qf/!+( - k,O,x) = f/!+(k,O,x). (6.7) 

Note that f/!+(k) is analytic in the upper half-plane in k while 
f/!+( - k )isanalyticin the lower one; (6.7) is therefore a Wie
ner-Hopf factorization problem or a Riemann-Hilbert 
problem. We shall solve the problem by using the Fourier 
transform to convert it into an integral equation. 

In (6.7), we first put - k in place of k and use the fact 

that S ( - k) = S (k ): 

S (k )QtP(k,O,x) = f/!( - k,O,x); 

then multiplication by exp(ikO.x) gives, in the notation of 
Remark 6.2, 

Y(k )Q13 (k,O,x) = {3 ( - k,O,x). (6.8) 

In order to apply the Fourier transform to (6.8), we must 
subtract off the asymptotic values: 

{3( - k) - 1 = (Y(k) - I)Q(f3(k) - 1) 

+ Q({3(k) - 1) + (Y(k) - I)Q 1. 
(6.9) 

Application of the inverse Fourier transform to (6.9) now 
gives 

1/(a,O,x) = f~ 00 G (a - {3 )Q7J( - {3,O,x) d{3 

+ Q7J( - a,O,x) + G (a) 1. (6.10) 

Note that analyticity of {3 (k ) - 1 in the upper half k-plane 
implies that 1/(a,O,x) is zero for negative a. Consideration of 
positive a only in (6.10) gives us the Marchenko equation 
(6.5). 

Theorem 6.4 (Compactness): Let VEW 3
,1 with 

SlxliW(x)1 d 2x < 00 for i = 1,2,3,4, and suppose that for 
somexo, I V(x - xo)l, IVV(x - xo)l, and 1..::1 V(x - xo)1 are all 
bounded by a decreasing positive radial function F (Ix I) with 
SF(r) dr and SF(r)~/2 dr finite. Suppose also that 
(I - L (0)) -I exists. Then the integral operator ~ occuring in 
the Marchenko equation is a Hilbert-Schmidt operator on 
L2(R +XSI). 

Proof The proof will be given in a later paper. 
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Remark 5.6: Newton has shown13 that the spectrum of 
~ is in fact contained in the interval [ - 1,1]. Thus, if ~ has 
neither the eigenvalue 1 nor - 1, then ~ is a contraction 
and the Marchenko equation can be solved by iteration. 

The above theorem allows us to apply Fredholm theory 
to the Marchenko equation, and, if the spectrum of ~ does 
not contain the point one, to obtain a solution 1/(a,O,x) be
longing to L 2(R + X S I) for each x. We could then invert the 
Fourier transform to obtain the wave function, which could 
then be used in the formula 

V(x) = [(..::1 + k 2)f/!(k,O,x)]ltP(k,O,x). 

However, the following formal calculation gives a simpler 
method of recovering the potential. 

Weusef/!(k,O,x) = {3 (k,O,x)exp(ikO.x) in theSchrodinger 
equation, and find that the function {3 (k,O,x) satisfies the 
equation 

(..::1 + 2ikO· V)/J = V. 

Into (6.11) we substitute 

{3 (k,O,x) = 1 + :7;; 1(1/(a,O,x)), 

obtaining 

(6.11) 

fO (..::1 - V(x) + 2ikO,V)1/(a,O,x)exp(ika) da - V(x) = O. 

(6.12) 

Formal integration by parts of the third term of(6.12) leads 
to 

V(x) + 20,Vx 1/(0,O,x) 

+ fO eXP(ika)[..::1- V(x) - :a o,v]1/(a,o,x)da =0. 

For smooth 1/, the integral will go to zero for large k and 
leave us with 

[..::1 x - V(x) - (a/aa)O,Vx ]1/ = 0, 

V(x) = - 20,Vx 1/(0,O,x). (6.13) 

Equation (6.13) is known as the miracle. It is related to 
the characterization problem as follows. If the scattering 
amplitude with which we begin is known to come from a 
potential satisfying the hypotheses of Theorem 6.3, then the 
right side of (6.13) is guaranteed to be independent of O. 
However, if we begin with an inadmissible scattering ampli
tude (i.e., one that does not correspond to a potential), then 
the miracle will not be satisfied (i.e., the right side of (6.13) 
will depend on 0 ). By counting variables, it is easy to see that 
most randomly chosen scattering amplitudes will not lead to 
a miraculous solution of(6.5). This is because the scattering 
amplitude, a function of three variables, is being used to de
termine the potential, which is a function of only two varia
bles. At present, this miracle is the only known characteriza
tion of admissible scattering amplitudes. 
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APPENDIX A: LARGE k BEHAVIOR OF 1/J 

Lemma 1.2: Let Ve W 2
•
lnL 2, and suppose that for some 

xo, I V(x - xo)l, IVV(x - xo)l, and I.J V(x - xo)1 are all 
bounded by a decreasing positive radial function F (Ix I) with 
fO'F(r)rdr<cllVlb andF(r) <Mr- I H near r = 0, for 
some E> O. Let ko > 0 be so large that for k> ko, 
11K (k )11 <a < 1. Then, for k> ko, ltP(k,O,x) - exp(ikO·x) I 
<ck - (I + El2)l2, where c depends only on V. 

Proof The wave function 1/J is defined by Eq. (1.1). Pro
vided that k is not an exceptional point, this equation has a 
solution with S = I V II 12f/!eL 2. We split the integral in (1.1) 
into pieces corresponding to small and large arguments of 
the Hankel function: 

f Hgl(k Ix - yl)V(y)tP(k,O,y) d 2y = II + 12 + 13 + 14, 

where 

-us 2 II = -- log(k Ix - yl)V(y)1/J(k,O,y) d y, 
17' Ix - yl < k - , 

12 = r [Hgl(k Ix - yl) 
)Ix-yl <k-' 

2' ] + ; log(k Ix - yl) V(y)1/J(k,O,y) d 2y, 

13 = r 21/2(17'k Ix _ yl)-1/2 
)Ix-yl>k-' 

Xexp[ik Ix - YI- !i17'] V(y)tP(k,O,y) d 2y, 

14= r [Hgl(klx-yl)-21/2(17'klx-yl)-1/2 
)lx-YI>k-' 

X exp(ik Ix - yl - !i17')] V( y)tP(k,O,y) d 2y. 

Application of the Schwarz inequality to II gives 

1111< ~ (L-YI<k-' Ilog k Ix - yWIV(y)ld
2
y )1/211s 112' 

(AI) 

For k> ko, the second factor of (A 1) is bounded by 

lis 112«1 + 11K II + 11K 112 + "')lIsOIIz 
«1 - a)-IIIVIII' (A2) 

where the notation is as in Eq. (1.2). In the first factor of (AI ), 
we let x - y = r,p with,p = (x - y)llx - yl and r = x - y: 

r rk
-' Ilog krI21V(x-r,p)lfdrd,p 

)s')o 
k -, 

<217' 1 (kr) -1- E/2F(lr - Ix +xolllrdr 

<217'k -1-E/2lk-'F(lr_lx +xolllr- E/2 dr. (A3) 

The integral converges ifit converges when the singularities 
coincide; therefore (A3) is bounded by 

k -, 

ck - I - El2l r - I + El2 dr<ck - I-E. 
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Thus we have 1111<cllVlllk -(I H)/2. 
We treat 12 the same way and obtain the same bound: 
1121<cllVlllk -(IHI/2. 

Next we consider 13, We replace 1 V 11/21/J by 

lV(y)11/21/J(k,O,y) = lV(y)11/2exp(ikO.y) 
+ K ( k)[ IV( y)11/2tP(k,O,y)]. 

This splits 13 into 13 = Is + 16, where 

Is = r 21/2(17'k Ix _ yl)-1/2 
)Ix -yl>k-' 
Xexp[ik Ix - yl-!i17' + ikO.y] V(y)d2y, (A4) 

16 = r 21/2(17'k Ix - yl)-1/2exp [ik Ix - YI- i17'/4] 
)Ix-yl >k-' 
X VII2( y)K (k)[ lV(y)11/2tP(k,O,y)] d 2 y. (AS) 

First we consider Is. Letting z = x - yin (A4) gives 

Is = ( ~ ) 112 exp( -4
i17'

) 

X r exp[ik Izl + ikO.(x - z)] 
)Izl > k-' 

X(k Izl)-I1 2 V(x - z) d 2z. 

With z written in polar coordinates as z = r~, Is becomes 

Is = ck -1/2exp ( - i17' + ikO.x) L'" r l/2 
4 k-' 

Xexp(ikr) i exp( - ikr cos,p )V(x - r~) d~ dr, (A6) 
s' 

where the unit vectors are now adorned with hats and,p is the 
angle between the vectors ~ and O. We can now apply the 
stationary phase approximation (Appendix D) to the angular 
integral: 

i exp( - ikrcos,p )V(x - r~) d~ 
S' 

= M(kr)-1/2(aV(x - rO) + bV(x +,0)) + R, 

where 

IR I <M(kr)-Irp.ax[ I V(x - ~ )1,IVV(x - r~ )1, 
¢€S' 

I.J V (x - r~ ) J . 

We note that over the range of integration in (A6), we have 
(kr)-I < 1. This allows us to combine the leading term and 
remainder term: 

Next we consider 16, We apply the Schwarz inequality 

1161«~ r lV(y)1 d2y)1I2I1K(k)(IVII/21/JlII2 
k )IX-yl>k-' Ix - yl 

<ck -1/2(J 1V(~zl z)1 d 2z )1I2I1K (k )11 lis liz 

<ck- I, 

where we have used the estimate IIK(k )1I<ck -1/2. 
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Finally we consider 14, Application of the Schwarz ine
quality and use of information about the asymptotic behav
ior of Hbl

) gives 

1141«L_YI>k_' c(k Ix - yl)-31V(y)1 d Zy)1I2111V11/z¢IIz. 

(A7) 

Since k Ix - yl > 1, some of the factors of k Ix - yl in the de
nominator can be replaced by 1; we also use inequality (A2) 
to estimate the second factor of (A 7). 

1141 < (Ck - I - <12 

X ( ( lV(x + rtp )lr-I-</2rdrdtP)1/2 Elh. 
JS,Jk-' I-a 

<ek -(I H12)/Z( i~, F(lr - Ix + xoII)r-<12 dryl211V111 

< ell V II Ik -(I + </2)12. 

APPENDIX B: THE RECIPROCITY THEOREM 

Proposition 3.1: Let V belong to L InL z. Then 
A (k,O,O') = A (k, - 0', - 0). 

Proof We recall that the scattering amplitude is given 

by A (k,O,O') = f exp(ikO·x) V(x)¢(k,O',x) d 2X. We now use 
the Lippman-Schwinger equation (1.1) to write the exponen
tial in terms of the wave functions: 

A (k,O,O') = J ¢ (k,O,x)V(x)¢+(k,O',x) d Zx 

-J J G (k,lx - yl)v(y)¢ (k,O,y) d 2y 

X V(x)¢+(k,O',x)d 2x. 

Next we use the symmetry properties mentioned at the be
ginning of Sec. 3: 

A (k,O,O') = J ¢+(k, - O,x)V(x)¢+(k,O ',x) d 2X 

-J ¢+(k, - O,y)V(y)J G +(k,lx - yl) 

X V(x)¢+(k,O ',x) d 2X d Zy. 

Again we use the Lippmann-Schwinger equation to obtain 
an exponential: A (k,O,O') = N+ (k, - O,x) V (x) 
X exp(ikO ' ·x) d 2X = A (k, - 0', - 0). The interchange of x 
and y integration in the third step is justified by absolute 
convergence of the iterated integral: 

J JIG -(k,lx - yl)V(y)¢-(k,O,y)l d 2y 

X lV(x)¢+(k,O',x)1 d 2x 

<fl(Kt)(k,O,x)llt(k,O',x)1 dZx 

< 11K II "tll~· QED 

APPENDIX C: STRONG SQUARE INTEGRABILITY OF 
s-/ 

Proposition 5.2: Let VEW2,1, and suppose that for some 
xo, lV(x - xo)l, IVV(x - xo)l, and 1.1 V(x - xo)1 are all 
bounded by a decreasing positive radial function F (Ix I) with 
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and 

F(r) <Mr - 1+< near zero, 

where O<€<!. Then 

J: 00 (il(S(k) - Ilfll~))Z dk<e(ilfll~)t (Cl) 

[The superscript 0 reminds us that this is the L Z(S I) norm.] 
Sketch of Proof (Details may be found in Cheneya)): Let 

us fix ko>!, and split the left side of(Cl) into small-k and 
large-k pieces. 

The small-k piece is easy: the results of Sec. 2 show that 
liS (k) - I II is bounded for Ik I < ko, which implies that 

J~okoll(S (k) - I lfll~ dk<ellfll~· 

Now we consider Ik I > ko. The difficulty we face is to 
extract from the integrand enough negative powers of k to 
make the k integral converge. In order to obtain explicit 
formulas, we write out the first few terms of the Born series: 

I V Il/z¢ = (I - K )-1(1 V 11/2exp(ikO '.x)) 

= (I + K + (I - K)-IK Z)(1V1 1/2exp(ikO'.x)). 
(C2) 

This allows us to write the kernel of S (k ) - I as 

(S(k) -1)(0',0) 

= - i(41T)-J exp( - ikO·x)V(x)¢(k,B',x) d Zx 

=D1 +Dz+D3, (C3) 

where 

DI(k,B',B) = - i(41T)-JeXP( - ikO·x)V(x) 

X exp(ikO ' ·x) d 2X, (C4) 

D2(k,0 ',0) = - i(41T)-J exp( - ikO·x)Vl/z(x) 

X ~ J W(X)11/2 

XHo(k Ix - yl)Vl/z(Y) 
X lV(y)II/Zexp(ikO '.y) dZy d 2x, (C5) 

D3(k,0 ',0) = - i(41T) - J exp( - ikO,x)Vl/2(x) 

XII _K)-IKZ 

x(1 VII/2exp(ikO '.x)) dZx. (C6) 

Because we know from Sec. 1 that 11K II behaves like 
Ik I-liZ for large k, it is fairly easy to see that 

i IIDdll~ dk<cllfll~· 
Ik I >ko 

The terms corresponding to Dl and D z, however, require 
more work. 

First we consider the part of the (CI) integral corre
sponding to DI 
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16r ( II ( DI(k,B,B ')f(B') dB' 112 dk 
Jlkl>ko JSI 2 

= ( (( I exp( - ik (B' - B ).x) 
Jlkl>koJs,Jsl 

X V(x) d 2xf(B') dB' i,I exp(ik(B"-B).y) 

X V(y)d 2y f(B ") dB" dB dk. (C7) 

The absolute convergence of the B integral allows us to do 
the B integration first: 

( exp(ikB·(y - x)) dB = 211"Jo( Ik I Ix - yi). (CS) 
Js, 

Next we let z = x - yin (CS) and use the asymptotic expan
sion for Jo to split up (C7) into pieces corresponding to 
Izl < Ik I-I and Izl > Ik I-I, respectively. 

The piece corresponding to Iz I < I k 1- I is fairly easy be
cause Jo is bounded near the origin. We obtain the necessary 
k decay by using the inequality I < Ikzl- I and by noting that 
the domain of z integration shrinks as k grows. 

The piece of (C7) corresponding to Izl > Ik I-I is harder 
to estimate. We shall consider in detail only the leading term 
of the Jo asymptotic expansion; the remainder term already 
contains a factor of(lkzl)-3/2 and is therefore easier to esti
mate. We write the leading term as 

F=211" L'>ko ili,LI>lkl~II V(z+y) 
X21/2(11"lkzi)-I12cos(lkzl - A11") 

X exp(ikB '.z) d 2Z V( y)exp(ik (B " - B ').y) 

X d 2y f(B') dB' f(B ") dB" dk. (C9) 

We letz = r¢> in the innermost integral of(C9); thezintegral 
is then 

(00 (V(r¢> + y)21/2(11"lk Ir)-1I2 
Jlkl~1 JSI 

X cos( I k I r - A11") exp(ik cos ¢ )d¢> r dr, 

where the unit vectors are now adorned with hats and ¢ is the 
angle between the vectors ¢> and 0 '. 
Use of the stationary phase approximation (Lemma D.I) on 
the ¢ integral gives 

( VIr¢> + y) exp(ik cos ¢) d¢> = R + U(k,r,O ',y), 
Js' 

where 

U(k,r,O',y) = MI(lk Ir)-1/2(aV(rO' + y) + bV( - rO' + y)) 
(ClO) 

and 

IR I<M2(lk Ir)-I 

Xrpax{ I VIr¢> + y)I,IVV(r¢> + y)l, 1.::1 VIr¢> + Y)ll· 
¢eS' 

(Cll) 

This application of the stationary phase approximation to 
(C9) gives 
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F=211" ( (( ( V(y) 
Jlkl>ko JsIJs,Jlkl~1 

X exp(ik (B" - B ').y)21/2(11"rk )-1/2 

X cos(lk Ir - !11"j(U(k,r,B ',y) + R) 

xrdrd 2yf(B')dB' fIB") dB" dk, (CI2) 

where we have once again dropped the hats on unit vectors. 
Next we split up the y integral in (CI2): F = FI + F2, where 

I i i 1 1
00 

F I =(S11")1/2 V(y) 
Ikl>ko S' S' lyl<lkl-< Ikl~1 

X exp(ik (B" - B ')oy) cos(lk Ir - !11") 

x(lk Ir)-1/2(U(k,r,O',y) + R )rdrd 2yf(O') 

dO' f(O ") dO" dk, (C13) 

(same integrand). (CI4) 

To estimate FI , we use the bounds (ClO) and (CII) in 
(C 13) to obtain decay of I k 1- I. We obtain additional decay 
by using the hypotheses on the potential and by noting that 
the domain of y integration shrinks as k grows. 

Next we consider F2 [Eq. (CI4)]. We splitF2 into pieces 
corresponding to integration over different parts of S 1. We 
write S I = S < uS> , where S < corresponds to 
10 ' - 0 "I < I k I - I + 2E and S> corresponds to 
10' - 0"1> Ik I-I +2E. ThusF2 = CI + C2 , where 

1 i i 1 1
00 

CI = (S11")1/2 V(y) 
Ikl>ko s' s< lyl>lkl~< Ikl~' 

X exp(ik (0" - 0 ').y) 

X(lk Ir)-1/2cos(lk Ir - !11"j(U(k,r,O ',y) + R) 

xrdrd 2yf(O') dO' f(O") dO" dk, (CI5) 

C - (S11")1/2 ( (( ( ("" 
2- Jlkl>koJSIJS)IYI>lkl~EJlkl~1 

(same integrand). (CI6) 

First we consider CI: (ClO) and (CII) applied to (CI5) 
give us 

ICII«S11")1Iz( (( ( (00 (Ik Ir)-1/21V(y)1 
Jlkl>k)S' Js< JIYI>lkl-E Jlkl~' 

xl (211")1/2(lk Ir)-1/2F(lrO' + Xo + yl) 

+ (211")1/2(lk Ir)-1/2F(I- rO' +xo + yl) + 4M2 

x(lk Ir)-IF(lr¢o +xo + yIJlrdrd 2yl/,((}')1 

XdO' If(O")1 dO" dk. (Ct7) 

Over the range of integration r> I k 1-1, we can bound 
(Ik Ir)-I by (lk Ir)-1/2. We also use the fact that 
I ± rB' + Xo + yl and Ir¢o + Xo + yl can be bounded below 
by IIxo + yl - rl to simplify (Ct7); we obtain 
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lell <c ( Ik I-d ( f lV(y)1 
Jlkl>ko JS.JS< 

x (00 F(jlxo + yl _ rlJ dr d 2y 
Jlkl-' 

X [((0')1 dO'[((O")1 dO" dk. 

Carrying out the rand y integrations gives us 

lell< ( Ik I-I ( ( IIVIII 
Jlkl>ko Js' Js< 

X [((0 ')ldO '[((0 ")1 dO" dk. 

We next apply the Schwarz inequality to the 0' integral, ob
taining 

X [((0 ")1 dO" dk. (CIS) 

The 0' integral of (CIS) is the measure of the angle sub
tending the chord oflength I k I - I + 2E between the unit vec
tors 0' and 0". It is not hard to show that the measure of the 
angle also behaves like Ik 1- I + 2E for large k. This gives us 
the additional k-decay we need in order to show leI I <cl[(II~. 

We now turn our attention to e 2 [Eq. (CI6)]. The right 
side of(CI6) contains two pieces, one corresponding to U 
and the other to R. By (CII), the term corresponding to R 
already contains a factorof(lk Ir)-3/ 2

; in order to make both 
the r integral and the k integral converge, we replace 
(Ik Ir)- 3/2 by (Ik Ir) - I - E/2. This trick disposes of the remain
der term, and we are left with the term corresponding to U. 
This term we write as 

e3 = (S1T)1/2 ( (1(0 ') 
Jlkl>k)S' 

X( 1(0")( (00 V(y) 
Js> JIYI>lkl-<Jlkl-' 

X exp(ik (0 " - 0 ').y) 

X(lk Ir)1/2 cos(lk Ir -1T/4)MI (lk Ir)-1/2 

X [aV( - rO + y) + bV(rO' + y)] 
Xrdrd 2ydO'dO"dk. (CI9) 

We note that they integral of(C19) can be done first because 
the inner two integrals (r and y) converge absolutely. The y 
integral of(CI9) can then be evaluated by lettingy = s¢J and 
applying the stationary phase approximation to the ¢J inte
gral as follows. For notational convenience we define 

W(s¢J,rfJ ') = V(s¢J )[aV( - rfJ' + s¢J) + bV(rfJ' + s¢J)] 
and 

0= (0' - 0")/10' - 0"1. 

Then the y integral is 

(00 1 W(s¢J,rO ')exp(iksIO' - 0" I cos ¢J) d¢J s ds. 
Jlkl-< s· (C20) 

Application of the stationary phase approximation (Lemma 
0.1) to (C20) gives us 
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(00 !MI (l k lsI0'-0"1)1/2 
Jlkl-< 

X [aW(sO,rO ') + bW( - sO,rO ')] + R '}s ds, 

where 

IR 'I<M2(lk IsIO' - 0 "/)-1 

Xmax! I W(s¢J,rO ')I,lvw(s¢J,re ')1,1.1 W(s¢J,rO ')I}· 
<PES' 

We use this in (CI9) to obtain 

le3 1<c ( Ik I- d [((0')1 
Jlkl>ko Js' 

X 1> [((0 ")1 

X (00 (00 !M
I
(lklsI0'-0"1}-1/2 

Jlk 1-< Jlk 1-' 
X laW(sO,rO ') + bW( - sO,rO ')1 + IR '1 J 

XdrsdsdO'dO"dk. (C21) 

In (C21) we use the assumptions on the potential 

I W(sO,rO ')1 <F(js - IXolDF(IIIxol - sl- rl)· 

A similar bound holds for V Wand .1 W. This allows us to 
estimate the right side of(C21) by 

le3 1<c ( Ik I-I ( [((0")1 
Jlkl>ko Js' 

X( [((0')1(00 
Js> Jlk 1- < 

X (00 [!lk lsI0'-0"1)-1/2+(lklsI0'-0"1)-I] 
JIW ' 

XF(ls - IXoll)F(IIIxol - sl- rl) 

X dr s ds dO ' dO " dk. (C22) 

We now carry out the r integration and use the fact that over 
the range of integration, we have Ik I slO' - 0" I> Ik IE. We 
can therefore bound the right side of (C22) by 

le31<c ( Ikl- I ( [((0")1 ( [((0')1 
Jlkl>ko Js· Js> 

X (00 F(s _ IXol)lk I-E/2 

Jlk 1- < 

XS ds dO' dO " dk<cl[(II~. 

We have now shown that the right side of(C7) is bound
ed by cl[(l1~ ; in other words, we have disposed of the D I term. 
Next we must consider the D2 term. 

We write out the piece of the (Cl) integral correspond
ing to D2 [(C5)] 

16r r II r D2(k,fJ,fJ ')f(fJ ') dfJ' 112 dk 
Jlkl>ko Js' 2 

= r r ( JJ..!...- V(x)Ho(lk Ilx - yl)v(y) 
Jlkl>kjS' Js' 4 

X exp( - ik [O'·y - O.x])y d 2xl(0')dO' 

xL. J J( - i/4)V(z) Ho(lk liz - wl)v(w) 

xexp( - ik [O·z - 0 ".w]) d 2w d 2zf(0 ")dO" dOdk. 
(C23) 
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In the right side of (C23), we make the substitutions 
i = x - y and w' = z - w, and note that the 0 integral is 
absolutely convergent. The 0 integral can therefore be done 
first: 

( exp(ikO.(z - xl) dO = 21TJo(lk liz - xl), 
Js· 

and so (C23) is 

1~ ( IID2/112 dk 
Jlk I >ko 

= !!... ( (1(0 ') I I ( 1(0") 
8 Jlkl>kJS' Js· 

x I I Jo(lk (z - x) 1)V(x)Ho(lky'I)v(x - y') 

xexp[ - ikO '.(x - y')] d 2y' d 2x dO' VIz) 

X Ho(lkw'l) VIz - w') exp[ - ikO" .(z - w')] 

Xd 2w'd 2zdO"dk. (C24) 

We shall obtain the sought-after k-decay from the spa
tial integrals. We therefore estimate they' (or w') integral of 
(C24) first; we write 

I Ho(lky'I)V(x - y') d 2y' = II + 12, 

where II and 12 correspond to integration over the sets 
I ky' I < 1 and I ky' I > 1, respectively. 

Use of the small-argument behavior of Ho to estimate I I 
gives 

IIII<e ( Iloglky'!V(x - i)1 d 2y'. (C25) 
JlkY'1 <I 

We apply HOlder's inequality to (C25), obtaining 

To (C26) we apply Lemma D.2: 

( i 'k'-' )(1 + EI-' 
IIII<e 21kl- 1 

0 F(r)I+Edr 

<e(lk 1- 1- .-')(1 H)-'. 

Use ofthe large-argument asymptotic behavior of Ho to 
estimate 12 shows 

II21<e ( Iky'I-1/2!V(X-y')ld 2y' 
JIY'I>lkl-' 

<elk 1- 1/2 (oo F(lx-y+xol)lyI I /2dIYI 
J1kl-' 

<elk 1- 1/2. 

Thus the y' integral of (C24) can be estimated for large k by 

If Ho(lky'I)V(x - y') d 2y' I <elk 1- 1/2. 

This shows that the right side of (C24) is bounded by 
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e ( Ik 1-lllflli 
Jlkl>ko 

xI IIJo(Jk(Z - x)I)1 !V (x) I !V(z) I d 2x d 2zdk. (C27) 

It remains to do the x andz integrals of(C27); to do this 
end, we let z' = z - x, and split the z' integral into pieces 
corresponding to integration over Ikz'l < 1 and Ikz'l > 1, re
spectively. We obtain extra k-decay in the small-argument 
piece because the domain of integration shrinks as k----. 00 • 

Decay is obtained in the large-argument integral from the 
Ikz'I-1/2 behavior of Jo at infinity. QED 

APPENDIX D: TECHNICAL LEMMAS 

Lemma D.l (Stationary phase approximation): Let 
Q E C 2(R 2). Then 

( Q (r~ )exp(ikr cos ¢ ) d¢ 
Js' 

= MI(Jk Ir)-1/2(aQ(r~) I + bQ(r~) I ) + R, (D1) 
</>=0 </>=11" 

where 

IR I<M2(lk Ir)-Itp.ax (IQ(r~ )I,IVQ(r~ )I,IAQ(r~ )11; 
</>ES' 

(D2) 
here ~ = (cos ¢, sin ¢ ), a and b are constants of modulus 1 
and the M; are positive constants independent of Q. 

Proof The prooffollows Erdelyi. 19 Our first task is to 
split up the integral 

1= ( Q (r~ )exp(ikr cos ¢ ) d¢ (D3) 
Js' 

so that we consider only one stationary point at a time. To 
this end, we write I = II + 12, where II is the integral over 
[0,1T] , 12 the integral over [1T,21T]. First we consider II' which 
we split into II = A + B, where 

A = [ Q (r~ )exp(ikr cos ¢ )1](¢ ) d¢, (D4) 

B = i11" Q (r~ )exp(ikr cos ¢ ) [1 - 1](¢ )] d¢, (D5) 

and where 1] is an infinitely differentiable cutoff function 
with 

1](¢) = 1 

=0 
for 0<¢<1T14, 

for 31T14<¢<1T. 

We consider A first. In (D4) we make the change of 
variable t 2 = 1 - cos ¢; 

A = exp(ikr) fOl' Q(r~) 
X exp( - ikrt 2)il(t )2t [1 - (1 - t 2)2] -112 dt, (D6) 

where il(t ) = - 1](arccos( 1 - t 2)). Integration by parts of 
(D6) [differentiation of 2Q (r~ )il(t )(2 - t 2) - 112 and integra
tion of exp( - ikrt 2)] gives 

A = (ikr) [ 2Q (r~ )il(t )h l(t)(2 - t 2)- 1/21r" 

_ (2
01

' ~(2Q(r~)il(t)(2-t2)-1/2)hl(t)dt], (D7) 
Jo at 
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where 

hl(t) = - exp( - isgn k : ) 

X Loo exp [ - ik{t + 0" exp( - i sgn k : ) y] dO". 

To compute the first term of (07), we need to evaluate hI at 
zero: 

hl(O) = - exp( - i sgn k : ) L
oo 

exp[ - Ik Ir~] dO" 

= - 11'1/2(1k Ir)-1/2exp( - i sgn k : ). 

We substitute this expression into (07) and recall that 
ii(21/2) = 0. Equation (07) is then 

A = (211')1/2(1k Ir)-1/2exp(ikr) 

Xexp( - i sgn k 11'/4)Q(r¢ )I~=o + Rp 

where 

R I = - exp(ikr) 

X (" ~ [2Q (r¢ )ii(t)(2 - t 2)-1/2]h l (t) dt. 
Jo at 

We have now found the leading term of(OI); our next 
task is to obtain the correct decay for the remainder. To this 
end, we integrate R I by parts; this gives us 

R I = - exp(ikr) 

X ~ [2Q (r¢ )ii(t)(2 - t 2)-1/2]h2(t )Ir' + R 2, (08) 
at 

where 

R2 = exp(ikr) 

X (" a
2

2 [2Q (r¢ )ii(t )(2 - t 2) -1/2] h2(t ) dt (09) 
Jo at 

and where h2' given by 

h2(t) = - exp( - i sgn k : ) 

X 100 

O"exp[ -ik{t+O"exP( -isgnk: )y] dO", 

(010) 

is the primitive of h I satisfying 

h2(0) = - exp( - i sgn k : ) 100 

0" exp( - Ik Ir~) dO" 

= - (Ik Ir)-Iexp( - i sgn k : ). (011) 

To estimate h2(t) for t > 0, we note that along the path of 
integration, the quantity 

- ikr(t + 0" exp( - i sgn k 11'/4)f + Ik Ir~ 

= - ikr[t 2 + 2to" exp( - i sgn k 11'/4) 

+ (sgn k )i~ - i sgn k~] 

= - ikrt [t + 20" exp( - i sgn k 11'/4)] 

has negative real part; thus 

exp[ - ikr(t + exp( - i sgn k 11'/4)0")2] <exp( - Ik Ir~). 

With this estimate, we have 
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With this information, a bound on R I can be obtained as 
follows. We writep(t) = ii(t)(2 - t 2)-1/2. Then we compute 
the derivatives appearing in (08) and (09) [' = (d /dt)]: 

a A A A A 

at [Q(r¢)p(t)] = Q(r¢)p'(t) + VQ(r¢).¢'p(t) 

and 

~ A 

at 2 [Q(r¢}Jl(t)] 

= Q(r¢ )p"(t) + 2VQ(r¢ ).¢ 'p'(t) 

+ VQ(r¢ ).¢ "p(t) + VQ(r¢ lIl¢ '112p(t). 

Let 

M2 = 6 max IIp'(t)I,lp''(t)I,I¢ 'p(t)I,12¢ 'p'(t)l, 
0<1«1 + 2 - 0/21'" 

Then 

IR I I<M2(1k Ir)-I 

1¢"p(t)III¢'1I2Ip(t)IJ· 

X max IIQ(r¢ )1,I~Q(r¢ )1,I~Q(r¢)1 J. 
0<1«1 + 2- 112)112 

This concludes the estimate for A; now for D, the change 
ofvariablest 2 = cos ¢ + 1 gives a similar estimate; and in 12 
the change of variables.B = ¢ - 11' converts 12 to an integral 
ofthe form II' 

Lemma D.2: Let F (r) be a positive non increasing func
tion on [O,b ], b > 0. Then for a > ° and a > 0, 

f F(la - rl)t' dr<2b a lb F(r) dr. (012) 

Proof In the left side of (012) we note that r<b, and 
then we use the definition of absolute value 

1= f F(la-rl)t'dr<b a f F(la-rl)dr 

L
min,a.b) lb 

=b a F(a-r)dr+b a F(r-a)dr. 
o minla,b) 

In the first integral let s = a - r; in the second let s = r - a. 

Then 

I<b
a 

[_minla.bIF(S) ds + b
a fi~a~bl_aF(S) ds. 

Case a <b: 

I<b a [F(S)dS+b a f- a 

F(s)ds 

<2b a fF(S) ds. 

Caseb<a: 

I<b a [-b F(s)ds<b a f F(s)ds. 
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It is shown here that the solutions of the Gel'fand-Levitan equation for inverse potential 
scattering on the line may be expressed in terms of the eigenvalues and eigenfunctions of certain 
associated operators of trace class. The details are sketched for the case of rational reflection 
coefficients, and carried out for the simplest class of examples. 

PACS numbers: 03.80. + r, 03.65.Nk 

1. INTRODUCTION 

The Gel'fand-Levitan equation plays a central role in 
solving inverse scattering problems in one dimension. 1 In the 
case where the problem involves a scattering potential V (x) 
defined for - 00 < x < + 00, for example, we know that 
V(x) may be recovered from the reflection coefficient r(k), 
defined for - 00 < k < + 00, as follows: set 

R (x, y) = r(x + y) = _1_ J + 00 e - ikxr(k )e - iky dk, (1) 
21r - 00 

and then solve for K (x, y) the Gel'fand-Levitan equation 

K (x, y) + R (x, y) + f~ 00 K (x,z)R (z, yJdz = O. (2) 

Then the potential V(x) appears as 

V(x) = 2~K (x,x). (3) 
dx 

(See Ref. 2 for a general discussion of this procedure.) 
In order to study the behavior of the solutions of(2), it is 

useful to consider the associated equation, to be solved for 
K(x,y,w): 

K (x, y,w) + R (x, y) + f~ 00 K (x,z,w)R (z, yJdz = O. (4) 

Evidently K (x, y,x) = K (x, y). Now (4) may be expressed in 
operator form with w as a parameter: 

K(w) + R + K(w)P(wlR = o. (5) 

Here R, K (w), and P (w) are integral operators with kernels 
R (x, y), K (x, y,w), and P (x, y,w), with 

P(x,y,w)=8(w-x~(x-y). (6) 

Here 0 (z) is the Heaviside function, and 8(z) its derivative. 
Now (4) yields 

K(w)(I +P(wlR) = -R, (7) 

and hence, whenever (I + P(wlR) is invertible, 

K(w) = -R(I+P(w)R)-I. (8) 

Now suppose that the reflection coefficient r(k) is such 
that its Fourier transform r(z) is smooth and integrable. Then 

"Research Sponsored in part by AFOSR Grant No. 81"()2S3A. 

it follows that the operator P (wlR is of trace class for each w, 
and 

tr P(w)R = f~ 00 r(2zJdz. (9) 

One can then define the Fredholm determinant.d (w) of the 
operator (I + P(wlR) by (cf. Ref. 3, p. 255ft) 

.d (w) = det(I + P(w)R) 

= exp tr 10g(I + P(w)R). (10) 

Evidently 

log.d (w) = tr 10g(I + P(wlR) (11) 

and so 

d .d '(wI 
- log.d (w) = -
dw .d (w) 

= tr P'(w)R (I + P(wlR )-1 

= - tr P'(w)K(w). (12) 

Here we have used (8). But P '(w)K (w) has kernel 
8(w - x)K (x, y,w), so 

- tr P '(w)K (w) = - f~ 00 8(w - x)K (x,x,wJdx 

= -K(w,w,w) 

= -K(w,w). (13) 

Hence by (3) 

d 
V(w) = 2-K(w,w) 

dw 

d 2 

= - 2-
2 

log.d (w). 
dw 

(14) 

This formula, which gives V directly in terms of R, first 
appears in Ref. 4, and has since been rediscovered by several 
authors, including us.s In one sense, this formula by-passes 
the Gel'fand-Levitan equation, since it gives V directly in 
terms of R, and once Vis known everything about the scat
tering problem is known, at least in principle. 

In another sense (14) is no better than (4), since the cal
culationofthedeterminant.d (w)of(I + P(wlR )isnotusual1y 
an easy matter in practice. One possible approach is to calcu-
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late the eigenvalues An (w) of the operator P (w)R and use them 
to calculate A (w): 

00 

A (w) = IT (1 + An (w)). (15) 
n=l 

We indicate here how this might be done in the case where 
the reflection coefficient r(k ) is a rational function of k. (This 
case has already been treated by other methods in Refs. 6 and 
7.) 

Accordingly, we assume now that r(k ) has the form 

r(k) = p( - ik )/q( - ik), (16) 

where p and q are polynomials with real coefficients, chosen 
so that degree p < degree q, and so that r(k ) is regular in the 
upper half k-plane. If r(k ) is to be a reflection coefficient, then 
we should require that I r(k ) I..;; 1 and r(0) = - 1, but these 
requirements will play no role in solving (4). 

It follows from our assumptions that R (x, y) = r(x + y) 
vanishes if x + y < 0, and satisfies an ordinary differential 
equation if x + y > 0, of the form 

q(D )R (x, y) = p(D )8(x + y), (17) 

whereD = d /dx. 
The eigenvalues An (w) ofthe trace-class operator P (w)R 

are discrete and the corresponding eigenfunctions t/Jn (w) sa
tisfy 

P(w)Rt/Jn(w) = An (w}cPn(w). (18) 

It follows that tPn(w) = P(w)tPn(w) and, hence, that 

R (w)tPn(w)=P(w)RP(w)tPn(w) = An (w)tPn(w). (19) 

Moreover, it is easy to verify from (1) that if I r(k ) I ..;;M, then 
the operator R 2 is positive and satisfies O..;;R 2..;;M2/. It fol
lows that the same is true of R (wf Hence we have 

O";;A ~(W)..;;M2. (20) 

Since R (w) is of trace class, we also have, after a suitable 
rearrangement, 

M2;;;'A ~;;;'A ;;;;'''';;;'A ~ to, (21) 
00 

L An(W) = tr(P(w)RP(w)) = tr(R (w)), (22) 
n= 1 

00 

IT (l + An(W)) = A (w). (23) 
n=l 

Now Eq. (19) may be written, for - 00 <x..;;w, 

J~ 00 R (x + y)tPn (y,w)dy = An (w)tPn (x,w). (24) 

Applying (17) to (24), we get, for - w..;;x..;;w, 

An (w)q(D )tPn (x,w) = J~ 00 q(D)R (x + y)tPn (y,w)dy 

= p(D )tPn ( - x,w). (25) 

It follows that, for - w..;;x..;;w, 

A ~ (w)q( - D )q(D )tPn (x,w) = An (w)P(D )q( - D )tPn ( - x,w) 

= p(D)P( - D )tPn (x,w). (26) 

Thus we see that the eigenfunctions t/Jn (x,w) of the operator 
R (w) = P (w)RP (w) satisfy an ordinary differential equation 
of even order with constant coefficients. By inserting the 
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known form of the solutions of this equation back into (24), 
we may determine the integration constants and the admissi
ble values of An(W). Specifically, the solutions of(26) all have 
the form 

m 
A. ( ) - ~ (A ikt" B - ikt") 'l'n X,W - ~ je + je , (27) 

j=l 

where the ± kj are the 2m solutions of the equation 

r( - k )r(k) = A ~(w). (28) 

Here m is the degree of the polynomial q. Note that if kj is a 
solution of this equation, then so is - kj' and so is kj . We 
assume here that these solutions are all distinct, and that 
Im( + kj);;;.O. 

Now if we insert (27) back into (24), do the integration, 
and equate coefficients of the various resulting exponentials, 
we get 2m - 1 equations relating the A j and Bj' and one 
equation determining the admissible values of An (w) for giv
en w. Details are presented in the next section. 

Once the eigenvalues An (w) and eigenfunctions tPn (x,w) 
ofthe operator R (w) = P(w)RP(w) are known, then we can 
calculate the determinant A (w) by (15). Moreover, we can 
also calculate the kernel of K (w), since if the eigenfunctions 
tPn(w) are normalized by 

then we have, for - 00 < x, y..;;w, 
00 

R (x,y,w) = L An(W)tPn(x,w)tPn(y,w), 
n= 1 

and so, by (8), for - 00 <X,y";;W, 

00 - An(W) 
K(x,y,w) = n~l 1 + An(W) tPn(x,w)tPn(y,w) 

and 

G'.) -An(W) 2 

K (W,W,W) = n~l 1 + An (w) tPn (w,w) . 

But from (12) and (13) we have 

d 
K (w,w,w) = - -log A (w) 

dw 

= _ i: A ~(w) . 
n=l 1 +An(W) 

(29) 

(30) 

(31) 

(32) 

(33) 

Comparing (32) and (33), we see that when x = w, we have 

tPn (W,W)2 = A ~ (w)/ An (w). (34) 

On the other hand, since R (x + y) = ° if x + y < 0, we see 
from (24) that, when x = - w, we have 

tPn ( - w,w) = 0. (35) 

Thus we see that the eigenfunction tPn (x,w) of R (w) vanishes 
unless Ixl ..;;w, and then is a real exponential polynomial 
which vanishes at x = - wand takes the value (A ~ (w)/ 
An (WW /2 atx = + w. 

It is not clear to us yet what role these eigenvalues and 
eigenfunctions may play in a further study of the Gel'fand
Levitan equation, nor what physical significance, if any, may 
be attached to them. We note here only that Eq. (4) admits an 
iterative solution 
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K (w) = - R (w) + R (W)2 - R (W)3 + ... (36) 

which converges in operator norm, according to the Fred
holm theory, if and only if the eigenvalues An(W) of R (w) all 
satisfy 

(37) 

This condition provides a natural obstacle to the conver
gence of any iterative procedure. In the physically interest
ing case lr(k)1 < 1, and so (20) implies (37). We conclude that 
in this case the iterative solution (36) actually converges geo
metrically in operator norm to the operator K (w). 

lt may also be possible to develop effective approximate 
solutions to the Gel'fand-Levitan equation by using a finite 
number of the eigenvalues and eigenfunctions as normal 
modes, to be computed numerically, e.g., by a suitable vari
ational principle. 

2. CALCULATIONS 

Now we assume that r(k) is rational, of the form (16), 
and rewrite it as 

r(k)= i _ai_. 
i=1 k-b i 

(38) 

Here ai and bi are complex constants, with 1m bi < O. We 
assume that the bi are all distinct. It follows from (1) that 

R (x + y) = () (x + y) i ( - iai)e - ib,{x + y). (39) 
;=1 

We now insert the forms (27) and (39) into Eq. (21) and equate 
the coefficients of the exponential terms e ± ikr. In this way 
we find 

To satisfy (40) and (41), we put 

s(kj) = (r( - kjW12, 

t(kj) = (r( + kj W12, 

(43) 

(44) 

where the square roots are chosen so that s(kj)t (kj ) = - A. 
Then we put 

Aj = s(kj)Cj , (45) 

Bj = t(kj)Cj , (46) 

with Cj to be determined, and note that (40) and (41) are 
satisfied for any choice of Cj • 

Now (42) takes the form 
m 

L AijCj =0, (47) 
j=1 

where the matrixAij is given by 

A -A (w 1) _ s(kj) ~kj-b,)w t(kj) -i(kj+b,)w .. - ij ".. - e - e 
IJ i(kj - bi ) i(kj + b;) 

(48) 
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Note that the kj' and hence the Aij' depend on A. Equation 
(47), and hence (42), admits a nontrivial solution if and only if 

det(Aij(w,A )) = O. (49) 

This is the case only for certain values An of A; these values 
A n are then the eigenvalUes, and the corresponding functions 
¢n are the eigenfunctions of (24). In this way the eigenvalue 
problem for (24) reduces to the problem of solving (49). 

It is instructive to apply this same procedure to obtain a 
solution K (x, y,w) for the integral equation (4). An argument 
similar to that leading to (26) shows that if y < x, then 
K (x, y,w) satisfies a differential equation in y of the form 

q( -D)q(D)K(x,y,w) =p(D)P( -D)K(x,y,w). (50) 

Here D = a; ay. Hence K (x, y,w) must have the form 

K(x,y,w) = i Aj(x,w)eikjY + Bj(x,w)e-ikjY, (51) 
j=1 

where the kj are now solutions of 

r( - k )r(k ) = 1. (52) 

This is just (28) with A 2 = 1. If we insert (50) and (39) into (4) 
and equate coefficients of e ± ikj y

, we find 

(53) 

( 

m a. ) 
i~1 _ k

j 
'_ b

i 
Bj = r( - kj)Bj = Aj , (54) 

~ ( __ A..:..j_-ei(k) - b,)w Bj - i(kj + b,)W) 
£.. e - e 

j= 1 i(kj - bi) i(kj + b;) 

= _ e - ib,x. (55) 

Note that (53) and (54) are just (40) and (41) with A = - 1, 
and (42) is the homogeneous form of (55). Hence, with the 
choices (45) and (46) (with A = - 1) for Aj and Bj' we know 
that (53) and (54) are satisfied, and (55) becomes 

~ A C _ -ib,x £.. ijj--e (56) 
j= 1 

with the matrixAij = Aij(w, - 1) given again by (48), with 
A = - 1. When lr(k)1 < 1, we know [cf. (20)] that A = - 1 
cannot be an eigenvalue of R (w), and hence that 
detAij(w, - 1) cannot vanish. Hence Aij(w, - 1) must be in
vertible. Setting 

Bjdw) = (A -I(w,l))jk, (57) 

we have 

Cj(x,w) = i Bjk(w)e - ib"x, 
k=1 

and so 

(58) 

K (x, y,w) = - i Bjk (w)e - ib"x(s(kj )eikP> + t (kj)e - ikp». (59) 
j,k= 1 

Since 

s(kj )ikp> + t (kj)e - ikp> = A kj (y)ibk Y, (60) 

where A kj(y) = dA kj (y, - l)ldy, we may rewrite (59) as 
m 

K ( ) } B ( )A' ( ) - ibk(x - y) x, y,w = - j,t: 1 jk w kj y e . 
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In particular, when x = y = w, (61) becomes 

K(w,w,w) = - ~tr log A (w, - 1). 
dw 

Comparing (62) with (33), we see that 

..::i (w) = constX det A (w, - 1). 

(62) 

(63) 

The constant in (63) need not be 1, as our example in the next 
section shows, but it plays no role in determining K (w,w) or 
V(w). 

3. EXAMPLES 

Here we work through the simplest class of examples. 
We assume that m = 1 in (3S) and set a l = ia, hi = - iP, so 
that 

r(k)- ia __ a_ 
- k + iP - P - ik' 

(64) 

with a.p real constants, a.p> O. (The potentials for these 
reflection coefficients have been obtained using Gel'fand
Levitan methods for - p<a <P in Refs. S and 9 and for 
a = P in Ref. 10. Note that the case a = P is a pathological 
case in which two distinct potentials can be found which 
have the same reflection coefficient. 10) Then we have from (1) 

R (x + y) = O(x + y)arP("+Y), (65) 

and the eigenvalue equation (24) becomes 

a f~" e - P(" + Y),p (y,w)dy = A,p (x,w). 

One may verify that (26) holds: 

A2q( -D)q( +D)t/J(x,w) 

= A 21/3 2 - D 2)t/J (x,w) 

= p(D)P( - D )t/J (x,w) = a2,p (x,w), 

(66) 

(67) 

from which it follows that,p (x,w) must have the form (setting 
kl=K) 

,p (x,w) = AeiK" + Be - iK", 

with ± K chosen so that 

(6S) 

(69) 

We assume firstthatA 2 <a2Ip 2
, so that ± K are real. Insert

ing (6S) into (66), integrating, and equating the coefficients of 
e ± iK", we find 

(ia/(K + ip))A = - AB, (70) 

(ia/( -K+iP))B= -M. (71) 

Setting 

S(K) = (ia/( - K + iP W12, (72) 

t (K) = (ia/(K + iP W12, (73) 

A =S(K)C, (74) 

B=t(K)C, (75) 

we get 

,p (x,w) = C (S(K)eiK" + t (K)e - iK"). (76) 

The matrix Aij(w,). ) in this case reduces to a single entry 
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S(K)e(iK-P)w t (K)e( -IK-P)W 
A I1(w,).)= (iK-P) - (iK+P) (77) 

It follows that 

aA
l1

(w,).) = - r(K)s(K)e(iK-P)W - r( -K)t(K)e(-iK-P)w 

= At (K)e(iK - P)w + AS(K)e( - IK - P)w 

= Ae - Pw,p ( - w,w)/C, (7S) 

and 

aA ; I (x,). ) = ae - P",p (x,w)/C. (79) 

Thus the eigenvalue condition (49) in this case reduces to the 
condition 

,p ( - w,w) = O. 

To satisfy (SO), we set 

S(K) = pe - i
y, 

withp = Ir(K) 1 1/2 and y=! arg r(K): 

p = IA 1
1/2

, y = ! arctan(Klp). 

Then we have 

_ { peiY if A < 0, 
t(K) - "f 1 _pe'Y 1 .1\.>0, 

and (76) becomes 

{ 
21A 1I/2C COS(KX - y) 

,p (x,w) = 2ilA 1I/2C sin(Kx - y) 

Then (SO) requires 

or 

COS(KW + y) = 0 if A < 0, 
sin(Kw + y) = 0 if A > 0, 

(SO) 

(SI) 

(S2) 

(S3) 

(S4) 

(S5) 

(S6) 

where n = 0, ± 1, ± 2, ... , and in either case we are led to the 
transcendental equation 

KIP + tan 2Kw = 0 (S7) 

for the admissible solutions of K, and hence of A, in terms of 
w. The associated eigenValues and eigenfunctions are then 
just the admissible values A" of A, and 

{
C" COS(K"X-y,,) if A" <0, 

,p,,(x,w) =. . 
C" Stn(K"X - y,,) lfA" >0, 

(SS) 

where C" is merely a normalizing constant. 
The reader can now verify that if A 2> a 21p 2, then ± K 

are replaced throughout by ± ip, with p, real, so that (S5) is 
replaced by 

{
COSh(JLW + y) = 0 if A < 0, (S9) 
sinh(JLw + y) = 0 if A> 0, 

admitting no new admissible values for A. This verifies what 
already seems reasonable, that 

0<A~<a2Ip2, (90) 

i.e., that the A ~ must lie in the range of Ir(k W. 
The kernel K (XJl,w) is given by (61) with A = - 1, 

which, in view of (7S), reduces to 

K(x,y,w) = - (a cos(KY - y)/COS(KW + y)jeP(W-"). (91) 
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Here we suppose thata2 >,82, in which case A 2 = 1 <a21,82, 
K = + (a2 - ,82)1/2isrea1,andr = ~ arctan ((a21,82) _ 1)1/2. 
If 1 > a 21,8 2, then K = ip is imaginary, with 
p = + (p2 _ a 2)1/2. Then S(K) = (al(p - pW l2 = e6, and 
t (K) = (al(p - p))-1/2 = e - 6, where now ~ = ! log(al 
(p - p)) = arctanh 1p1,8). Then t/J (x,w) = 2C coshlp,x -~) 
and aA II(W, - 1) = - e - Pw2 coshlpw + ~ )IC. Hence if 
a 2 <,82, then (91) is replaced by 

K(x,y,w) = - (a coshlpy - ~)/coshlpw + ~))eP(w-x). 
(92) 

The intractability of (87) prohibits an explicit determination 
of A" (w), or of A (w), in general. In the limiting case a = 1, 
,8 = 0, however, we have r = 1r14, and (87) becomes 

1r {In + !)1r if ...1.<0, 
KW +-= 

4 (n + 1)1r if A> 0. 

The positive admissible values of K are 

_ {(4n + 1)1r14w if A <0, 
K" - (4n + 3)1r14w if A> 0, 

for n = 0,1,2, ... , and the admissible values of A are 

or 

{
-11K" = - 4w/(4n + 1)1r if A" <0, 

A" = + 11K" = + 4w/(4n + 3)1r if A" > 0, 

A" = (- 1)"+ 14w/(2n + 1)1r, n = 0,1,2, .... 

Hence in this case 
00 

A (w) = II (l +...1.,,) 
,,=0 

00 ( ( _ I)" + 14W) 
= JJo 1 + (2n + 1)1r 

= 21/2COS(W + 1r14). 

On the other hand, from (78) we have in this case 

AII(w,A.) = (A IC)t/J (- w,w). 

In particular, for A = - 1, K = + 1, 

AII(w, - 1) = - 2(cos KW + 1r14) 
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(93) 

(94) 

(95) 

(96) 

(97) 

(98) 

(99) 

sothatA (w)anddet(AII(w, - 1)) differ by the constant factor 
- 21/2. The eigenfunctions in this case are given by 

{
CIt cos((4n + 1)1rx/4w-1r14) if An <0, 

t/J,,(x,w) = . 
Cn sm((4n + 3)1rx/4w - 1r14) if An < 0, 

and the kernel K (x, y,w) is given by [cf. (91)] 

K( ) 
- cos(y -1r14) 

x,y,w = . 
cos(w + 1r14) 

(100) 

We have assumed throughout this section that a > ° in 
(64). The reader may verify that if a <0, then everything is 
exactly the same except that the phase r = ! arg r(K) is then 
augmented by 1r. We have avoided the case a 21,8 2 = 1, since 
then, when A = - 1, K = 0, and so ± K are not distinct (cf. 
Ref. 10). 
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A well-known result, due originally to Alexandrov in 1953 and subsequently rediscovered by 
Zeeman in 1964, states that transformations of Mink ow ski spacetime which preserve causality are 
essentially orthochronous Lorentz transformations. In this article, we first exhibit a proof of this 
result by using a lemma of Zeeman to reduce the proof to another well-known theorem of 
Alexandrov involving transformations preserving light speed. Then, by generalizing Zeeman's 
lemma and using recent extensions of Alexandrov's light-speed theorem, we determine the causal 
automorphisms of de Sitter and Einstein cylinder spacetimes. 

PACS numbers: 04.20. - q 

1. INTRODUCTION: THE CAUSAL AUTOMORPHISM OF 
MINKOWSKI SPACETIME 

Minkowski spacetime may be thought of as R4 
equipped with the metric ( , ) given by 

(x,y): = - XI YI + X2Y2 + X3Y3 + X4Y4 

for all x: = (X I,X2,x3,x4)'Y: = (YI,h 'Y3 'Y4)ER4. The separa
tion between events x, yEM4 is the quantity (x - y,x - y), 
and is preserved by all translations and Lorentz transforma
tions (linear, metric-preserving bijections) of M 4 • 

The separation between events in M4 is zero iff they are 
joined by an unreflected light signal. Alexandrov's "light
speed" theorem 1.2 states that bijections of M4 preserving se
paration zero in both directions must be Lorentz transfor
mations, up to translations and dilatations (scale changes). 
The significance of this result is that, unlike Einstein's origi
nal derivation of Lorentz transformations,3 it assumes no 
regularity conditions (e.g., linearity, or even continuity) for 
the transformations. 

A vector XEM4 is said to be timelike, null, or spacelike 
whenever (x,x) is negative, zero, or positive, respectively. 
The nonzero null and timelike vectors lie, respectively, on 
and inside one of the two halves of a circular cone in M 4• 

They are thus segregated into two disconnected compo
nents, which we may (arbitrarily) label future-pointing vec
tors and past-pointing vectors. It is easily checked that, un
less they are parallel null vectors, two nonspace-like vectors 
x i= 0, Y i= 0 lie in the same component iff (x, y) < O. Lorentz 
transformations which preserve future-pointing vectors are 
said to be orthochronous, and form a subgroup of the full 
Lorentz group. 

Causality on M4 may be defined in terms of future
pointing vectors as follows. A line in M4 with timelike direc
tion represents the spacetime history of a material particle 
experiencing no external force, while a line with null direc
tion describes the history of an unreflected photon. Since an 
event XEM4 can cause an event yEM4 iff a material particle or 
photon can experience both events in that order, two corre
sponding causal relations, symbolized by <E and <E', may be 
formulated. 

Definition 1.1: For X,yEM4' 
(i) x <EY iffy - x is timelike and future pointing, 
(ii) x <E .y iffy - x is null and future pointing. 

The result which interests us here appeared first as one 
of several related results in Ref. 4; its rediscovery by Zee
mans appears to be better known (at least among physicists), 
possibly because the former article is in Russian (see Ref. 6 
for historical background). The theorem states that bijec
tions of M 4 , which preserve the relation <E in both directions 
(Zeeman's "causal automorphisms"), must be orthochron
ous Lorentz transformations, up to translations and dilata
tions. 

The significance of this result is again, as with Alexan
drov's light-speed theorem, the absence of regularity as
sumptions on the transformations involved: preservation of 
a simple, physical condition is sufficient. For this reason, 
interest in these and similar characterizations has been 
growing steadily in recent years, particularly among geo
meters. Many generalizations now exist; these involve other 
spacetimes, other separations, more abstract light-cone 
structures, spaces over more general fields, etc. The bibliog
raphies of Refs. 6 and 7, for example, provide a cross section 
of such works. 

Zeeman's proof of the causality-preservation theorem 
on M4 begins by showing that causal automorphisms must 
also preserve the relation <E' in both directions. The crux of 
the matter is the following condition, for which we supply 
the proof omitted in Ref. 5. 

Lemma 1.1: For distinct x, yEM4, 

'ff{x~, X<EPI .. 
for all zEM4 , z <EX Impbes z <EY. 

Proof (a) Assume that x <E .y; then clearly x~. For any 
ZEM4 with Z <E x, write Y - Z = (y - x) + (x - z); then 

(y - z, Y - z) = (y - x, Y - x) + 2( Y - x,x - z) 

+ (x - z,x - z) < 0 

since y - x is null, x - z is timelike, and both are future 
pointing. Thus y - z is timelike, and, from 
(y - z,y - x) = (x - z,y - x) <O,y - z is future pointing 
(since y - x is). Hence z <Ey. 

(b) Assume that x-f· y and x~. For any timelike future
pointing vector t not parallel toy - x, the two-space spanned 
by t and y - x contains a spacelike vector of the form 
(y - x) + at. If Y - x is spacelike, we may choose a > 0 for 
small enough a; otherwise Y - x must be past pointing (else 
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x -EY or x -E .y), which implies a> 0. In either case, the vector 
z: = X - at satisfiesz-Ex, butz~. • 

After restricting attention to the relation -E', Zeeman's 
proof proceeds through properties of quadric surfaces, com
positions of parallel displacements, Cauchy's functional 
equation, etc., eventually reaching the required result. How
ever, since two events x, yEM4 have zero separation iff x -E .y 
or y -E ·X, the theorem follows immediately via Alexandrov's 
light-speed theorem. (The above lemma and the consequent 
shortcut actually work for Minkowski space Mn of any di
mension n;;;.3, where both theorems are valid. For n = 2, 
both theorems fail.) In the next sections, generalizations of 
Lemma 1.1 and Alexandrov's result will yield the causal au
tomorphisms of de Sitter and Einstein cylinder spacetimes. 

2. CAUSAL AUTOMORPHISMS OF DE SITTER 
SPACETIME 

de Sitter spacetime Y 4 can be embedded as a hyperbo
loid in five-dimensional Minkowski space M5 (see Ref. 8, 
Sec. 5.2), i.e., if ( , ) denotes the metric of M 5 , then 
Y 4: = ! X IxEM5, (x,x) = I}, and the (differential) metric of 
Y 4 is given by ds2: = (dx,dx). Events x, YEY 4 with 
(x, y) > - 1 are joined by a geodesic (given by a section of Y 4 

with a two-space in M 5; see Ref. 7) and their separation is sZ, 
where s (found by integrating ds along this geodesic) is the 
real or pure imaginary number given by 4 sinZ(s/2) 
= (x - y,x - y). A direct generalization of Alexandrov's 

light-speed theorem 7 states that bijections of Y 4 preserving 
separation s = ° [i.e., preserving the relation (x, y) = 1] in 
both directions must be induced on Y 4 by the Lorentz trans
formations of M 5 • 

The causal structure of Y 4 is induced by that of M 5 ; 

upon distinguishing the past-pointing and future-pointing 
vectors of M5 as in Sec. 1, we define the causal relations -E 
and -E' on Y 4 essentially as before. 

Definition 2.1: For x, YEY 4' 

(i) x -EY iffy - x is timelike in M5 and future pointing, 
(ii) x -E .y iffy - x is null in M5 and future pointing. 

Clearly, the orthochronous Lorentz transformations of 
M5 induce causality-preserving transformations of Y 4' Zee
man's condition, which generalizes exactly to Y 4 (see be
low), will enable us to establish these induced transforma
tions as the only causal automorphisms of Y 4' 

Lemma 2.1: For distinct x, YEY 4' 

'ff{X~' 
x -E'Y 1 for all ZEY 4' Z -E x implies Z -Ey. 

Proof If x -E .y, repeat part (a) of the proof oflemma 1.1 
with zEY 4 to get the required results. 

Assume that x-f·y and x~. Choose a future-pointing 
tEM5 with (t,t) = - 1, (t,x) = 0, and for E> 0, define 
z: = (1 + C)I/Zx - Et. ThenzEY4, Z-EX, and, for A: = (x,y) 
andjl: = (t,y), (y -z,t) =jl- E and 
(y - z,y - z) = 2{ 1 + Ejl - (1 + C)I/ZA ). We find choices 
of E for which z~. 

If jl > 0, choose E <jl; then (y - z,t) > 0, so z~. 
Ifjl = 0, the space spanned by x andy is orthogonal to t, 

and is thus positive definite. The Cauchy-Schwarz inequa-
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lity gives A Z < 1, so since A =1= 1 (x =1= y) we have A < 1. Then for 
some E>O, (1 + EZ)l/ZA < 1, so forthiSE, (y -Z,y -z»O 
and hence z~. 

Ifjl <0, then A < 1 (else x -E ·yorx -EY). If A >0, chooseE 
with E(A - jl) < 1; then (1 + C)1/2A < (1 + E)A. < 1 + jlE, so 
(y - z,y - z) > 0. If ..1.<0, choose E < - jl-I; then 
1 + jlE > 0, so again (y - Z, Y - z) > 0. In either case, then, 
z~. • 

Using the generalized light-speed theorem exactly as in 
Sec. 1, we have that bijections of Y 4 which preserve the 
relation -E in both directions must be induced by the orth
ochronous Lorentz transformations of M 5• We note that 
since the generalized Alexandrov result is in fact true for de 
Sitter spaces Y n of any dimension n;;;.3, so is our present 
result. 

3. CAUSAL AUTOMORPHISMS OF EINSTEIN'S 
CYLINDER UNIVERSE 

Einstein's cylinder universe 'if 4 can be visualized as a 
circular cylinder in lR5 (see Ref. 8, p. 121), i.e., if "." denotes 
the usual dot product of lR4, then 

'if 4: = {( p,r) IPElR,rElR4,r.r = I) and 

ds2
: = - dp2 + dr.dr. 

Its geodesics are either circular sections of 'if 4 (which are 
spacelike) or of the form r = cos(ap)a + sin(ap)b for some 
constant a;;;'O and orthonormal a,bER4 (and are timelike, 
null, or spacelike whenever a < 1, a = 1, or a > 1, respec
tively). In general, two points of ~ 4 are joined by many geo
desics (e.g., for orthonormal a,bER4, the points (O,a) and 
(1T 12,b ) are joined by all geodesics of the form r 
= cos[( 1 + 4k lo]a + sin[( 1 + 4k )P]b for integral k, thus the 

separation S2 between them (obtained by integrating ds along 
a joining geodesic) will be multivalued. For events (PI,r l ), 

(p2,r2)E~4weobtainsz= -(PI-PZ)Z+ !cos-l(rt·r2)}Z, 
which is negative, zero, or positive whenever the geodesic is 
timelike, null, or spacelike, respectively. 

The transformation group of ~ 4 (i.e., the group of 
transformations of~ 4 which preserve d~ at each point) con
sists of mappings of the form (p,r)_( ± p + const., Ar), 
where A is a 4 X 4 orthogonal matrix. The light-speed 
theorem does not generalize to 'if 4' since there exist rather 
pathological transformations of 'if 4 which preserve separa
tion zero (see Ref. 9 for details; the relevant points follow). 
For example, for fixed (p,r)E'if 4' arbitrary permutations 
within the subset {(p + k1T,( - l)k r)lk an integer) C 'if 4 pre
serve separation zero. Up to such permutations, bijections of 
~ 4 which preserve separation zero [or equivalently, the rela
tion cos( PI - pz) = r l ·r2] in both directions have the form 
(r,cosp, sinp)'_AT(r,cosp,sinpj1 for a scalar function 
A = A (p,r) (determined up to sign by the requirement that 
the condition N = 1 be preserved) and a (constant) 6 X 6 ma
trix T satisfying T' GT = G, where 
G: = diag{ 1,1,1,1, - 1, - 1 J (superscript t denotes trans
pose). 

Causality is defined on 'if 4 by using thep-coordinate as 
a criterion of temporal order, i.e., an event (Pt,rdE'if 4 can 
cause an event (pZ,r2)E~ 4 iff they can be joined by a timelike 
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or null geodesic andpI <P2' Specifically, we define the caus
al relations <EO and <EO' as follows. 

Definition 3.1: For (PI,rd, ~2,r2)E'G' 4' 

(i) (PI,rd <E (P2,r2) iff s2 < 0 for some geodesic joining 
them and PI <Pz, 

(ii) (PI,r l ) <EO'( pz,rz) iff s2 = 0 for some geodesic joining 
them andpI <Pz' 

A more useful characterization of these relations fol
lows: 

Lemma 3.1: For (PI,rd, ~z,rz)E'G' 4' 

(i) (PI,r l ) <E (pz,rz) iff PI <pz and either pz - PI> 1T or 
cos(pz -PI) <rl'rz, 

(ii) (PI,r l ) <EO'( pz,rz) iff PI <pz and cost PI - pz) = rl'rz· 

Proof for some O<.{J,;;;,1T, rl'rz = cos 0, thus 

s2 = - (PI - pz)Z + [cos-I(cos 0 nz 
= - (PI - pz)Z + ( ± 0 + 2k1T)Z 

for integral k. A tedious but elementary analysis of which k 's 
are possible for s2 < 0 and s2 = 0 yields the required results .• 

Zeeman's condition must be slightly modified to hold 
on CrfJ 4' 

Lemma 3.2: For distinct (a,a), (/3,b )E'G' 4' 
(a,a) <EO .( P,b) } 
and /3 - a<.1T 

'ff{(a,a)~( /3,b), and for all (r,C)ECrfJ 4' 

1 (r,c) <EO (a,a) implies (r,c) <E ( /3,b ). 

Proof Without loss of generality we may assume that 
a = O. For some O<'(i)<' 1T, a·b = cos (i). Recall that the cosine 
function is decreasing on [0,1T]. 

(a) Assume that /3<. 1T and that (O,a) <EO'( /3,b). Then 
o < /3 <. 1T and cos /3 = b·a = cos (i), so (i) = /3 > O. Suppose 
there exists a (r,C)ECrfJ 4 with (r,c) <EO (O,a) but (r,c)~ /3,b). We 
have r < 0 < /3 and 0 - r<' 1T [else /3 - r> 1T, which implies 
(r,c) <E (/3,b )]; thus cost - r) < a·c. For O<.B, t/><. 1T defined by 
cos B: = a·c, cos t/> = b·c, we have cost - r) < cos 0, 
cost /3 - r)>cos t/>; thus - r> B and/3 - r<.t/>, from which 
t/> > B + (i) and cos t/> < cos(B + w). 

Since the subspace of R4 spanned by a, b, and c is posi
tive definite, 

a·a b·a c·a cos w cos B 
0<. a·b b·b c·b cos w cos t/> 

a·c b·c c·c cos B cos t/> 1 

which may be written 

[cos(B + w) - cos t/> I [cos(B - w) - cos t/> 1<.0. 

The first factor has been proven positive, so cos t/> 
>cos(B - w), whence B + w<. IB - wi. This last implies the 
contradiction that either B or (i) is negative, thus no (r,C)E'G' 4 
with (r,c) <EO (O,a) and (r,c~( /3,b ) exists. 

(b) Assume that (O,a)~ /3,b ) and that for all (r,C)E'G' 4' 

(r,c) <E (O,a) implies that (r,c) <E (/3,b ). If /3 > w, then 
1T»/3> w»O, and consequently cos/3 < cos w = a·b. Hence 
(O,a) <E (/3,b ), a contradiction. If/3 < w, define (r,c): = ( - €,a) 
forO<€ <w - /3; then r<Oand cost - r) = cos € < 1 = a·c, 
so (r,c) <EO (O,a). But cost /3 - r) = cost /3 + €) > cos w = b·c 
and 13 - r = /3 + € <W<'1T, so (r,c)~p,b), a contradiction. 
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If/3 = (J) = 0, thena·b = 1, soa = band (O,a) = (/3,b), a 
contradiction. There remains the case 13 = (J) > 0, which 
yields o </3<.1T and cos/3 = a·b, from which (O,a) <EO.(/3,b) as 
required. • 

We see that bijections of CrfJ 4 which preserve the relation 
<EO in both directions preserve zero separation for "close 

enough" points. The following lemma, which rules out the 
existence of "null triangles" in 'G' 4, will enable us to extend 
this result to more distant points. 

Lemma 3.3: Three distinct points (a,a), (/3,b ), (r,C)ECrfJ 4 
with pairwise zero separation lie on a common null geodesic. 

Proof Without loss of generality a = 0, so cos /3 = a·b, 
cos r = a·c,andcos(/3 - y) = b·c. Ifbandcareparalle1 toa, 
then for some integers k,n, (/3,b) = (k1T,( - l)k a) and 
(y,c) = (n1T,( - Ita). Then for any unit dER4 orthogonal to 
a, all three points lie on the null geodesic with equation 
r = (cos pIa + (sin p)d. 

We may now assume that b is not parallel to a; thus 
sin /3 #0. Define d: = - cot /3a + csc Pb; then d is unit and 
orthogonal to a, and (O,a) and (/3,b ) lie on the null geodesic 
with equation r = (cosp)a + (sinp)d. For some scalars 4/I,t/> 
and some eER4 orthogonal to a and d, c = 4/la + t/>d + e, so 
4/1 = a·c = cos rand t/> = c·d = sin r, from which 
I = c·c = cos1 r + sin1 y + e·e. It follows that e = 0, so (r,c) 
is also on the null geodesic. • 

Now consider two "distant" points (PI,rd, (P2,r2)ECrfJ 4 
with separation zero. Cover the null geodesic segment join
ing them by a collection of open, overlapping subsegments 
whose points are "close enough," i.e., whose p-coordinates 
differ by at most 1T. By Lemma 3.3, the images of these sub
segments under a causal automorphism are also overlapping 
segments of null geodesics. But the points of each image 
overlap lie on at most a single null geodesic, so in fact, all 
image segments lie on the same null geodesic. This geodesic 
joins the images oft pprl ), (p2,rZ)' so these image points also 
have separation zero. 

Since they preserve separation zero in both directions, 
our causal automorphisms have the form 

(r,cos p,sin p)'--+AT(r,cos p,sin pj1 

for scalar A and matrix Tas described earlier, up to permuta
tions within subsets of the form 

[ (p + k1T,( - I)k r) Ik an integer I for fixed (p,rjECrfJ 4' 

But such permutations must now preserve causality, so since 
all points of the subset lie on a common null geodesic, their 
order must be preserved. It follows that if (p,rj denotes the 
image of (p,r) under a causal automorphism, then the image 
of (p + k1T,( - l)k r) is (p + k1T,( - l)k rj for all integers k. 

The scalar A = A (p,r) is fixed up to sign by the require
ment that ,:, = 1 = cosz P + sin2 p. For (/3,b ), (y,C)ECrfJ 4 we 
have 

b·c - cos(P - r) 
= (b,cos ,B,sin,B)G (c,cos r,sin rV 

= A (/3,b)A. (y,c)(b,cos/3,sin /3 )(Tt GT)(c,cos y,sin yV 

= A ( /3,b )A. (r,c) [ b·c - cost /3 - y) J 

since T' GT = G: = diag[ 1,1,1,1, - 1, - IJ. Since causality 
is preserved, all A's have the same sign. We may in fact take 
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A> 0: since T' GT = G iff ( - T)' G ( - T) = G, minus signs 
may be absorbed into T. 

For (a,a)E'G' 4' consider the subset 

vU'(a,a): = {(p,r)E'G' 41(a,a) "'" (p,r) and either 

(p,r) "'" (a + 217',a) or (p,r) "'" ·(a + 217',a) 

or (p,r) = (a + 217',a) J. 
Clearly, if (a,a)-+(a,a), thenvU'(a,a) maps intovU'(a,a). Fur
thermore, careful examination of the definitions of "'" and 
"'" . shows that 

vU'(a,a) = {(p,r)E'G' 410<p - a<217', cos(p - a)<r.a, 

and ifcos(p - aj = r·a, thenp - a>17'j, 

from which it can be checked that any point (p,rjE'G' 4 can be 
uniquely expressed as (a + k17',( - l)k s) for some 
(a,s)Evk(a,a) and integer k. It follows that the image of any 
point of 'G' 4 is determined by the image of vU'(a,a) for any 
given (a,a)e'G' 4' 

In summary, we may describe any bijection of Ctf 4 

which preserves the relation "'" in both directions as follows: 
choose (a,ajE'G' 4 with image (a,a). Then for some 6 X 6 ma
trix Twith T' GT = G: = diag{1, 1, 1, 1, - 1, - 1 J and for a 
uniquely determined scalar function A = A (a,s) > 0, the 
causal automorphism maps vU'(a,a) onto vU'(a,a), and has 
the form (a,s)-+(i7,S), where 

(S,cos u,sin oY = AT(s,cos a,sin a)' 

on vU'(a,a). Any point (p,r)E'G' 4 has the form 
(p,r) = (a + k17',( - l)k s) for some unique (a,s)Evk(a,a) and 
integer k: its image is then (i7 + k17',( - I )kS). 

It is easily checked that, given any point (a,a)E'G' 4' any 
image point (a,a), and a 6 X 6 matrix Tsatisfying T' GT = G, 
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then the bijectionofCtf 4 defined as above by (a,a),(a,a), and T 
is a causal automorphism of Ctf 4; we have thus characterized 
all causal automorphisms. As for Minkowski and de Sitter 
spacetimes, the characterization is in fact valid for n-dimen
sional Einstein cylinder spaces Ctf n for n>3. 

We note finally that the occurrence of the subsets 
vU'(a,a) above is no accident: the interior of each is confor
mal to Minkowski spacetime M4 (see Ref. 8, p. 122). The 
translations, dilatations, and orthochronous Lorentz trans
formations of M4 induced transformations on vU'(a,a) 
which, since they preserve the signs of separations between 
points, preserve causality on vU'(a,a). The causal automor
phisms obtained above are in fact compositions of these 
transformations with those of the transformation group of 
'G' 4 described earlier. 
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In this paper we find an exact, static, spherically symmetric solution for the nonsymmetric 
Kaluza-Klein theory. This solution has the remarkable property of describing "mass without 
mass" and "charge without charge." We examine its properties and a physical interpretation. 

PACS numbers: 04.50. + h, 11.1O.Ef 

INTRODUCTION 

The aim of this paper is to find an exact spherically 
symmetric solution to the nonsymmetric Kaluza-Klein 
equations (see Refs. 1-7) in the electromagnetic case. 1.3 

The nonsymmetric Kaluza-Klein theory provides a 
true unification of the electromagnetic and gravitational 
fields in the following sense. It not only reduces two major 
principles of in variance (i.e., the local coordinate invariance 
principle and the local gauge invariance principle) to the lo
cal coordinate invariance principle, but it also gives rise to 
new effects, which are absent in the classical Kaluza-Klein 
theory. These effects do not appear in either Moffat's theory 
of gravitation (see Refs. 8-10) or in Maxwell's electromagne
tism. They are therefore interference effects between the gra
vitational and electromagnetic fields. We outline these new 
features of the nonsymmetric Kaluza-Klein theory below 
(see Ref. 1): 

1. A new term appears in the electromagnetic Lagran
gian of the form 

(l/41T)(g II"VIFwf. 

2. There exists a vacuum electromagnetic polarization 
tensor MaP which has a geometrical interpretation as torsion 
in the fifth dimension. Thus, there are two electromagnetic 
field strength tensors Fap and Hap. 

3. There is an additional term for the Lorentz force in 
the equation of motion for a test particle: 

(qlmo)g lyalHyp UP, 

where q is the charge of the test particle and mo is its rest 
mass. This term plays the role of a reaction force for nonho
lonomic constraints. I 

4. A new traceless energy-momentum tensor T~13 ap
pears for the electromagnetic field. 

5. There exists a source for the electromagnetic field, 
Le., the conserved current/" . 

All of the above effects vanish when the metric of space
time is symmetric, in which case we get the classical Kaluza
Klein theory. Moreover, the new effects do not contradict 
any experimental or observational data. I The nonsymmetric 
Kaluza-Klein theory has a well-defined linear approxima
tion. II In the electromagnetic case it has been shown II that 
there is no coupling between skewon and electromagnetic 
fields up to the first order in hl"v gl"v - 7JI"V (where 7JI"V is 

oj On leave of absence from the Institute of Philosophy and Sociology of the 
Polish Academy of Sciences, 00-330 Warsaw, Nowy Swiat 72, Poland. 

the Minkowski tensor). The nonsymmetric Kaluza-Klein 
theory also has a well-defined geometry on the five-dimen
sional manifold, which one calls Einstein geometry. I When 
the electromagnetic field vanishes, we get Moffat's nonsym
metric gravitation theory (NGT) which is able to fit the peri
helion shift of Mercury in the presence of a nonzero quadru
pole moment of mass for the sun. 12.13 

It is possible to extend the formalism of the nonsymme
tric Kaluza-Klein theory to the nonabelian case2

•
6 (includ

ing such features as spontaneous symmetry breaking and the 
Higgs mechanism) as well as to the Jordan-Thiry case4•5•7, 

which possesses a scalar field connected to the gravitational 
constant. Material sources have also been incorporated3 into 
this formalism. 

It is of course important to find significant physical con
sequences of the "interference effects" present in the non
symmetric Kaluza-Klein theory. The best way to achieve 
this is to find an exact solution of the full field equations, and 
this is the aim of this paper. We find an exact solution of the 
field equations in the static, spherically symmetric case in 
the form suggested in Sec. 6 of Ref. 1. Even in this, the sim
plest case, we get the following interesting results: 

1. The electric field is nonsingular at r = 0 and has Cou
lomb like behavior for large r. This is similar to the situation 
in Born-Infeld electrodynamics. 14 Thus, there is a maximal 
value of the electric field. 

2. Asymptotically (for large r) the full solution behaves 
like the charged Reissner-Nordstrom type solution in 
NGT.IO 

3. The Newtonian mass is constructed from an electric 
charge Q and from a fermion charge /. 

4. The energy distribution is not singular and is negative 
in a small region around r = O. This means that the solution 
describes a bounded system of electromagnetic and gravita
tional fields. 

5. The total mass (Le., total energy) of the solution is 
greater than the Newtonian mass (the mass which is seen at 
infinity). 

6. There is no singUlarity at r = 0 in the function 
a = gil; that is, gil (r = 0) = 1. 

7. The only singularities atr= OareinlU g[I4] = /21r 
and in a factor (1 + [4Ir4) in the function r = g44' There is 
also the usual singularity in the determinant of the full non

symmetric tensor ~ - g = r sin (J at r = O. 
8. The charge distribution is nonsingular. 
9. For sufficiently large charge Q there exists one or two 
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event horizons, just as in the Reissner-Nordstrom solution 
to the Einstein-Maxwell equations. Sufficiently large charge 
in the present case means sufficiently large Newtonian mass 
as well. 
This solution is interesting as a classical model of a charged 
particle constructed from gravitational and electromagnetic 
fields. If we suppose that the Newtonian mass of our solution 
is the mass of an electron, we get a relationship between the 
classical radius of an electron and the parameter I from Mof
fat's theory of gravitation. The most facinating aspect of our 
solution is that it describes "mass without mass" and 
"charge without charge" in the following sense. At the ori
gin r = ° (or anywhere) there are no Coulomb-like or New
ton-like first- and second-order poles with charge and mass 
as residues. This is true for the metric and for the electric 
field. 

The paper is organized as follows. In the first section we 
describe some elements of the nonsymmetric Kaluza-Klein 
theory. The second section deals with the spherically sym
metric fields in the nonsymmetric Kaluza-Klein theory, and 
presents the field equations in this case. The third section is 
devoted to the exact, static, spherically symmetric solution 
ofthe nonsymmetric Kaluza-Klein theory. We find this so
lution and examine its properties. In the fourth section we 
discuss our conclusions and prospects for further research. 
Appendices A and B contain some details of calculations; in 
Appendix A we derive the Ricci tensor in the general (non
static) spherically symmetric case, while in Appendix B we 
deal with some details concerning the static, spherically 
symmetric case. In Appendix C we write down the coeffi
cients of the connection l' and the Christoffel symbols for 
our solution as well as the equations of motion for uncharged 
and charged test particles. 

1. ELEMENTS OF THE NONSYMMETRIC KALUZA
KLEIN THEORY 

Let P be a principal fiber bundle with structural group 
G = U( 1) over space-time E with projection 1T and let us de
fine on this bundle a connection a. We call this bundle an 
electromagnetic bundle and a an electromagnetic connec
tion. We define a curvature 2-form for the connection a: 

fl = da = !1T* (F"vO,l 1\ 0 V), 

where 

(1.1) 

F"v=J"Av-JvA", e*a=A,,(jll. (1.2) 

AI' is a 4-potential of the electromagnetic field, e is a loc~ 
section of !:' F"v is an electromagnetic field strength, and (J' 

is a frame on E. Bianchi's identity is 

dfl=O, (1.3) 

so that the 4-potential exists. This is of course simply the first 
Maxwell equation. On space-time E we define a nonsymme
tric metric tensor gap such that 

gap = g(aP) + g[ap I' 
(1.4) 

g gyp = g rfly = oy ap Pa5 a' 
where the order of indices is important. We define also on E 
two connections liJa p and Wrx p: 

118 J. Math. Phys., Vol. 25, No.1, January 1984 

liJa p = 1'py(jY 

and 

Wrx p = Wrx py 7Ja , 
such that 

Wrx p =liJap -jOpW, 

where 

W= wy7Jr = MW~l7 - W~uy)7JY. 

(1.5) 

(1.6) 

For the connection liJa p we suppose the following condi
tions: 

(1.7) 
Q'" f3a (F) = 0, 

where D is the exterior covariant derivative with respect to 
liJa p and Qa py (F) is the torsion ofliJa p. Thus we have de
fined on space-time E all quantities present in Moffat's the
ory of gravitation (see Refs. 8-10). Let us introduce on ~ a 
frame 

(1.8) 

Now we turn to the natural nonsymmetric metrization of the 
bundle t According to Refs. 1-3 we have 

r= 1T*g - 0 5 
® 0 5 = 1T*(g(ap)7Ja ® eP) - 0 5 ®05, 

(1.9) 
r = 1T*g = 1T*( g[ap 17Ja 1\ ~). 

From the classical Kaluza-Klein theory we know that 

A. = 2.JG / c2 (see Ref. 1). We work with a system of units 
such that G = c = 1 and A. = 2. We have 

YAB = t~ap 1- ~). (1.10) 

where 

YAB = Y(AB) + Y[AB I (1.11) 

and 

r = Y(AB)(JA ® OB, (1.12) 

r=Y[AB IOAI\OB (1.13) 

(see Refs. 1-3 for more details). Now we define on ~ a con
nection evA B such that 

DYA+B- = DY
AB 
-YADQ~dr)(Jc=O, (1.14) 

which is invariant with respect to the action of the group 
U( 1) on P. D is the exterior covariant derivative with respect 
to the co-nnection evA Band Q D BC (F) is the tensor of torsion 
for the connection evA B' In Refs. 1 and 2 it is shown that 

A _ ~1T*(liJa p) + gya HypO 5 H pY O
Y1 ev (1.15) 

B - gaf3(HYf3 + 2Fpy)()Y 0' 

where Hpy is a tensor on E such that 

g6P gy6H ya + ga6~YHfJr = 2ga6~rFpr' (1.16) 

In order to get the usual interpretation of geodesics in the 
classical Kaluza-Klein theory we must assume l

-
3 

HaP = - Hpa· (1.17) 

We define on P a second connection 
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(1.18) 

Let us define a Moffat-Ricci curvature scalar for W A B' One 
gets l - 3 

R (W) = R (W) + (2( g[ ",v]F!'v)2 - H!,aF!'a)' (1.19) 

where 

(1.20a) 

is a Moffat-Ricci curvature scalar for the connection ijia p 

and Rap(r) is a Moffat-Ricci curvature for the connection 
wa p' In particular, 

(1.20b) 

where R ;vp (r )~re the components of the ordinary curva
ture tensor for r. In addition 

H,.,a =~"'gyaHpy. (1.21) 

From Eq. (1.19) one gets the field equations I 

RaP(W) - ~ gapR (W) = 81TT~p, (1.22) 

g[!'v].v = 0, (1.23) 
-; -; -g!'v.u - g;vF !'u - g!,;F uv - 0, (1.24) 

a!, (Hal') = 4g[atnap(g[!'v]F!'v)' (1.25) 

where 

T~p = (l/41T)(gYI'HyaFI'fJ - 2g[!'v]F}JvFaP 

- JKap(H!,vF}Jv - 2(g[}JV]F}Jvf)), 

g[}JV] = ~ _ gg[}JV] , 

HiLa =.[ _ g~}JgyaHfJY' 

(1.26) 

(1.27) 

The tensor H}Jv has an interpretation as a second electro
magnetic field strength tensor. 1-3 We have 

~PT~p = O. (1.28) 

Equations (1.22)-(1.25) can be written in the form 

R[[ap].y](r) - 81TT[[,.p].y] = 0, 

F,., =0, 

(1.30) 

(1.31) 

(1.32) 

(1.33) 

where RaP (I' ) is a Moffat-Ricci tensor for the connection 

{jja p = Fpy()Y, 

F}J = Ff}Ja]' 

The condition (1.31) is equivalent to (1.23). 

2. SPHERICALLY SYMMETRIC FIELDS IN THE 
NONSYMMETRIC KALUZA-KLEIN THEORY 

(1.34) 

Let us suppose that the fundamental fields in the non
symmetric Kaluza-Klein theory possesses spherical sym
metry. According to Refs. 15-23 one gets 
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(

-a 

g}Jv = ~ 
-U) 

o 
-{3 

- fsin () 

o 

o 
fsin () 

- {3 sin2 
() 

o 
where a, {3, y,/, and U) are real functions of rand t with 
a,y> O. In addition 

FI4 = E (r,t ), F23 = B sin () (2.2) 

and all other components of F}Jv vanish. For ?/,V, the only 
non vanishing components are 

gil = y/(U)2 - ay), 

g22 = g23sin2 () = _ {3 I( {3 2 + PI, 
g44 = _ a/(U)2 - ay), 

g[14] = U)/(U)2 - ay), 

g[23]sin () = f I( {3 2 + f2). 

We suppose that 

U)2 - ay#O and {32 + P#O. 

(2.3) 

(2.4) 

Let us suppose that HaP is also spherically symmetrical, so 
that 

HI4 = D (r,t ), H 23 = H sin () (2.5) 

and the other components vanish. Using Eqs. (1.16), (2.1), 
and (2.3) it can be shown that 

HI4 = FI4 = E (r,t), 

H 23 = F23 = B sin (). 

The Bianchi identity equation (1.3) yields 

B = Bo = con st. 

From Eq. (1.23) one gets 
U)2 [4 

ay - U)2 - {32 + P' 

(2.6) 

(2.7) 

(2.8) 

where [ is a constant of integration. In Moffat's theory of 
gravitation this constant has an interpretation as fermion 
charge. From Eq. (1.33) we have 

E - (Q 1/2)( {32 + f2) + 8jBo 

( {3 2 + f2 + 8f4) 
(2.9) 

where Q is an integration constant. In the intermediate 
stages of calculation we used the following expressions for 

/Fa and~ 

H 14 = 
HI4 -E 

(ay - U)2) = (ay - U)2J' (2.10) 

H23 = Bo (2.11) 
{32 + f2' 

"r=g = sin () [lay - U)2)({32 + f2)] 112. (2.12) 

Thus finally we get Eqs. (1.29)-( 1.32) plus the algebraic rela
tions (2.7)-(2.9). From Eq. (1.30) we get immediatelly 

R[23](r) - 81TTi~] = C I sin (), (2.13) 

where C I = const is an integration constant and 
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Equations (1.31) and (1.32) were solved in Ref. 17 in which 
Pant wrote down the Ricci tensor for such a connection. 

Note that the Moffat-Ricci tensor [Eq. (1.20b)] is a lin
ear combination of the ordinary Ricci tensor and the second 
contraction of the curvature tensor. However, Eqs. (1.23) 
and (1.24) imply that lO 

FifLa 1 = 0 

and 

Fef3 = [In(( - g)I/2)L 

so that the second contraction 

(2.15) 

(2.16) 

R ~fLV = !(F~f3).v - Ffvf3).v) = O. (2.17) 

Consequently the Moffat-Ricci tensor in this case is identi
cally equal to the ordinary Ricci tensor used by Pant, 17 
which we shall denote by AfLV (F). 

Thus we get the equations 

AlJ.tv) (F) = 81TT(p':i' 

A[23 I(r) - 81TT[~3 1 = C1 sin f), 

where 

(2.18) 

(2.19) 

Using Eq. (2.9), the last term in Eg. (2.19) can be written in 
the form 

_ 4a ~fBo + QI2 )2 
2 + f2 + 8/ 4 • 

(2.20) 

Moreover, it can be shown that 

The rest of the components of T~": vanish. The electromag
netic Lagrangian in this case is 

.y = _1_ (2(g[fLvIF )2 _ HfLvF ) 
em 81T fLV fLY 

_ 1 [ 8m
4 

(fBo E)2 
81T (ay - m2)2 14 m 

- (ay~2m2) (~! - ~:)]. (2.24) 

Finally, we have the following equations: 

AII(F) = 81TT~';', 

A44(F) = 81TT~, 

An(F) = 81TT~~, 

A33(F) = 81TT~~, 

A [23 j(F) - 81TT~~ = C1 sin f), 

A(14) (F) = o. 

(2.25a) 

(2.25b) 

(2.25c) 

(2.25d) 

(2.25e) 

(2.25t) 

Using results from Ref. 17 and Eq. (2.22) one finds the identi
ty (see Appendix A) 

(A22(F) - 81TT~~)=( lIsin2 f) )(A33(F) - 81TT~';), (2.26) 

so that Eq. (2.25d) is not independent. In the above 

81TT~';' = a [(81 'lBo - Q(fJ2 + PW + B~(fJ2 + f2 + 81
4

)2 - (fBo + QI2)(fJ2 + P)] 
(f32 + f2)(f32 + f2 + 81 4)2 ' 

(2.27) 

81T T~'; = ~ re~ = [- 7fBo(f32 + f2 + 81 4)2 - f(8fBo - Q(f32 + f 2W] 
sin f) sin f) [ 1 (f32 + PH/32 + f2 + 81 4f 

For T~~ one finds 

+ [8BoI4(8BoI2 - Q(f32 + P))(f32 + f2 + 81 4
) + 4f(f32 + f2)(fBo + QF)2] 

( /3 2 + P)( /3 2 + P + 81 4
)2 

(2.28) 

(2.29) 

A))(F), A44(F), A33(F), A(14)(F), A[141(F), andA[23 I(F) are given by the formulas (2.11) (see Appendix A) from Ref. 17. For 
.Y em one easily gets, using (2.24), 
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3. STATIC, SPHERICALLY SYMMETRIC SOLUTION 

Let us consider a spherical field configuration such that 

Bo=/=O. 
Later we suppose that 

{3=r, 

(3.1) 

(3.2) 

which is simply a coordinate choice. In addition, our quanti· 
ties do not depend on time (static case). One finds [see Eq. 
(2.9)] 

A(l4) =0, 

A (23 J - 81TT~~ = CI sin e, 
and we have 

8 T em 8 Tem Q (7{32 + 16/
4

) 
1T [14 J = 1T 14 = (j) I.P 2 + 81 4)2 ' 

(j) = 12/r. 

One gets 

Q ( r
4 

) E = - r I'" + 81 4 • 

It is easy to see that the function (3.7) is bounded 

IE I <Emax = IE (\i81) I = IQ 1/8/2. 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.7a) 

From (3.4), using results from Ref. 17, one gets (see Appen
dixB) 

.!!.(ra-I)=1-Q2r (r4+4/4). (3.8) 
dr (I'" + 8/ 4)2 

Thus we have 

1 C Q2 
- = 1 + - + - K (r,/), (3.9) 
a r r 

where 

(3.10) 

and C is a constant of integration. Moreover, 

Y= (1 + ~ + ~2 K(r,/)) (1 + ~) (3.11) 

[see Eqs. (B8) and (Bl1) in Appendix BJ. Performing the inte
gration in (3.10) one gets 

i. = 1 + C + Q
2

b g (.!!...), (3.12) 
a r b 2r r 

where b 4 = 8/ 4 and 
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FIG. 1. The function g = g(x) vsx. 

~x) = + (x4 : 1) + 3:Vl (log (:: ~ :;: : ! ) 
+ 2 arctan(V'1x + 1) + 2 arctan(V'1x - 1)). 

(3.13) 

The function g(x) is plotted in Fig. 1. Let us examine the 
properties of the function 

g(b/r). 

It can be shown that 

limg(.!!...) = 2-~. 
r=O r 16 Vl 

(3.14) 

Thus for small r we get 

a-I~1 + i.(c+ _7_1T(~)). 
r 16Vl b 

(3.15) 

We can avoid a singularity in a at r = 0 by choosing 

C= - 1~ 1T(~2) (3.16) 

so that 

lim(a- I
) = 1. (3.17) 

r=O 

Let us examine the asymptotic properties of a and y. One 
gets 

a-I -. (1 _ [(7/1~1T)Q2/b] + ~). (3.18) 
r_", r r 

For large r, a clearly behaves like the analogous function in 
the Reissner-Nordstrom solution, with Q as the electric 
charge and with 

mN = 3:./2 1T (~2) (3.19) 

playing the role of the Newtonian mass. To summarize, we 
have 

I ( 7 (1T)Q
2
/b Q2_(b)) a- = 1 - 8Vl "2 -r- + 7'" g -; ,(3.20) 

where 

lim k(.!!...) = I, 
'-00 r 

(3.21) 

_ (.!!...) = ~b/r) 
g r (b/r) , 

(3.21a) 
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and 

lima-I = 1. (3.22) 

In the neighborhood of r = 0 one gets for our metric 

-I 0 0 
12 

r 
0 -r 0 0 

gl'v = 
0 0 -rsinO 0 
12 

0 0 (I + ~:) r 
(3.23) 

(for r-+O). The determinant of the symmetric part of the met
ric is 

( - g)lt2 = (r4 + 14) lt2sin O. 

The full determinant is 

~ -g = r sin O. 

(3.24) 

(3.25) 

Thus there is a singularity at r = O. It is worth noting, how
ever, that there is no singularity in a and only one singularity 
in rdueto the(1 + 14/r4) factor. cu, the skew-symmetric part 
of gl'v, is also singular at r = O. 

Let us examine properties of the electric field: 

Q ( r
4 

) E = -? r4 + 8/4 . 

One easily sees that 

E(O)=O 

and 

Q 
E- - _2' 

r-+oo r 

(3.26) 

(3.27) 

(3.28) 

Thus there is no singularity at r = O. This is similar to the 
situation in Bom-Infeld electrodynamics. 14 Let us calculate 
the charge distribution and total charge for the electric field. 
It is known that 

41T~ - gp = H4i.i -div D, (3.29) 

where p is the charge density distribution and D is an electric 
induction vector. One gets 

H41=~ -gE/(ar-cu2)=~ -gE (3.30) 

and 

(3.31) 

The total charge is 

f l oo 1 r4 
Qtot = ~ -gpd 3x = - 32QI 4 

- r4 42 dr 
o r( +81) 

= -Q. (3.32) 

Thus we find the following interesting feature: the total elec
tric charge defined above is the same as the charge obtained 
from the asymptotic properties of the electric field E and the 
metric (functions a and r). Let us pass on the calculation of 
the energy of the electromagnetic field. One has 
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T4 = _1 Q2 ((r4 - 101
4
)). 

4 81T (r4 + 81 4 )2 
(3.33) 

The total energy 

E tot =41T fO rT\dr= (~2):; (~:). (3.34) 

where b 4 = 814. Thus we get that the total mass is 

m tot = (:) ( :; ) ( ~ 
2

). 
(3.35) 

and the Newtonian mass is 

(3.36) 

Thus, 

mN/mtot =M· (3.37) 

Equation (3.37) implies that asymptotically we see only [~] 
of the total energy as a Newtonian gravitational mass. Let us 
divide the total energy into two parts: Newtonian and elec
tromagnetic. That is 

(3.38) 

One gets 

(3.39) 

This energy could be treated as the energy of the electric field 
of the charge Q distributed over a sphere of radius roo That is, 

c2mem = Q2/ro, 

so that 

ro=b r (~) =14v'1(~)' 
1T 45 451T 

(3.40) 

(3.41) 

Let us suppose that the Newtonian mass is the mass of an 
electron. 

(3.42) 

One gets 

m c2 = (SL) (~~). 
e b v'1 32 

(3.43) 

Thus we get 

(3.44) 

where e is an elementary charge. For ro we get similarly 

ro = (~)(e2/mec2). (3.45) 

The classical radius of an electron is defined as 

rei = e2/mec2~2.81 X 10- 13 cm. 

Thus we get 

ro = (ij)rel~1O-13 cm 

and 

I = (~) (4~) rei ~ 10-
13 

cm. 

Let us introduce the dimensionless variables 

q=Q/b = Q/\!81, 

R -==r/b = r/4../8/. 
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-01 

5678910 
R 

FIG. 2. The function E = E(R) vs R (normalized electric field). 

Using Eqs. (3.49) and (3.50) we have 

I ( 7 (11') q q2 _ ( 1 )) 
a- = 1 - 8v2 "2 Ii + R2 g R 

= (1 - q2P(R )), (3.51) 

E = - t2 (R ~: 1 ) = q2E, (3.52) 

e=41TT4 r= q2.R
2 

(R4_i) =q2e, 
4 2 (R4+ W (3.53) 

411'pr 411'pr 411'pr 
P R = ""8f4 = ""8f4 = ~ 

= _ 2q ( R 4 ) = qiJR ' (3.54) 
R R4+ 1 

where q is a normalized charge, R is a normalized radial 
coordinate, and E, e, P R are normalized, electric field, radial 
energy distribution, and radial charge distribution, respec
tively. These functions are plotted in Figs. 2-4. The function 

P(R) = J.- (- q (J.-) + ~) (3.55) 
R R 16v2 

is plotted in Fig. 5. It expresses the properties of the general
ized Newtonian potential for our solution. Notice that the 

function e<O forO<R <\/S/v2. This means that our solution 
corresponds to a kind of bounded system of gravitational 
and electromagnetic fields. 

An interesting question which we can pose here con
cerns the existence of event horizons. This problem reduces 
to finding real roots for the function a-I = f(R,q). This de
pends of course on the value ofthe parameter q. Let us con
sider the function 

f(R,q) = 1 + q2(l/R )( - 71T/16v2 + g(l/R )). (3.56) 

0082 

0.039 

2345678910 
R 

FIG. 3. The function e = e(R ) vs R (normalized radial energy distribution). 
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FIG. 4. The function .oR = .oR (R) vsR (normalized radial charge distribu
tion). 

We have 

f(O,q) = 1 (3.57a) 

and 

lim f(R,q) = I. (3.57b) 
R~", 

Consider now the function 

h (x) = - 711'116v2 + g(x) (3.58) 

and look for a value of x = x I such that 

h (xd <0. (3.59) 

The function g(x) is monotonic in the interval (0, + O()) and 
positive. Moreover, 

lim g(x) = ~ 
X= '" 16v2 

so that 

g(lIR) < 71T116v2. 

Consequently, 

h (l/Rd <0 

for every R I > O. Let us suppose that 

(3.60) 

(3.61) 

(3.62) 

q> ..[If;. (3.63) 
~ - g(l/Rd + 71T116v2 

It is easy to check that if (3.63) is satisfied then 

f(q,R I) < O. (3.64) 

The functionf(q,R ) changes sign in the interval (O,R I >. This 
means that there exists a value RH E (O,R d such that 

o 

p 

f(q,RH) =0. 

2345678910 
R 

(3.65) 

FIG. 5. The functionp = p(R) vs R (generalized Nordstrom function). 
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The function/(q,R ) changes sign in the interval (R I , + 00) 2,.".,."."..".,.~T"T"'""'1""~T'""'""""""~l""T"""""'"""'1'""""""'"'T"='f""""'T""1 

too. Thus there exists a value R li E (R I' + 00) such that 

(3.66) 

[if condition (3.67) is satisfied]. Hence there are two event 
horizons for sufficiently large q in general. 

Let us examine the situation with only one event hori
zon. The conditions necessary for the existence of a single 
horizon are 

/(q,R)=O, 

:~ (q,R)=O. 

From (3.67b) one easily gets 

~g(J..) =g(J..) _ 
Rdr R R 

Equation (3.67) is equivalent to 

71T 
16v1' 

In terms of the variable x= 1/ R we have 

71T 

16v2 

(X4 + 2)x 
2(X4 + 1)2 = g(x). 

The soluiton Xo of Eq. (3.70) is 

Xo = 0.516 28899464 .. ·. 

Let us solve Eq. (3.67a) with respect to q. One gets 

1 

or 

Xo(X6 + 1 ).J2Xo 
~X6 +2 

Thus there is exactly one event horizon when 

RH = 1/xoz 1.9369 .. · 
and 

(!iL) = 4.J8 ~3.2575 ... , 
I Xo 

qo = Xo(X6 + 1)-J2Xo ~2.038 6231 .... 

~X6 +2 

(3.67a) 

(3.67b) 

(3.68) 

(3.69) 

(3.70) 

(3.71) 

(3.72) 

(3.73) 

(3.74) 

(3.73a) 

(3.75) 

In this case we have for the Newtonian and total mass, 

mO = 1T4v2 (~) X~(X6 + 1)2 (i.i), (3.76) 
N 16 (X6 + 2) G 

mO = 1T4v2 (~) X~(X6 + 1)2 (e21), (3.77) 
tot 32 (X6 + 2) G 

or 

m~ = 3.39 (C~) ~ 107 g, (3.76a) 

m?at = 14.31 (Cd) ~ 107 g (3.77a) 

for I = 10-20 cm. The total charge is 
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FIG. 6. The function a- J = /(q,R I vs R for various values of parameters q. 
qo means the critical value for which we have only one event horizon for the 
value R = RH . For the value R = RH the function/(q,R) has a minimum 
regardless the value of q. If q > qo we have two event horizons [two real roots 
of/(q,R ), RH, ,RH,]. If q < qo there are not any event horizons [no real roots 
for/(q,R )]. 

Qo = qo4.J8lc2/-./G z2.82(lc2/-./G) 
~ 105 esu z 1014 elementary charges 
(for 1~1O-20 cm). (3.78) 

It is easy to see that if q > qo we hve two horizons. This also 
implies that 

(3.79) 

In other words the Newtonian mass is large enough to form 
event horizons. If q = qo we have only one horizon and if 
q < qo we have no horizons. This situation is described in Fig. 
6 where we plot the function a -I = /(q,R ) for various values 
of the parameter q. For example for an electron one has 

qelectron = e-./G /4.J81c2~ 10-37 <qo' (3.80) 

Thus there are no event horizons. It is worth noting that if 
there exists only one event horizon the solution is unstable 
due to pair creation and Hawking radiation. Such "black 
holes" are "very hot" (see Ref. 23) and decay very quickly. In 
the case of two event horizons the solution is unstable be
cause of pair creation.lf the Newtonian mass is sufficiently 
big this solution could be more stable because the Hawking 
effect is not important for very massive black holes (see Ref. 
23). The situation without any event horizons is very inter
esting from a physical point of view, because it corresponds 
to the parameter q for electron (in general for any elementary 
particle). Thus we have in this case a singularity without a 
horizon. The structure of this singularity is different from 
the Nordstrom-like or Schwarzchild-like singularity in the 
nonsymmetric theory of gravitation [see Refs. 15, 16, and 23 
and Eq. (3.23)]. 

To summarize, we have found the following exact solu
tion (in the form suggested in Sec. 6 of Ref. 1): 

(

a 0 0 F/r) 
- 0 -r 0 0 

g/tv = _2' 

_~2/r ~ -~Sine ~ 
(3.81) 
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( 
71T ( Q 2) 1 Q 2 ( b )) - I a = 1 - -- -- - + - g - ,(3.82) 

16v1 b r rb r 

y= (1 + ~) (1- ~(~)~ + ~g(!:...)), 
r4 16v1 b r rb r 

(3.82a) 

b 4 =8/ 4
, (3.83) 

(3.84) 

The function g is plotted on Fig. 1 [see Eq. (3.13)]. The solu
tion has one horizon if 

(3.85) 

If Q < Qo there no horizons. If Q > Qo we have two horizons 
(as for the Nordstrom solution to the Einstein-Maxwell 
equations).In other words, the horizons exist if the mass is 
sufficiently big [see Eq. (3.79)]. Finally let us calculate the 
ratio Q /m N for our solution. One gets using (3.36) and (3.49) 

Q /m N = 32~2G l71Tq. (3.86) 

However, for an electron, 

e 32{W 
(3.87) 

71Tq electron 

so that 

Q (3.88) 

4. CONCLUSIONS AND PROSPECTS 

We have found an exact static, spherically symmetric 
solution for the nonsymmetric Kaluza-Klein theory. 1.3 Our 
solution has the following properties: The metric (symmetric 
part of ga{3) behaves asymptotically like the Reissner-Nord
strom solution of general relativity [apart from a factor of 
(1 + /4/r4) which is typical in the nonsymmetric gravita
tional theoryI5.16]. The most remarkable feature of this met
ric is that the function a is not singular at r = 0 and goes to 1 
as r-o. We have calculated the total energy of the solution 
and its Newtonian mass. Both quantities are constructed 
from Q and /, the charge and fermion number parameters 
respectively. 10 The electric field in our solution asymptoti
cally behaves like the Coulomb field generated by a charge 
Q. However, this field vanishes at r = 0 and is nonsingular 
for all r. We get a maximal value of this field similar to the 
one in Born-Infeld electrodynamics. 14 We calculated the 
charge distribution for such a field and showed that it is 
nonsingular and equal to zero at r = O. Asymptotically our 
solution behaves similarly to the Reissner-Nordstrom-like 
solution in NGT. 16 Although asymptotically we see a New
tonian mass and an electric charge, at the origin (r = 0) there 
is no mass or electric charge (only fermion charge /). Thus it 
seems that we get "mass" without mass and "charge" with
out charge. The total charge for our solution is the same as 
the Coulomb charge (charge seen at infinity). The total mass, 
on the other hand, is not the same as the Newtonian mass 
(mass seen at infinity). In this sense we get a kind of finite 
mass renormalization. If we consider this solution to be a 
model for a charged particle constructed from gravitational 
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and electromagnetic fields, this mass renormalization is un
derstandable. The Newtonian mass is the mass of the parti
cle and the remainder is the mass of the external electric 
field. For example, if we consider this solution as a model of 
an electron we get a connection between the classical radius 
of an electron and its fermion number parameter 1. Note that 
in general relativity the total energy associated with the elec
tric field of a pointlike electron is infinite. 

Our solution possesses a singularity at r = 0 in the de
terminant of the full non symmetric metric. However, the 
(symmetric) metric seems to be less singular. There is no 
singularity for the function a. The function y has a singular
ity only in the factor (1 + /4/r4) and the function (U = f2/~ 
has the usual singularity at r = O. The electric field is not 
singular. Our solution posseses one or two event horizons if 
the charge Q (and consequently the Newtonian mass) is suffi
ciently large. The solution seems to represent a bounded sys
tem of gravitational and electromagnetic fields [c.f. the be
havior of the function e (see Fig. 3)]. The radial energy 
density is zero at the origin, and finite everywhere. In a small 
region around r = 0 it is negative. The metric is spatially flat 
at the origin. For a very small value ofthe parameter q (see 
Fig. 6)thefunctiona~l, andy = (1 + /4/r4). Iftheparam
eter q is equal to qelectron' one gets 

1;;.a-1 = (1 - q;lectronP(R)) 

>(I-q;lectronPmax»1-1O-74~1. 

Thus a is almost exactly one and y is almost exactly 
(1 + /4/r4). The metric is then as follows: 

( 

- 1 0 0 /2/~) 

gl'v = ~ - ~ _ ~ Si~2 (} ~ . 

_/2/~ 0 0 (1 + /4/r4) 

(4.1) 

(4.2) 

The symmetric part ofthis metric is spatially flat. It is easy to 
see that such behavior is valid for every elementary particle. 
The remarkable property of(4.2) is that it is described com
pletely by the parameter / (fermion number) which plays the 
role of the second gravitational charge in the nonsymmetric 
theory of gravitation. It seems that the fermion number pa
rameter should playa significant role in the unification of 
elementary particle theory and gravity. In Eq. (4.2) the fer
mion number parameter is much more important than mass. 
Thus the geometry of space-time on the level of elementary 
particles is determined by the second gravitational charge. 
The function a-I in general relativity has the form 

a-I = 1 - 2m/r. (4.3) 

This function describes the difference between the 
Schwarzschild solution and a Minkowski metric; in particu
lar the curvature of a space. In the solar system at the earth's 
orbit one finds 

a- l (1 au)~l- 3XlO-B, (4.4) 

where 1 au = 1.45 X lOB km, is one astronomical unit (the 
radius of earth's orbit) and we have put into Eq. (4.3) 

2m~5 km (4.5) 

which is the Schwarzschild radius of the sun. Ifwe compare 
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Eq. (4.4) with Eq. (4.1) we easily see that our solution with 
q = qelectron is spatially much more flat everywhere than 3-
space at the orbit of the earth. 

Note that in Eq. (4.2) we get in a natural constant I 
which has the dimension oflength. Some authors claim that 
it is impossible to get a true unification of the gravitational 
field and elementary particles without a new universal con
stant dimensions of length. In the non symmetric theory of 
gravitation there exists such a constant connected to fermion 
number. The nonsymmetric Kaluza-Klein theory which 
unifies the nonsymmetric theory of gravitation with a gauge 
field theory (i.e., the a electromagnetic field), possesses this 
constant as well. 1-7 This fact might enable these investiga
tions to lead ultimately to a true unification of gravity and 
elementary particles. 

Here are some prospects for further investigation: 
1. Find more general spherical solutions with nonzero! 

and Bo' including non static solutions. 

APPENDIX A 

126 J. Math. Phys .. Vol. 25. No.1. January 1984 

2. Find axially symmetric solutions of the field equa
tions. This is more difficult, because there is no known axial
ly symmetric solution in the Einstein unified field theory and 
in NGT. 

3. Extend our formalism to the nonabelian-nonsymme
tric Kaluza-Klein theory (see Refs. 2 and 6), i.e., to find such 
a solution for the case G = SU(2) and G = SU(2)XU(I). This 
will offer a model of an electron or a lepton constructed from 
gravitational, electromagnetic, and weak interactions. 

4. Extend our solution for the nonsymmetric Jordan
Thiry theory (see Ref. 4). 
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A[23I(r)=sin8(('f¢'-2f3~' - ~(2fC-{3¢')+ _1 (/¢' +2{3C) (a' + ~¢'+ y,) 
4a - ) 4a 8a a ay y 

+ _1 (f¢ + 2f3D) (L + ~¢ + ~) _ ~('f¢ + 2f3
D

) + ~(2fD-{3¢)), 
8y y 2ay 2a at 4y 4y 

(A6) 

where 

¢ = log(f3 2 + 12), 

fl3' - {31' ill - {3i C = D = -'-=-----'-~ 
{32+r' {32+/2' 

. means derivative with respect to time t, and' means derivative with respect to radius r. 

(A7) 

(A8) 

(A9) 

A (1')= ~((¢')2+4C2)_ ~((¢)2+4D2)+ ~¢'(¢'+¢)- ~~(¢~) 
114 I 8a 8y 4a 2 at y 

(AlO) 

APPENDIXB 

Using condition (3.1) in the static case and the following 
ideas from Ref. 17 we get from (A2)-(A4) and from Eqs. (3.4) 
in the static case, 

- ~ (A 11(1') - 81TT~';') + ~ (Adr) - 81TT~~) 
a {3 

+ ~ (A44 - 81TT:') 
y 

1 - 2 - 1 -= - -A11(F) + -A22 (F) + -A44(F) 
a {3 y 

4 {32 8 Tern p 
a (/32+4/2) 1T 11 = . 

One gets 

0= ~(A11(r)-81TT~';')+ ~p 
a 2 
1 - 1 - 1 -

= -All(F) + -AdF) + -A44(F) 
2a {3 2y 

(BI) 

_ 81T ({32 + 4/4) Tern (B2) 
a {32+4/4 11' 

o = ~ (A 22(r) - 81TT~~) + ~ P 
{3 2 

1 - 1 - 1 -= - -All(F) + -A22(F) + -A44(F) 
2a {3 2y 

_ 81T (3{32 - 4/4) Tern (B3) 
a {32+4/4 11' 

o = - ~ (A 44(r - 81TT:') + ~ p 
Y 2 
1 - 1 - 1 -= - -A11(F) + -Azz(F) - -A44(F) 

2a {3 2y 

_ 81T ({32 - 4/4) Tern (B4) 
a {32+4/4 II' 

where 

81TT ern _ aQ2 ( {32 - 4/4 ) (BS) 
11 - {32 ({32 + 8/ 4f . 

From Eqs. (B2)-(B4) one gets 

(lIa)A11(r) + (lIy)A44(r) = o. (B6) 

Let us substitute 
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a=exp(M), 
(B7) 

y=exp(N), 

where M = M (r) and N = N (r) are real functions of r. From 
(BS) one gets 

M'+N' 4 
r + -;;H = 0, (B8) 

where 

H = (/4/(/4 + {32). (B9) 

Let us take 

{3=r (BlO) 

and substitute Eqs. (B8)-(BlO) to Eq. (B4). One gets, using 
Eqs. (BS) and (B6), 

~(rexp(-M))=I- ~ (r+4/4). (Bll) 
dr r (r4 + 8/ 4)2 

APPENDIXC 

Let us calculate the connection I' Pr and the Christoffel 
symbols for our solution. One gets (using results from 
Ref. 17) 

r/ 141 =21 2/ar, r~3 = -!sin28, r~3 =r~3 = cot 8, 

I' j2 = (lIsin2 8)1' ~3 = - ria, 

r~12) = rtl3) = lIr, 

rT241 = rf34 I = -/2/ar, (CI) 

The remaining r's are zero. Let us consider the symmetric 
part of our soluiton, i.e., 

o 
-r 

o 
o 

o 
o 

- r sin2 8 

o 
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where a and r are given by the formulas (3.81) and (3.81a). 
One easily finds the determinant 

g = det[glJtvl] = - (1 + 14/r4)r4 sin2 O. (C3) 

The determinant is not singular at r = O. The inverse tensor 
for glJtvi' 

(C4) 

IS 

o 0 
-1Ir 0 ° glJtvl = 0 

(

-1Ia 

o o - 1Ir sin2 0 
o ) ° . 

o o 0 

Let us calculate the Christoffel symbols for glJtvl' 

( a) _ 1 -(al'l( ) 
\.rJr - 2" g g(/3IL I,Y + g(YI'I,/3 - g(/3YI,1' . 

One easily finds 

( 1) a' 
11 =~' 

G2) 
r -, 
a 

G3) = ~ sin
2 

0, 

(:3) 
C~) 

- ~sin20 
2 ' 

L 
2a 

(22J = -;- = (:J, 
( 14) a' 

1 + r4 2a3 ' 

(4) _ r' _ a' 14 ( 14) - 1 -----+- 1+- . 
41 2r 2a ,.s r4 

1Iy 
(CS) 

(C6) 

(C7) 

The remaining Christoffel symbols are zero. Let us write 
equations of motion for an uncharged test particle for our 
solution, i.e" equation for geodesics. 

d 2x a 
- dx/3dxY 

~ +rI/JYI-- =0. (C8) 
dT dT dT 

One easily finds, from (C1), 

d
2

r + ~ (!!!..)2 + (~ _ (1 + ~)~) 
dr 2a dr 8a2,.s r4 2a3 

( dt)2 r [(dO)2 (dr )2] X dr - -;; -;J; + sin
2 

0 -;J; = 0, 

d 20 + ~ (!!!..) (dO) _ sin 20 ( drfJ)2 = 0, 
dr r dr dr 2 dr 

(C9) 

d 2rfJ + ~ (!!!..) (drfJ) + 2 cot 0 (drfJ) (dO) = 0, 
dt 2 r dr dr dr dr 

d
2

t + ( 3/
4 

_ ~) (!!!..) (~) _ 0 
dr 2r(/4 + r4) 2a dr dr -. 

In the nonsymmetric theory of gravitation uncharged parti
cles move along geodesics in Riemanian geometry formed 
from glJtvl (see Ref. 13), i.e., in Christoffels' symbols 
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d 2xo. + (a) dxr dxP = O. 
dr \.rJr dr dr 

(ClO) 

One easily finds, from (C7), 

Let us find equations of motion for a charged test particle. In 
the nonsymmetric Kaluza-Klein theory one derived such 
equations, (see Ref. 1) 

d 2xa - dxr dx/3 ( q ) -- +rl/Jl--- + -
dr r dr dr mo 

X [n<>rF _g[ar1H ] dxP = 0 (C12) 
6 rfJ yfJ dr ' 

where q is a charge and mo a rest mass of a test particle. Using 
(C9) and (3.7) one gets 

d
2

r + ~ (!!!..)2 + (~ _ (1 + ~)~) 
dr 2a dr 8a2,.s r4 2a3 

d 2t (31
4 

a' ) ( dr ) ( dt ) 
dr + 2r(/4 + r4) - 2a dr dr 

+ (L) ( raQ ) (!!!..) - 0 
mo r4 + 8/ 4 dr -. 

In Ref. 3 a different possibility is considered for the equa
tions of motion for a charged test particle. 

d 2x
u 

+ (a) (dxP\ (dxr) + (L) 
dr \.rJr d-; ) dr mo 

X [~rF _ g[ar1H ] dxfJ = 0 (C14) 
y/3 r/3 dr . 

Using (C9) and (C11) one finds the equations 

( dt)2 r [(dO)2 (drfJ)2] X -;J; + -;; -;J; + sin
2 

0 -;J; 

( 
q ) Q (r4 + 14) dt 

- mo ar r48/ 4 dr = 0, 

d 20 _ sin 20 ( drfJ)2 + ~ ( dO) (!!!..) = 0, 
dr 2 dr r dr dr 
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d 2¢ + 3.. (d¢ ) (~) + 2 cot 0 (d¢) (d¢) = 0, 
dr r dr dr dr dr 

d 2t ( a' /4) ( dt ) ( dr ) 
dr + 2a + r(/4 + r4) dr dr 

+ (~J C::~4) (~~) =0. (CIS) 

Notice that equations for 0 and ¢ are the same in (C9), (CII), 
(C13), and (CIS) regardless of connections and whether the 
particle is charged or not. For a' we have 

a'=!:.. +a2(Q 2
(r4+4/4) _ ~), (CI6) 

r (r4 + 8/ 4)2 r 

where a is given by formula (3.81). According to the general 
properties of the geodetic equations in Einstein's unified the
ory, nonsymmetric theory of gravitation, and in the nonsym
metric Kaluza-Klein theory, the Eqs. (C9), (CII), (Cl3), and 
(CIS) have the following first integral (see Refs. I and 3): 

r ( :; r -a ( ~~ r -r 

X [( ~~ r + sin
2 

0 (~~ r] = const. (CI7) 

We can choose const = I and 

r ( ~; r -a ( ~: r -r 

X ((~~r +sin20(~~r) = 1. (CI8) 

Let us consider equations for 0 and ¢' 

d
2
0 _ sin 20 (d¢)2 + 3.. (dO) (.!!!..) = 0, (CI9) 

dr 2 dr r dr dr 

d 2¢ + 2 cot 0 (dO) (dO) + 3.. (d¢) (.!!!..) = o. 
dr dr dr r dr dr 

One easily finds the first integral of motion of (C 19), 

(C20) 

where 
Eo = const. (C21) 

comparing (CI8) and (C20) one gets 

r(~)2 -a (~)2 = 1- 2Eo. 
dr dr r (C22) 

Let us consider the second equation of (C 19). One easily finds 
the first integral of motion 

d¢ L 
-= , 
dr r sin2 0 

(C23) 

where L = const. Comparing (C20) and (C23) one gets 

(
dO)2 I ( L 2 ) 
dr = r4 2Eo - sin2 0 . (C24) 

The first integrals (C20) and (C22) lead to the following sim
plifications of our equations (C9), (Cl1), (CI3), and (CIS): 

a' ) 
2a2 

(C9a) 
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Formulas are derived for energy-dependent, steady-state, and time-dependent neutron transport 
problems, relating the surface neutron fluxes for a convex, homogeneous, three-dimensional 
region to the neutron scattering laws that apply within the region. In principle, these formulas can 
be used to deduce information about the scattering laws. 

PACS numbers: 05.60. + w, 42.68.Db 

I. INTRODUCTION 

In recent years, a substantial effort has been directed 
toward the problem of obtaining exact formulas relating in
coming and exiting neutron fluxes for a homogeneous slab to 
the scattering laws that apply within the slab. 1-13 Such for
mulas have generally been obtained by directly manipulat
ing the forward and adjoint one-dimensional slab geometry 
transport equations, although there are exceptions; some 
early work of Siewert 1,2 makes use of the Chandrasekhar X 
and Y functions; recent work by Sanchez and McCormick 11 

uses the diffusion equation as an approximation to the trans
port equation; and a recent article by Siewert and Dunn9 

allows for spatial variations in the angular flux in directions 
parallel to the edges of the slab. Also, most of this prior work 
considers only monoenergetic transport problems, although 
Larsen6 has considered multigroup problems. 

In an effort to obtain a more general, and therefore pos
sibly more useful theory, we shall in this article extend the 
domain of the previous results to the general case of time
and energy-dependent neutron transport in a three-dimen
sional, convex, homogeneous region. Specifically, for such 
transport problems we derive exact formulas relating both 
steady-state and time-dependent surface neutron fluxes to 
the neutron scattering laws that apply within the region. In 
principle, these formulas can be used to determine properties 
ofthe material scattering laws. However, there are limita
tions: a large number of neutron flux measurements general
ly must be made, and the theory described here is only appli
cable for homogeneous regions. 

Our theory thus cannot be used to determine the struc
ture of a heterogeneous solid by irradiating it with external 
neutrons and measuring (and processing) the incident and 
exiting fluxes. However, it can be used to solve the following 
two general problems for a homogeneous region D: (1) If D 
consists of a uniform mixture of known materials (with 
known cross sections) in unknown proportions, then deter
mine the proportions; and (2) if the cross sections inD can be 
regarded as multigroup with a finite number of groups and a 
finite Legendre expansion in angle, then determine these 
cross sections. 

The remainder of this article is organized as follows. In 
Sec. II we establish notation and derive physical interpreta
tions for solutions of certain adjoint neutron transport prob-

01 This research was performed under the auspices of the U. S. Department 
of Energy. 

lems. In Sec. III we use these results to derive the inverse 
theory for steady-state problems; in Sec. IV we repeat this 
analysis for time-dependent problems. We conclude, in Sec. 
V, by describing a way to simplify some of the results ob
tained in Secs. III and IV. 

II. PRELIMINARIES 

The main purpose of this section is to show that solu
tions of adjoint transport problems for a convex solid exist 
having simple interpretations at points on the surface. 

To begin, let us assume that steady-state neutron trans
port occurs within a homogeneous convex region D accord
ing to the standard equations 

n· VtP{r, n, E) + O'T(E)tP(r, n, E) 

= f f O's(E'--+E, n'· n)tP(r, n', E')d 211' dE', 

(2.1) 

tP(r, n, E) = fIr, n, E), rEaD, n· n < 0 . (2.2) 

Here 0 is the unit outer normal. The solution tP of problem 
(2.1), (2.2) is, physically, the neutron angular flux arising 
from the incident fluxf on the surface of D. 

To proceed, let R be the set of all phase-space points 
(r, n, E), with rEaD and n . 0> O. Let Ro be any subset of 
R, and Xo the characteristic function for Ro: 

{
I, 

Xo(r, n,E) = 
0, 

(r, n, E) E Ro , 

(r, n, E) E R - Ro . 
(2.3) 

For any neutron flux tP(r, n, E) existing in D, we define 

f f f n· °Xo(r, n, E)tP(r, n, E)d 211 dE d 2r 
R 

= f f f n· °tP(r, n, E)d 211 dE d 2r 

Ro 

= the net current out of Ro. (2.4) 

Now, let us consider the steady-state adjoint problem 

- n· VtP*(r, n, E) + O'T(E)tP*(r, n, E) 

= J J O's(E --+ E', n • n')tP*(r, n', E ')d 211' dE', 

(2.5) 

tP*(r, n, E) = Xo(r, n, E), rEaD, n· 0>0. (2.6) 

We shall prove the following result: 
Lemma 1: For any rEaD, n· 0 <0, and any E, 
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l/J*(r, 0, E) = the net current out of Ro due to a unit delta 
incident beam at (r, 0, E). 

Proof Let ro be any point on aD, 0 0 any unit vector 
such that no • ii;, < 0, and Eo any admissible value of E. Also, 
let l/J be the solution of the forward problem consisting of 
Eqs. (2.1) and (2.2), with 

f(r, 0, E) = 8(r - ro)8(0 - 00)8(E - Eo)llOo 0 nol . 
(2.7) 

Then l/J(r, 0, E) is the angular flux at any point (r, 0, E) due 
to the unit delta incident beamfat (ro, 0 0, Eo). 

We multiply Eq. (2.1) by l/J* and Eq. (2.5) by l/J, integrate 
both equations over 0 and E, subtract, and then integrate 
the resulting single equation over all rED to obtain 

° = iDJ J 0 0 0l/J*l/Jd
2
{J dE d

2r. (2.8) 

(This is just the reciprocity relation for the special case of no 
interior sources for the forward and adjoint transport 
fluxes. 14) Next, we use Eqs. (2.2), (2.6), and (2.7) to get 

0= IIIo oOl/J(r,0,E)d 2{JdEd 2r 

Ro 

+ L II no ol/J* 8(r - ro)8(0 - 00)8(E - Eo) 
aD 100 0 00 1 

0·0<0 

(2.9) 
or 

l/J*(ro, no, Eo) = f II n· ol/J(r, 0, E)d 2
[} dE d 2r. 

R" (2.10) 

This proves the result. Q.E.D. 
Now let us assume that time-dependent neutron trans

port occurs within the homogeneous convex region D ac
cording to the standard equations 

1 a 
--a f/!{r, 0, E, t) + 0 0 Vf/!{r, 0, E, t) + a,(E)l/J(r, 0, E, t) 
v t 

= II as(E'~E,0'·0)l/J(r,0',E',t)d2[}'dE', 
(2.11) 

l/J(r, 0, E, t) = f(r, n, E, t), rEaD, 0 0 n < 0, 0< t , 
(2.12) 

l/J(r, n, E,O) = 0, rED. (2.13) 

The solution l/J of Eqs. (2.11)-(2.13) is, physically, the time
dependent neutron angular flux arising from the incident 
fluxf on the surface of D. [Throughout this article, we only 
treat problems with initial data of the form (2.13), i.e., we 
assume that initially no free neutrons are present in D.] 

We let R, Ro, and Xo be defined above, and for any 
neutron flux l/J(r, n, E, t) existing in D and T> 0, we define 

iT f f f n 0 0xo(r, n, E)l/J(r, n, E, t )d 2[} dE d 2rdt 

R 

= iT f f f n 0 nl/J(r, n, E, t)d 2[} dE d 2rdt 

Ro 

= the net current out of Ro up to time T. (2.14) 
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We now consider the time-dependent adjoint problem 

_1- !.... .I·*(r 0 E t) v at'f/ , , , 

- 0 0 Vl/J*(r, 0, E, t) + a T(E )l/J*(r, 0, E, t) 

= I I as(E~E', 0 0 O')l/J*(r, 0', E', t)d 2{J' dE' , 

(2.15) 

l/J*(r,n,E,t)=Xo(r,O,E), rEaD, noo>o, O<t<T, 
(2.16) 

l/J*(r, 0, E, T) = 0, rED. (2.17) 

We shall prove the following result: 
Lemma 2: Let ° < t < T. Then for any rEaD, 0 • 0<0, 

and any E, l/J*(r, 0, E, t) = the net current out of Ro up to 
time T due to a unit delta incident beam at (r, 0, E, t ). 

Proof Let ro be any point on aD, 0 0 any unit vector 
such that no 0 no < 0, Eo any admissible value of E, and 
0< to < T. Also, let l/J be the solution of the forward problem 
consisting of Eqs. (2.11 )-(2.13), with 

fIr, 0, E, t) = 8(r - ro)8(0 - 00)8(E - Eo)8(t - to) . 
1000noi 

(2.18) 

Then l/J(r, 0, E, t) is the time-dependent angular flux at any 
point (r, 0, E, t) due to the unit delta incident beam at 
(ro' 0 0 , Eo, to)· 

We multiply Eq. (2.11) by l/J*, Eq. (2.15) by l/J, integrate 
both equations over 0 and E, and subtract to obtain the 
single equation 

0= :tII ~l/Jl/J*d2{JdE+Vo II 0l/Jl/J*d
2
[}dE. 

(2.19) 
Next, we operate on Eq. (2.19) by 

fL (.)d 3
rdt, (2.20) 

and use the initial conditions, Eqs. (2.13), (2.17), and the 
boundary conditions, Eqs. (2.12), (2.16), and (2.18) to easily 
obtain 

l/J*(ro, 0 0 , Eo, to) = .r II f n· nl/Jd 2{J dE d
2
rdt. 

Ro 
(2.21) 

This proves the result. Q.E.D. 
The main purpose of Lemmas 1 and 2 is to establish the 

following: (1) there exist solutions l/J* of the steady-state ad
joint transport Eq. (2.5) for which l/J*(r, n, E) is physically 
measurable for all rEaD, all 0, and all E; and (2) there exist 
solutions l/J* of the time-dependent adjoint transport Eq. 
(2.15) and initial condition Eg. (2.17) for which l/J*(r, n, E, t) 
is physically measurable for all rEaD, all n, all E, and all 
t < T. Such solutions will playa key role in the remainder of 
this article. 

111. STEADY·STATE THEORY 

Let l/J be any solution ofEq. (2.1) and l/J* any solution of 
Eq. (2.5). We multiply Eq. (2.1) by Vl/J*, Eq. (2.5) by Vl/J, 
integrate over nand E, and then add the two resulting equa-
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tions, obtaining 

f f [(Vtl*)(fl· Vtl) - (Vtl)(fl • Vtl*)]d 2f} dE 

+ V f f uT(E)tI(r, fl, E)tI*(r, fl, E)d 2f} dE 

= V f f I I us(E / ---+ E, fl' • fl)tI(r, fl/, E /) 

X tI*(r, fl, E)d 2f} / dE' d 2f} dE. 

However, elementary operations give 

(Vtl*)(fl • vtl) - (Vtl)(fl • Vtl*) 

= V(tI*fl • vtl) - fl • V(tI*vtl) 

= fl· V(tlvtl*) - V(tlfl • vtl*) . 

(3.1) 

(3.2) 

Introducing Eq. (3.2) into Eq. (3.1) and integrating over r, we 
obtain 

S + iD n II uT(E)tI(r, fl, E)tI*(r, fl, E)d 2f} dE d 2r 

= iD n I I II us(E'---+E, fl' 0 fl)tI(r, fl/, E') 

X tI*(r,fl,E)d 2f}'dE'd 2f}dEd 2r, (3.3) 

where, using a standard vector identity, 15 we have 

s = iD I I tI* [n(fl 0 vtl) - (fl 0 n)(Vtl)]d 2f} dE d 2r 

= iDII tI*[flX(nXVtl)]d 2fldEd 2r, (3.4a) 

or 

S = iD I I tI[(fl 0 n)(Vtl*) - n(fl 0 Vtl*)]d 2f} dE d 2r 

= iD f I tI[flX(Vtl*xn)]d
2
f} dE d 2r, (3.4b) 

However, if V T denotes the gradient operator in the plane 
tangent to aD, then for any point on aD we may use 

vtl = n(n 0 Vtl) + V Ttl 

in Eq. (3.4a), and 

Vtl* = n(n 0 Vtl*) + V TtI* 

in (3.4b). Making these substitutions (and noting that 
nXn = 0) we obtain 

(3.5a) 

(3.5b) 

s= iDII tI*[flX(nXVTtI)]d 2fldEd 2r, (3.6a) 

or 

s= iDII tI[flX(VTtI*xn)]d 2fldEd 2r. (3.6b) 

Our result is Eq. (3.3) and Eq. (3.6). Each of the terms in these 
equations consists only of a surface integral involving tI, tI*, 
V Ttl, or V TtI*· Since boundary conditions for tI and tI* have 
not yet been imposed, we can choose these boundary condi
tions so that both t/J and t/J* are physically measurable on aD. 
Doing this, then V T t/J and V T t/J* can also be obtained, and the 
vector equation (3.3) reduces (for general three-dimensional 
geometry) to three linear scalar constraints involving U T and 
Us' For different combinations of t/J and t/J*, different con
straints are derived, and one can use these constraints to 
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determine properties of Us and U T' such as described above 
in Sec. I. 

To obtain new constraints on UT and Us, one does not 
have to determine new values of both tI and tI*. For instance, 
one could experimentally determine a specific, unique tI*, 
and then three new constraints are determined by each dif
ferent value of t/J. Alternatively, one could determine a 
unique t/J and then derive three different constraints using 
each different value of tI*. [This can easily be done if in eval
uating the "first" tI* using the theory in Sec. II, one deter
mines the exiting angular fluxes for all points (r, fl, E) E RD. 
Then, the "first" tI* arises from Ro, and arbitrarily many 
other solutions t/J* arise from arbitrary subsets of RD.] 

Whichever way one chooses to determine different con
straints, it is clear that the experimental determination of the 
necessary data will require a large number of measurements. 
In addition, because the problem under consideration is tru
ly inverse in nature, it is likely that our set of constraints will 
be sensitive to errors in neutron flux measurements. How
ever, only experiment can determine just how accurately the 
fluxes need to be determined so that errors in measurements 
of tI do not lead to unacceptable errors in U T or Us' 

IV. TIME·DEPENDENT THEORY 

Let t/J be any solution of Eqs. (2.11) and (2.13), and tI* 
any solution of Eqs. (2.15) and (2.17). We multiply Eq. (2.11) 
by Vtl*, Eq. (2.15) by Vt/J, integrate over fl and E, and then 
add the two resulting equations, obtaining 

II ~[(vt/J*) at/J - (vt/J) at/J* ]d 2fl dE 
v at at 

+ II [(Vt/J*)(fl 0 vt/J) - (Vt/J)(fl 0 Vt/J*)]d 2fl dE 

+ V f f uTt/JtI* d
2
f} dE 

=V IIII us#*d 2 f}'dE'd 2f}dE. (4.1) 

Equation (3.2) can be used to rewrite the second term on the 
left side of Eq. (4.1), while the first term can be rewritten 
using 

(Vt/J*) atl _ (Vt/J) at/J* = v(t/J* at/J) - ~ (t/J*vt/J) 
at at at at 

= ~ (t/Jvt/J*) - v(t/J atl*) . 
at at 

(4.2) 

Introducing Eqs. (3.2) and (4.2) into Eq. (4.1), operating by 

iT L (o)d 3rdt, 

and using the initial conditions (2.13) and (2.17) and the for
mulas (3.5), we obtain 

U + V + iT iD n I I U T(E )t/J(r, fl, E, t) 

X t/J*(r, fl, E, t)d 2fl dE d 2r dt 

= iT iD n I I I I us(E'---+E, fl' 0 fl)tP(r, fl/, E', t) 

X t/J*(r, fl, E, t)d 2fl / dE / d 2fl dE d 2r dt , (4.3) 
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where 

or 

and 

or 

U = (i 0 II~ tP* atP d 2[l dE d 2rdt (4.4a) Jo aD v at 

u= - (i 0II~tP atP* d 2[ldEd 2rdt (4.4b) Jo aD v at 

v = iT iD II tP*[nX(OXVTtP)]d 2[l dE d
2
rdt 

(4.5a) 

v= iT iDff tP[nX(VTtP*Xo)]d 2[ldEd 2rdt. 

(4.5b) 

Our result consists of Eqs. (4.3)-(4.5). As with the 
steady-state analysis, each of the expressions in these equa
tions involving tP or tP* can, in principle, be determined by a 
suitable interpretation of tP* (see Sec. II) together with suit
able measurements of surface neutron fluxes. The comments 
at the end of Sec. III regarding (1) the likely sensitivity of our 
equations to experimental errors, and (2) the effort that ap
pears necessary to determine acceptable measurements, ap
ply here to an even greater degree than in Sec. III. This is 
because one must now make accurate measurements for 
each value of t; therefore, the dimensionality of the space in 
which measurements must be made, recorded, and pro
cessed, is increased by one. 

To conclude this section, we note that there is a simple 
instance in which time-dependent results can be analyzed 
directly by the steady-state results of Sec. III. This occurs for 
the case of a subcritical medium and T = 00. Then, assum
ing that a source of neutrons is beamed onto D for only a 
finite amount of time, the angular flux tP will tend to zero as 
t ---+ 00. Thus, one can integrate Eq. (2.11) from t = 0 to 
t = 00 and define 

tP(r, n, E) = 1''' tP(r, n, E, t )dt 

to obtain exactly Eq. (2.1) for the steady-state tP. The bound
ary condition is just the time-integrated boundary condition 
for the time-dependent tP. Sanchez and McCormick have 
discussed this (and more general) procedure for slab geome
try problems. 10 

V. ADDITIONAL RESULTS 

In the previous sections of this article we have consid
ered the problem offorward (and adjoint) transport with 
boundary conditions that are as general as possible, con
strained only by the requirement that tP and tP* are both 
measurable for all rEaD, all n, all E, and all suitable t if the 
problem is time dependent. In this section, we show that by 
placing additional constraints on these boundary conditions, 
a simplification of our results can occur. For brevity and 
simplicity, we only consider the case of steady-state trans
port as described in Sec. III. 

To be specific, we prove that for certain types of bound
ary conditions on tP and tP*, the expressions (3.6) for S sim-
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plify to line integrals involving only tP and tP* (not their tan
gential derivatives) over simple closed curves on aD. This 
makes the resulting constraint (3.3) on U T and Us substantial
ly simpler and almost certainly less prone to experimental 
error, because errors in measurements of V T tP or V T tP* are 
likely to be much greater than errors in tP or tP*. We shall not 
attempt to discuss the most general boundary conditions for 
which this simplification occurs; we just show that it can 
occur in special cases. 

To describe a special case, let.II and.I2 be simply con
nected subsets of the boundary aD of D with the following 
properties: (1) the boundaries of.I I and.I2 are simple closed 
curves, r 1 and r 2, having piecewise continuous tangent vec
tors; and (2).I I is sufficiently small in diameter that there 
exists a unit vector n with the property that n . n < 0 for all 
unit ou~r normal vectors n corresponding to points in .I I' 
(Thus, n points into D at all points in .I I' If .I I happens to 
consist of a planar part of aD; then n exists and can be 
any u~it vector pointing into D through this plane. In gen
eral, n exists if .I I is "small" enough that n i • n2 > 0 for all 
unit outer normals n i and n2 corresponding to points on.II.) 
Finally, let X n (r), n = 1,2, be the characteristic functions for 
.II and .I2 : 

{
I, 

Xn(r) = 0, (5.1) 

We now consider the forward transport problem con
sisting of Eq. (2.1) and the boundary condition 

tP(r,n,E)=XI(r)b(n-n), rEaD, n·n<O. (5.2) 

(This equation describes a uniform, monodirectional beam 
incident on .I I') Also, we consider the adjoint problem con
sisting ofEq. (2.5) and 

tP*(r, n, E) = b(r), rEaD, n· n > 0 . (5.3) 

(The physical interpretation of tP* with this boundary condi
tion is given in Sec. II.) 

To proceed, we use Eqs. (5.2) and (5.3) in Eq. (3.6b) [use 
ofEq. (3.6a) leads to the same result] and write 

S = S+ + S- , (5.4) 

where 

n·n>O 

and 

S- = iD II tP[nX(VTtP*xn)]d
2
[ldEd

2
r 

non <0 

II nx [VTtP*(r, n, E)xn]dE d 2r. (5.6) 

I, 

If we define 

d (r, r 2 ) = the distance from r to r 2 , 

then by Eq. (5.3), for n· 0>0, 

V TtP* = - b[d (r, r 2)]m, 

(5.7) 

(5.8) 

where b is the usual delta function and m is the unit outer 
normal to r 2 in the plane of aD. Introducing Eq. (5.8) into 
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Eq. (5.5), we obtain 

S+= - L, II ¢[nx(mxn)]d 2fJdEd lr. (5.9) 

n·n>O 

Finally, we note that 

-mXn=t, (5.10) 

where t is the unit tangent vector pointing in the direction of 
the transverse of r 2 • (This direction is right handed with 
respect to the outer normals of .1'2') Equation (5.9) thus re
duces to 

S+= L, II (nxt)¢d
2
fJdEd

l
r, (5.11) 

O'n>O 

which is the desired simplification of Eq. (5.5). 
To simplify Eq. (5.6), it is necessary to use vector indi

cial notation and Stokes' theorem. IS Then, with 

~*(r, E) = ¢*(r, n, E), 

we have 

(5.12) 

nX [VT¢*(r, n, E)xn] = nX(V~*Xn)= EijkfljEklm ~jnm 
A A 

= - Emlk [EjjkfJj ¢*] ,1nm . 

Thus, by Stokes' theorem, 

f fl X [VT¢*(r, n, E)xn]d 2r JI, 

1 AA 

Emlk [EjjkfJj ¢*] ,1nm d 2r 
I, 

f [E ijk flj ~* ] t k d 1 r Jr, 
f (nxt)¢*(r, n, E)d lr. Jr, 

Using this result in Eq. (5.6), we obtain 

S- = - L, I (nxt)¢*(r, n, E)dE d Ir, 

(5.13) 

(5.14) 

(5.15) 

which is the desired simplification. Combining Eqs. (5.4), 
(5.11), and (5.15), we obtain the final result 

S= L2 II (nxt)¢(r,n,E)d2fJdEd
l
r 

0,0>0 

L, I (nxt)¢*(r, n, E)dE d Ir, (5.16) 
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which consists ofline integrals of just ¢ and ¢*. 
Other boundary conditions for ¢ and ¢* also lead to 

expressions of the form (5.16) for S. For example, one could 
replace the delta function in n in Eq. (5.2) by a characteristic 
function in n over a subset of the cone of directions pointing 
into D through all of .1'1' (n belongs to this cone.) However, 
we shall not consider this topic further here. 
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In a general curved space-time, the requirements that the Feynman Green's function be 
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I. INTRODUCTION 

The Feynman Green's function, or time-ordered, two
point function, is a quantity of central importance in the 
study of quantum field theory in curved, or fiat, space-time. 
In Minkowski space-time there is, for a given field, exactly 
one such function. When space-time is curved, there are 
often many candidates for the title. In this paper I wish to 
discuss the structure of these functions that is required by the 
two constraints: that they have the Hadamard I form and 
that they be symmetric functions of the two space-time 
points involved in their definition. I shall not discuss 
whether they ought to have the Hadamard form, although 
there is fast growing support for this idea,2 nor shall I discuss 
boundary conditions or Cauchy problems. They must be 
symmetric functions, and it is how this condition affects the 
Hadamard form that I shall investigate. I shall use the exam
ple of the massless, conformally invariant, scalar field in an 
arbitrary curved space-time. The analysis will be seen to be 
applicable to more general fields. 

Although in writing this paper I have in mind the appli
cation to quantum field theory, it is exclusively concerned 
with properties of the classical wave equation; Planck's con
stant enters only in spirit. This is an important point: Much 
of the subsequent analysis is about finding a missing length. 
In quantum field theory this length might find expression as 
an arbitrary renormalization length or the Planck length. 
Here, with a massless, classical field theory, it is a length that 
can only be constructed from the curvature of space-time 
itself. 

II. THE SYMMETRIC HADAMARD SERIES 

In this section I shall derive a necessary condition for 
the Green's function G (x,x') to be a symmetric solution to the 
inhomogeneous wave equation, 

(0 - f,R )G (x,x') = - g-1/2(XW(X - x') (2.1) 

having the Hadamard form, 

G (x,x') = i(8~)-1 [.1 1/2(U + iE)-1 + v In(u + iE) + w]. 
(2.2) 

First, note some well-known features of Eq. (2.2): The 
factors iE are included to give G the singularity structure that 
is appropriate for a Feynman Green's function. 2cr(x,x') is 
the square of the length along the geodesic joining x and x'. 
(One can require that x and x' belong to a "simple region,,3; 
this ensures that it is meaningful to speak of their being 
joined by a unique geodesic.) .1 (x,x') is the symmetric bisca-

lar constructed from the Van Vleck-Morette determinant, 
viz., 

.1 (x,x')= - g-1/2(X) g-1/2(x')det( - U;ab')' (2.3) 

.1 satisfies the equation 

(2.4) 

The functions v(x,x') and w(x,x') can be represented as the 
uniformly convergent power series, I 

00 

v(x,x') = I vn(x,x')cr"(x,x'), (2.5) 
n=O 

00 

w(x,x') = L. Wn(X'X')cr"(x,x'), (2.6) 
n~O 

where the coefficients Vn and Wn satisfy the differential re
cursion relations 

(n + I)(n + 2)vn + I + (n + l)vn + I;co'c 

- (n + l)vn+ 1.1 -1/2.1 ;1:20'C + !(O - f,R )Vn = 0, (2.7) 
and 

(n + I)(n + 2)wn + I + (n + I)wn + I;cdc 

- (n + l)w .1 -1I
2.1 112d c 

n + 1 ;c 

+ ~(O -!R )Wn + (2n + 3)vn+ I + Vn+ I;c
dc 

- V .1 -1/2.1 112d c = o· n + I ;c , (2.8) 

the biscalar v(x,x') is completely determined by Eq. (2.7), and 
the boundary condition 

Vo + vo;cdc - vaLl -112.1 ;1:2dC + !(O - f,R ).11/2 = O. 
(2.9) 

V(x,x') is a solution to the homogeneous wave equation. The 
functions v(x,x') and Vn (x,x') are known to be symmetric. 2 v 
and VI have the covariant Taylor series expansions 

v(x,x') = !vab(x)dadb -lvab;c!x)o'ao'bdc + o (uZ), 

and 

VI(x,x') = vl(x) - !vI;a(x)da + o (u), 

where 
vab _ I (C c(ab )dR + 2C c(ab)d ) - m cd ;cd' 

(2.10) 

(2.11) 

= -Lu- 1/2_ fJ _ J d 4xgl/2C C abcd (2.12) 
2400 fJ abcd' 

gab 

and 

VI (x) = tio(RabcdR abed - RabR ab + OR ). (2.13) 

Equations (2.12) and (2.13) are immediate consequences of 
the formulae given in the Appendix. 
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Less is known about the biscalar w(x,x'). Clearly it must 
be symmetric if G is to be symmetric. W (and hence G) is 
completely determined by the recursion relations once the 
biscalar wo(x,x') is specified. Thus the requirement that 
w(x,x') be symmetric can be seen as a condition on wo(x,x'). 
w, unlike v, is not a solution to the homogeneous wave equa
tion; it is a simple matter to show that it has to satisfy the 
equation 

(0 - f,R )w(x,x') = - 6v1(x) + 2v1;a(x)da + o (a). 
(2.14) 

W is unlike v in another important respect: The biscalar 
v(x,x') has a covariant Taylor series expansion, the first few 
terms of which are given by Eq. (2.10). The complete expan
sion has the property that the coefficients vab(x), etc., are 
polynomial functions of the curvature tensor and its covar
iant derivatives. One might ask if one should expect the same 
property to hold for the covariant Taylor seris expansion of 
w, when, as in often the case, one seeks to find a purely geo
metrical solution to equation (2.2). The answer is that, in 
general, one should not: In Eq. (2.2) the argument of the 
logarithm is a dimensional quantity. Thus W must supply a 
term - v(x,x') In L (x,x'), where L (x,x') is a function having 
the dimensions of area. The requirement that G be geometri
cal implies that L must be some function of the curvature 
tensor.! shall return to this point in the next section where I 
shall be able to specify further L (x,x'). 

Let me now determine a condition on wo(x,x') that must 
be satisfied if G (x,x') is to be symmetric. I begin with some 
observations on covariant Taylor series: Let A be a biscalar 
possessing a covariant Taylor series expansion in a neighbor
hood of the point x, namely, 

A (x,x') =A (x) + Aa(x)da + !Aab(x)dadb 

+ f,Aabc(x)dadbdc + o (a2), (2.15) 

whereA ab = A(ab I andAabc = A (abel ,etc. The expansion coef
ficients, Aab etc., can be expressed as coincidence limits of 
covariant derivatives of the biscalar A (x,x') by means of the 
equations4 

A (x) = [A], 

Aa(x) = [A;a] - [A La' 
Aab(X) = [A;(abd- 2 [A;(aLbl + [A L(ab» 

A abe (x) = [A ;(abed - 3 [ A ;(ab lCI + 3 [ A ;(a Lbcl - [A L(abe» 
(2.16) 

where I use the standard notation 

[A ] = limA (x,x'). 
X'----i>X 

Using these equations, it is easy to compute the Taylor series 
for the function A (x' ,x). The requirement that A (x,x') equal 
A (x' ,x) results in the conditions 

2Aa(x) = -A;a(x), 

4Aabe (x) = - 6A(ab;cl (x) + A;(abcl (x), 

(2.17) 

(2.18) 

and so on. More generally, the requirement of symmetry 
determines the odd coefficients, Aa, A abe , Aabcde' etc. How
ever, I shall need only Eqs. (2.17) and (2.18) in what follows 
and shall not record the higher order constraints. 
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W(x,x') is a symmetric biscalar that, it is supposed, pos
sesses a Taylor series expansion. Therefore, by the above 
argument, it can be written 

w(x,x') = w(x) - ~w;a(x)da + !wab(x)dadb 

- H Wab;c(X) - f,w;abc(x)}dadbdc + o (a2), 
(2.19) 

where w(x) = [w] and Wab = [W;ab]' 
At this point there are several ways to proceed. Perhaps 

the most direct is to require that w(x,x'), as given by Eq. 
(2.19), satisfy Eq. (2.14). So doing, one obtains the equations 

and 

waa(x) = f,Rw(x) - 6v1(x), (2.20) 

{Wab(x) - ~oabwcc(x)La = 2V 1;b(X) + !(OW(X));b 

+!R abW;a(x) - -bRW;b(X). 
(2.21) 

Next one has to relate these equations to wo(x,x'). This is 
done as follows: wo(x,x') has a Taylor series expansion 

wo(x,x') = wo(x) - !WO;a (x)da 

+ !WOab (x)dadb + 0 (tr/2), (2.22) 

where wo(x) = w(x). [The form of the second term in Eq. 
(2.22) is required by the symmetry of w(x,x'); it must not be 
supposed that wo(x,x') has any particular symmetry proper
ty.] w1(x,x') has a Taylor series 

W1(x,x')a = !Wlab(X)dadb + 0 (tr/2), 

where, by Eq. (2.8) and (2.6), 

(2.23) 

W1ab(X) = gab [W1(X,X')] (2.24) 

and 

[W1(x,x')] = z\Rwo(X) - !WOaa(X) - ~Vl(X). (2.25) 

Combining Eqs. (2.22) and (2.23) with (2.6), one sees that 

w(x,x') = wo(x) - ~wo;a(x)da 

+ ! { WOab (x) + W1ab (x) l dadb + 0 (tr/2). 
(2.26) 

Comparing this equation with Eq. (2.19) yields the result 

wab(x) = wOab(x) + W1ab(X). (2.27) 

Now Eqs. (2.20) and (2.21) can be written in terms ofwo(x,x'). 
The first of these equations is identically satisfied; in other 
words, it is not a constraint on wo(x,x'). The second is more 
interesting and becomes 

{WOab(x) - !Oabwocc(x)La = !V1;b(X) + !(OWO(X));b 

+ ~R ab wO;a (x) + z\{R;bWO(X) - RWO;b(X)}. (2.28) 

Equation (2.28) must be satisfied by the coefficients in 
the Taylor series expansion of wo(x,x') if G is to be a symmet
ric Hadamard solution to Eq. (2.1). Of course, there will be 
additional constraints on the higher order Taylor series coef
ficients. These would require some dedication to compute; 
fortunately, one needs only those terms up to WOab (x) to un
derstand quantum field theoretic energy densities.5 In this 
context, notice that wo(x,x') = 06 is not a solution to Eq. 
(2.28) unless v1(x) is constant. v1(x) [Eq. (2.13)] is a function 
that is commonly known7 as the "trace anomaly." 
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In the next section I shall describe the geometrical solu
tions to Eq. (2.28). 

III. THE FORM OF w(x,x1 

I shall regard Eq. (2.28) as a constraint on wOab(x) for 
some given Wo in a general curved space-time. It can be 
solved as follows: 

Let me write 

WOab = Sab + tab' 

where Sab satisfies 

(s\ - iO a bSe e );a = !(OWO);b 

(3.1) 

+!R abWO;a + f4(R;bWO - RWO;b)' 

and tab satisfies 
(3.2) 

(tab - !OabteC);a = !VI;b' (3.3) 

A solution to Eq. (3.2) is provided by 

Sab = t(WoRab - ,igabwoR) + j(WO;ab - ,igabOWO)' (3.4) 

This is geometrical, provided, of course, that Wo is a function 
of the curvature. That it satisfies Eq. (3.2) is easily checked: 
One uses the Bianchi identity 

R ab'a = lR.b, , 2, (3.5) 

and the differential identity 

O(WO;b) = (OWO);b + R a b WO;a' (3.6) 

Finding a solution to Eq. (3.3) is not so easy. I first gave 
a solution to this equation some years ago.8 However, the 
method I then used is inappropriate in the present context. I 
think that the following is a more interesting way to proceed. 

I define the tensor T: 

Tab -tab - ,igabtCe - !Vlgab · 

Then Eq. (3.3) implies that 

Tab;a = 0 

and 

(3,7) 

(3.8) 

(3.9) 

Thus one has a geometrical solution to Eq. (3.3) if one can 
find a geometrical tensor Tab that is conserved [Eq. (3.8)] and 
whose trace is proportional to the trace anomaly [Eq. (3.9)]. 
The clue to finding such a tensor is provided by the conserva
tion equation: suppose that Tab is the variation with respect 
to the metric of an invariant action. In other words, let 

Tab = 2g-I/2_0_ f d 4xgl/2A (ged)' 
ogab 

(3.10) 

Equation (3.8) is the statement that A be a scalar under gen
eral coordinate transformations. Equation (3.9) can be treat
ed as a statement about the scaling behavior of A; more pre
cisely, 

:w f d 4
xg

l
/
2
A (8-ed{.,,=o = _gl/2Ta

a, (3.11) 

where g is related g by the equation 

gab=e- 2"'gab' 
Equation (3.11) suggests that a suitable action can be found 
by integrating the functional differential equation 
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(3.12) 

Equation (3.12) clearly reduces to (3.11) in the limit w = o. 
The variation with respect to w is taken holding the metric 
gab fixed. In this sense, Eq. (3.12) is a partial, functional dif
ferential equation. Bearing this in mind, it is remarkably 
simple to integrate it. 

Using the formulae in the Appendix, gl/2Ta
a(8-ed) can 

be written 

gl/2Taa (ged) = - 2gl/2VI(gcd) 

- MI/2(Rabed R abed _ RabR ab + OR) 
= _ Jiogl /2! RabedR abed _ RabR ab + DR 

+ 2R Ow + 2R;aw;a + 60(Ow) + 8[(Owf 

- W;abW;ab - Rabw;aW;b 

- W;cW;e Ow - 2w;abW;aW;b ] ). (3.13) 

It is straightforward to see that Eq. (3.12) can be functionally 
integrated to give 

gl/2A (8-ed) =gI/2C(w;ged) +gl/2F(ged)' (3.14) 

where F is a function of the metric (but not w) and 

C (w;ged ) ==~ [(RabedR abed - Rab R ab + DR )W + 3(Ow)2 

- 2Rab w;aW;b - 4w;ew;c Ow + 2(w;cw;e)2]. 

(3.15) 

C is determined uniquely up to total divergences. Equation 
(3.14) must hold for w = O. This implies that 

F(gcd) =A (ged)' (3.16) 

Equation (3.14) may now be seen to determine the scaling 
behavior of the function A: 

gl/2A (e - 2"'gcd) - gl/2A (gcd) = gl/2C (w;ged)' (3.17) 

Thus the problem of finding a tensor satisfying equations 
(3.8) and (3.9) has been reduced to finding a scalar A that 
satisfies the scaling equation (3.17). 

The solutions to Eq. (3.17) can be found by choosing w 
to be a function of the curvature that has the scaling law 

w(e- 2Xgab )=w(gab)-X, (3.18) 

Equation (3.17) then has the solution A *(gcd)' where 

A *(gab) = - C(W(gab);gab)' (3.19) 

This is clearly a solution since 

A *(e - 2Xgab ) = - C (w - x;e - 2Xgab ). (3.20) 

Setting X = w in Eq. (3.20) yields 

A *(e- 2"'gab) = O. (3.21) 

More general solutions to Eq. (3.17) are obtained by 
adding to a solution gl/2A * any conformal invariant. It is 
worth noting that, when w satisfies Eq. (3.18), C has the scal
ing property 

C(w(e-2Xgab);e-2Xgab) = C(W(gab);gab) - C(x;gab)' (3.22) 

Thus, if WI and W2 both satisfy Eq. (3.18), the difference 
{ C (w l;gab) - C (W2;gab ) J is a conformal invariant. 

To summarize these results: I have shown that a solu
tion to Eqs. (3.8) and (3.9) is provided by 
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Tab = - 2g- 1/2 -f-J d 4x gl/2C(cu(ged);ged)' (3.23) 
gab 

where cu is a scalar function of the curvature satisfying Eq. 
(3.18) and C(cu;g) is given by Eq. (3.15). There exists the free
dom to add to Tab any conserved, trace-free tensor. In terms 
of the function w(x,x'), this freedom corresponds to the free
dom to add a symmetric solution to the homogeneous wave 
equation that has zero coincidence limit. {The function 
v(x,x') provides a particular example. Recall that v(x,x) is 
zero and vab(x) is the variation of a conformally invariant 
action [Eq. (2.12)].} 

It now remains to show that there exist scalar functions 
of the curvature, cu, that satisfy Eq. (3.18). These functions do 
indeed exist; they are more or less difficult to construct, de
pending upon whether or not the Weyl curvature of the 
space-time is zero. 

When the space-time is not conformally flat (Cabed #0), 

cu = - 1 In C C abed (3.24) 4 abed 

is the simplest to construct. Of course, it may be that Cabed is 
not zero, but the particular invariant cabedcabed is. In this 
case one can select any other, nonvanishing, invariant. One 
could take cu to be proportional to the logarithm of the sum 
of the squares of the independent invariants of the Weyl ten
sor; this would have some advantages. However, it still may 
not be the most natural choice. To see what might be more 
natural, it is necessary to see how Tab contributes to the 
Green's function G (x,x'). It does this through the function 
w(x,x'). Combining Eqs. (2.26), (3.1), (3.4), and (3.7), w(x,x') is 
now seen to have the form, 

w(x,x') = wo(x) - ~wo;a(x)da 

+ ~ [Tab - V1gab + iRabWO 

+ j(WO;ab - ~abOwo)]dadb 
+O(~/2). (3.25) 

In the previous section I made the point that it was artificial 
to write G in the form ofEq. (2.2); in particular, w(x,x') had to 
provide a term - v(x,x') In L. The Taylor series expansion 
of this term about the point x is provided by Eq. (2.10), and 
the necessary assumption that L (x,x) is not zero. A term 
having exactly this structure is indeed provided by w(x,x'). 
Whatever the actual choice for cu, its scaling behavior is 
characteristic of a function that is the logarithm of a length; 
Eq. (3.24) is an example. 

Consider taking the variation in Eq. (3.23) to obtain an 
explicit form for the tensor Tab. It is easy to see that the only 
place where the logarithmic nature of cu survives is in the 
term 

- rtog-I/2CU_
O_ J d 4x gl/2(RabedR abed - RabR ab + DR). 

ogab 
(3.26) 

Elsewhere cu appears differentiated, either functionally or 
covariantly. Using the formulae in the Appendix, the term 
(3.26) can be shown to be equal to 

(3.27) 
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(The variation of the other terms vanishes identically.) 
Recalling Eqs. (2.12) and (3.25), one sees that the term 

(3.27) contributes to w(x,x') an amount: 

(3.28) 

where cu-In L. In short, cu provides the length that is miss
ing in Eq. (2.2). 

It would seem natural to choose cu to be a function of the 
biscalar v(x,x'), insofar as it is the existence of v that requires 
the existence of cu. The tensor Vab is well suited to this pur
pose: its scaling behavior can be inferred from Eq. (2.12) and 
is given by 

va
b(e- 2Xged) = e4XVab(ged)' (3.29) 

The eigenvalues Vj ofva
b scale in the same way. Thus it is 

possible to choose for cu, 

cu = - (4d )-1 In hd(v j ), (3.30) 

where hd(v j ) is any homogeneous function of degree d. 
When the space-time is conformally flat Vab vanishes. 

Indeed it can be shown that v(x,x') vanishes.9 If this is the 
case, then there is no pressing need to construct an cu satisfy
ing Eq. (3.18). However, solutions do still exist and can be 
defined implicitly. For example, 

cu = -In tP, (3.31) 

where tP is a geometrical solution to the wave equation 

(0 - iR )tP = 0, 

which has the scaling behavior 

tP(e - 2Xgab ) = eXtP(gab)' 

Of course, functions of the type (3.31) will continue to pro
vide solutions to Eq. (3.18) when Cabed = O. It can be shown8 

that by proceeding in this way one obtains for the tensor Tab 
the polynomial expression 10 

Tab = tio[6R aeR be + 2R ;ab 

_ 6RR ab _ ~b(20R _ 2R 2 + 3RedR Cd)]. (3.32) 

(One chooses for cu the solution that is conformal to a con
stant, the solution in flat space-time.) 

The simple form for Tab in Eq. (3.32) is essentially a 
feature of the conformal flatness. The variation ofEq. (3.15) 
is easy to compute because 

OC= J d 4x {gl/2TaaWed)Ocu-2gl/2pbogab}, (3.33) 

and, for the above choice of cu, the coefficient of ocu vanishes; 
one does not have to compute further the variation of cu with 
respect to the metric. 

In general, when the Weyl tensor is nonzero, one can 
arrange for a similar simplification to take place: Require 
that CU(ged) is determined by the condition 

T a
a(e- 2"'ged) = O. (3.34) 

This equation implies that cu satisfies (3.18) and has 
some interesting solutions. II A nongeometrica1 solution 
worth mentioning is provided by 

cu = - ~ In(K agabK b), (3.35) 

where Ka is any curl-free, Killing vector field of the Ricci 
flat metric gab' 12 
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IV. CONCLUSION 

To some extent it is artificial to look for more or less 
natural functions W that satisfy Eq. (3.1S): for a given prob
lem with prescribed boundary conditions an w will be auto
matically provided. But, as I said in the Introduction, I was 
interested in how far the requirements of symmetry and hav
ing the Hadamard form determine the local structure of 
Feynman Green's functions. In this spirit, the hard conclu
sions of this paper are those contained in Eq. (3.25), (3.23), 
and (3.15). The rest is more speculative but, I hope, not with
out interest. 

APPENDIX 

The conventions used in this paper are consistent with 
Ref. 13. The following formulae were used in the derivation 
of the equations appearing in the text: 

R ab = e2QJ(R ab + 8[a wb] ) cd cd [c d ] , 

R b - e2QJ [R b + l(2OJb + 8b Wa )] d- d 4 d d a , 

R = e2W(R + iWa a)' 

D¢ = e2w(O¢ - 2w;a¢'a)' 

where 

Rabcd-Rabcd(e ~ 2wgef), 

wab -4(W;ab + w;aw;d - 2gab w;Cw;c' 

(AI) 

(A2) 

(A3) 

(A4) 

and a semicolon denotes covariant differentiation with re-
spect to the metric gab; 

140 

U;ab(X,x') = gab (X) - jRacbd(X)dCdd 

+ izRacbd;edcddde 

- (1,oRacbd;ef + isR acgdR be gf ) 

Xdcddde(jf + O(~/2), (AS) 

.::1 1/2(X,x') = 1 + 1 R dadb - 1 R dadbdc 
12 ab 24 ab;c 

+ (zhRabRcd + JkR e/bRecfd 

+ rtoRab;cd )dadbdcdd + O(~/2), (A6) 

.::1
1/2

;ab(X,X') = iRab + iz(2Rc(a;b) - Rab;c)dC 

+ (ioRab;cd + ioRcd;(ab) - isRc(a;b)d 

+ i,.RabRcd + .fr,RacRbd 

+ rtoRe(aRb)c ed + ifoRaebfR e/d 
1 ye R f 

- 90'" cf(a b) ed 

- ifoR ecf(aRb )/d + Nrfice R e(ab)d ) 

X dCdd + 0 (a3 /2 ), (A 7) 
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[formulae (AS), (A6), and (A7) are taken from Ref. 14] 

Va;[bc] = ! VdR dabc ' (AS) 

Cabcd = R abcd + ga[d Rb ] - gb [d Rc]a + jRga[cgd Jb' 

cabCd;a = Rb [d;c] - t,gb [d R;c J' 

Cabcdcabcd = RabcdR abcd _ 2RabR ab + jR 2, 

C C cde - 1 C C efgh acde b - ~ab efgh , 

8g 1/2 = !g1/2~b8gab' 

8rab c = ~d (8gad;b + 8gbd;a - 8gab;d)' 

8Rabc d = (8rca dLb - (Orcb d);a' 

8Rab = gcd (8gc(a;b)d - ~Ogab;cd - !8gcd;ab)' 

oR = ~bgcd (ogac;db - ogab;cd) - R ab8gab. 

(A9) 

(AlO) 

(All) 

(AI2) 

(AI3) 

(AI4) 

(AIS) 

(AI6) 

(AI7) 
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We present all the Wightman functions for an explicit operator solution of the Schwinger model. 
To understand these better, we study the algebra of fields of this model, representations of this 
algebra as well as the Hamiltonian. The latter turns out to elucidate the "confinement" of the 
fermion field. In addition we comment on the renormalization of the theory as well as on the 
analyticity of the amplitudes in terms of the coupling constant. 

PACS numbers: 11.10.Mn 

I. INTRODUCTION 

The Schwinger model has proved to be a rich source of 
theoretical results for further conjectures as well as for test
ing conjectures. This makes it worthwhile to examine this 
model, in as much detail, and from as many perspectives, as 
possible. In a previous paper, I we presented an explicit oper
ator solution of the Schwinger model for an arbitrary covar
iant gauge. The solution was local, Lorentz-covariant, chir
ally invariant, and the gauge transformations of the first 
kind were implementable. 

In this paper we further examine properties of these 
solutions. In particular, we list all the Wightman functions, 
construct the Hamiltonian, and examine its spectrum. Final
ly we also comment briefly on the renormalization of the 
theory and the analyticity of the Wightman functions with 
respect to the coupling constant. 

Throughout we use the same notation as in Ref. 1. To 
introduce this notation, we briefly review the results ob
tained in Ref. 1. When necessary, we use the following ex
plicit conventions: 

gOO = 1, ~I = 1, 

~ = (~ ~), yl = (~ - ~), r = ~yl. 
We also define F = F( +) + F (-) for any free quantized field F 
to be, respectively, the annihilation and creation parts of F. 

The Schwinger model, as considered by us in Ref. 1, is 
defined by the formal Lagrangian 

5t' = - A(F"vf - ~a(a·A f + ~ (iy.a - ey·A )</1. (1) 

The solutions for the Heisenberg fields </1, A" are given in 
terms of certain free "building block" fields as follows: 

</1 (x) = z -1/2 exp[ - iefl H(X)]t/t(X) exp[ - iefl (+)(x)], (2) 

A,,(x) = a"c(x) + E"" aVd(x), 

where 

fl (x) = c(x) + rd (x), 

c(x) = a(x) + {3 pIx), 

d (x) = ({1T/e)[..!' (x) + C7{x)] - (a1T/e2 )h (x). 

(3) 

(4) 

(5) 

a) Permanent address: Istituto di Fisica, Universita di Pisa, Piazza Torricelli 
2, Pisa, Italy, 

Here {3 is a real parameter and the other quantities are free 
fields defined as follows: 

and 

y·at/t(x) = 0, 

Da =b, Db =0, 

(0 + e2/1T)..!' = 0, 

:¢y"t/t:(x) = (lI{1T)a"p = (lI{1T)E"v avO", 

a"b = E"v avh. 

The relevant two-point functions for these fields are 

(6) 

(7) 

(8) 

(9) 

(10) 

(OIt/ta(x)¢p(O)IO) = - i(iy.a)apD(+)(x), (11) 

(Ola(x)a(O)IO) = - (i/a)I(+)(x) 

+ i({32 + 2f3{1T12)D(+)(x), (12) 

(OI..!'(x)..!'(O)IO) = - i.J (+)(x), (13) 

(Olp(xlo(O)IO) = (OIC7{x)C7{O)IO) = - iD(+)(x), (14) 

(Olp(x)C7{O)IO) = - iD(+)(x), (15) 

where 

D(+)(x) = (41Ti)-1 In,u2( - x2 + iEXo), 

I(+)(x) = (161Ti)-lx2In ,u2( - x2 + iEXO). 

(16) 

(17) 

.J (+) is the solution of(D + e2 /1TJ.d (+) = o with the normali
zation that yields 

ao.J(+)(x)lxo~o =8(xl
) 

and finally 

l)(+)(x) = (41Ti)-lln [(XO - iE + x+)/(XO - iE - Xl)]. (18) 

The finite normalization constant Z is given by 

Z = ({1T,u/e)1/2 exp[ - ~(y -In 2)), (19) 

where y is Euler's constant and,u is an arbitrary mass scale. 
For further details, regarding properties of these solu

tions, the reader is referred to Ref. 1. 

2. THE WIGHTMAN FUNCTIONS 

Since the solution given in Ref. 1 conserves fermion 
number, the only nontrivial Wightman function involving 
only Fermi fields was already listed there and is given by 

141 J. Math, Phys. 25 (1), January 1984 0022-2488/84/010141-09$02.50 141 



                                                                                                                                    

(Ol¢ (xd"'¢ (xn)¢ *(yd"'¢ *(Yn)IO) 

= Wn(x,y) 

= Z -n exp[yHI(X,y)] W6n(X, y), 

where 
n 

Y+(x,y) = L FI+I(XoYj) 
i,j~ I 

n 

(20) 

- L (FI+I(xo xj ) + F1+I(Yi'Yj)) (21) 

and 

i<j= I 

FI+I(x,y) = e2
{ - ~ II+I(x - y) 

- :~y~~ [Ll I+I(X - y) - D1+J(x - y)]}. 

(22) 
Here 

w2 (x y) = _1_ y.(x - Y)Yo 
0' 21Ti [(x - yf - iE(XO - yO)] 

= (OI¢(x)¢*(y)IO) (23) 

is the free fermion two-point function and 
n 

W6n(X,y) = L (- 1)8PII W6(XO YiP) = det W6(X;'Yi) 
Perm i= 1 

(24) 

is the free fermion 2n-point function. It is worth noting that 
the two-point function can also be written as 

(OItfJ(x)¢*(y)IO) = (,u/21T) exp 21Ti 
X irDI+I(x - y) -D1+1(x - y)J. (25) 

The vector potentialAp is just a sum offree fields, as stated 
by Eq. (2). Thus all n-point functions of Ap are just given in 
terms of the following two-point function: 

(OIAp (x)Av( y)IO) 

= iH1~I(x - y) = (i/a) apaJI+I(x - y) 

+ (i1T/e2
) apav [Ll I+I(X - y) - D 1+I(x - y)] 

+ igpvLl 1+I(x - y). (26) 

The result is 

where the sum is over all partitions of 2n into n disjoint two
element subsets 

(jlj2)(j3j4)···(j2n - I j2n) with j2k - I <j2k' 

We next compute the simplest of the mixed Wightman 
functions, namely 

(OIAp (z)¢ (x)¢ *(y)IO) = (OIA 1+ I(z)¢ (x)¢ *( y)IO). (28) 

The computation is facilitated by using Eqs. (72)-(74) of Ref. 
1, namely, 

with 
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¢ (x) = exp[ - ieEI-I(x));(x) exp[ - ieEI+I(x)] (29) 

; (x) = exp i pl-l(x)tfJ(x) exp i pl+I(X), 

PIx) = f1i(p(x) - ralx)) 
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(30) 

and 

E(x) = a(x) + r(fii/2~ (x) - (a1T/e2)h (x). (31) 

This is just a rewriting of the solution given by Eq. (2). We 
then obtain, 

[A 1+ I(z), EI-I(x)] = (i/e)G 1+ I(z, x) 

= - ii(lIa)apI I+I(z - x) + (1T/e2)rEpv 

xaV[Ll 1+I(z - x) - D1+I(Z - x)]J.(32) 

Now using the identity (for [A,B] a c-number) 

AeB = eB(A + [A,B ]), 

we obtain 

[A 1+ I(z), ¢ (x)] = G 1+ I(Z, x)¢ (x), 

and 

[A )1+ I(z), ¢ *(x)] = - G 1+ I(z, x)¢ *(x), 

where we used that GH*(x,y) = G1+I(x,y). 

(33) 

Combining these results yields the desired Wightman 
function 

(OIAp (z)¢ (x)¢ *( y) 10) 

= [-G1+ I(z,y)+G1+ I(z,x)](01¢(x)¢*(y)10). (34) 

This generalizes immediately to 

(OIAp (z)¢ (x d"'¢ (xn)¢ *( YI)"'¢ *( Yn) 10) 
n 

= L [G1+ I(z, Xi) - G1+ I(Z'Yi)] Wn (X, y). (35) 
i= I 

Further combining this result with Eq. (27), we find 

(OIAp, (zd .. ·Ap/(ZI)¢ (xd"'¢ (xn)¢ *( yd"·¢ *( Yn )10) 
n 

= L L (OIA pik + I (Zik+ J .. Apik+/(zik+JIO) 
r~ I Pili 

k 

X II [G p~+I(Zij' Xr ) - G p~+ I(Zij,Yr)] Wn(x,y), (36) 
j= 1 J J 

where the sum over P (/ ) is over all partitions of I indices into 
two disjoint sets, with ij < ik for j < k. 

This completes the evaluation of all the Wightman 
functions. Before turning to the Hamiltonian, it is conven
ient to examine the operators; (x),; *(x) given by Eq. (30). As 
we show later, they do not belong to the algebra of fields, but 
are nevertheless useful objects. 

3. THE ~·REPRESENTATION 

We begin by considering the vacuum expectation value 

To evaluate Z, we need 

;(x)~ (y)* = exp i[pl-I(x) - pH(y)]¢(x)¢*\y) 
Xexp i[pl+l(x) - pl+l(y)] 

XexpH1+I(x,y), 

; (xd;(x2) = exp i[pl-I(x l ) + pH(x2)]tfJ(X I )¢(X2) 
Xexp i[pl+l(x,) + pl+I(X2)] 

(37) 

(38) 

Xexp[-H 1+1(X I ,X2)], (39) 
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~ ·(yd~ ·(Y2) = exp - i[P(-)(YI) - p(-)(Y2)]"'·(Yd"'·(Y2) 
xexp{ - i[P(+)(YI) + P(+)(Y2)]J 

xexp[ -H(+)(YI'Y2)], C (40) 

where 

H(+)(x,y) = i1r[(1 + rxy;)D(+)(x - y) 

- (rx + y;).D !+)(x - y)]. (41) 

The subscripts x, y, etc. on rx indicate on which side of a 
quantity 'I is to be multiplied. Thus (rxF (x, Y))aP 
= YayFyp(x, y) whereas (y;F(x, Y))aP = Fay (x, y)r;,p. It then 

follows that 

Z (x, y) = exp JY(x, y) W6n(X, y), 

where 
n 

JY(x,y) = L H(+)(xoYj) 
j,j= I 

n 

(42) 

- L [H(+)(xoxj ) +H(+boYj)]' (43) 
j<j= I 

To further evaluate this expression, we notice that both 
JY(x, y) and W6n(X, y) are diagonal in the spinor indices. If we 
now consider all spinor indices to have the value 1, we find 

W611 =(217"i)-I[XO_yO_(XI _yl )-iE]-1 (44) 

and 

w671 ... 11 (x, y) = det{ (217i)-1 [x j - - Yj- - iE] -I J 

= (217i)-n IIi<j (xj - -xj-)(Yj- -Yj-) . 

IIj.j(xj- - Yj- - iE) 
(45) 

The last step above is proven in Refs. 2 and 3. 
To complete the computation, we write out exp ~+) 

for rx = y; = 1 and use Eq. (25) to get 

exp ~+)(rx = y; = 1) 

n'n IIj,j (xj- - Yj- ) 
= '" I (46) 

IIj<j(xj- -xj- -iE)(Yj- -Yj- -iE) 

and hence 

(Oltl(XI) .. ·tl(Xn)tT(Yd .. ·tT(Yn)IO) = (u/217r 

A similar computation for general spurion indices yields the 
following result: 

(Oltl(xd···tl(Xn )t2( yd .. ·t2( Ym)t T(z d 

.. ·t T(zn,)t !(wl) .. ·t !(wm' )10) 

= on,n' om,m' ( - )"'m(u/217)" + m. (47) 

Thus we see that the algebra specified by Eq. (75) of Ref. 
1 is represented on a Hilbert space with an orthonormal basis 

( ) 

- (lnl + Imll/2 
In,m) = ;17 (t T)(n + In li/2t \n -lnll/2 

X(t!)(m + Imll12~km -lmll1210) (48) 

for n, m = 0, ± 1, ± 2, ± 3, .. , and (n,mln',m') 
= on,n,om.m'· 

In this representation one has 

tIt T = t~! = ",/217, (49) 
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and two charges q and qs can be defined by 

[q, tJ = t, [qs, tJ = 'It, 
qlO} = qslO) = 0. 

(50) 

It is worth noting that the algebra given by Eq. (75) of 
Ref. 1 has many representations, not just the one given 
above. The representations can even be finite if the charges q, 
qs are omitted from the algebra. An example of such a finite 
representation is 

(51) 

4. THE HAMILTONIAN 

The solutions of the Schwinger model in Ref. 1 were 
constructed to preserve the gauge invariance of the underly
ing formal Lagrangian equation (1). Thus, in regularizing the 
terms appearing in the Hamiltonian, we must respect this 
invariance. A straightforward calculation shows that the re
quired condition is 

r(A )P" r-I(A ) = PI' + a I dXI a·A aaa"A, (52) 

where DA = ° and PI' is the generator of space-time transla
tions. The operator r(A ) is explicitly given by 

r(A ) = exp ia I dXI a·A aoA (53) 

and has the properties that 

r(A JA,,(x)r-I(A) =A" - a"A, 
(54) 

r(A )¢ (x)r- I(A ) = exp(ieA )¢ (x). 

To see how the condition implied by Eq. (52) is implemented, 
we consider the classical, unsymmetrized energy-momen
tum tensor 

K"V = i~r"av¢ - FI'PAp.v - agw>Ap'v a.A 
_g"V[ -IF FPu 

4 pu 

- ~a(a.A )2 + ~ (ir·a - er.A )¢ ]. 

The classical momentum operator is given by 

pv = I dXI KOv. 

(55) 

(56) 

Examining the individual terms (appearing in P V) under a 
gauge transformation, we find that Eq. (52) is valid ifthe 
following transformations hold: 

r(A )I( - aA o.v a·A ) dXI r-I(A ) 

= - a fA D,v a·A dx l + a f a·A aaaVA dx l, (57) 

7{A);j dx l ~yDrv¢r-I(A ) 

(58) 
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r(A )f dx l FOPAp,Vr-I(A) 

= f dx l FOPAp'v - f dx l aPFpO aVA. (59) 

The most problematic term is the term i¢yl'a vifJ en
countered in Eq. (58). To define this term, we use the gauge
invariant point splitting given by 

exp{ - ie f dsl' A ~ -I(S) [i¢ (y)yl' aVifJ (x)] } 

(60) 

We expand this expression in a power series in 1] = y - x, 
subtract the singular parts, and verify that the result is com
patible with Eq. (58) as well as the general properties of PV. 
The procedure is not covariant but can be made so by an 
averaging over all 1] I' •

4 This averaging is discussed in Appen
dix A and has the effect of replacing any product of 1] /s as 
follows: 

(1]2)n 
1]1', "'1]1'2n = -2 " I gl',l'/ oogl'kl'l' (61) n .. 

where the sum runs over all partitions of 1,2,oo.,2n into pairs 
such that i < j. Also 

1]1', "'1]1'2n + 1 = O. 

Now using 

ifJ *(y)ifJ(x) = Z-I expF(+I(x,y) 

Xexp ie[n H(y) - n H(x)]:I/!*(y)I/!(x): 
X exp ie[n (+I( y) - n (+I(x)] + Z-I 

xexp F(+I(x,y) exp ie[n H(y) - n H(X)] 

X (OIl/!*(y)I/!(x)IO) 
Xexpie[n(+I(y)-n(+I(x)]. (62) 

We find on inserting this result in the expression (60) that in 
the first term the limit 1]---+0 can be taken immediately to 
yield 

i:¢yl'avI/!:(x) + e;I/!yl'avnl/!;(x) 

= i:¢yl'avI/!:(x) + m[ ;yl'paVe;(x) - ;aI'O'aVd;(x)].(63) 

To obtain this, we have used that yl'y = - €I'VYv and that 
lim'7~ exp F(+I(X, x + 1]) = Z. The second term requires 
more work and when inserted in (60) yields 

[ r ](-1 
iZ -I expF(x,y) exp ie n (y) - n (x) - Jx ds P Ap(s) 

Now 

X I [a ~F(x,y) - ie avn (x)] (OI¢'*(y)fyl'¢,(x)IO) 

+ (Ol¢'*(y)fyl'a",p(x) 10) J 

[ r ]1+1 Xexpie n(y)-n(x)- Jx dsPAp(S) . (64) 

n (y) - n (x) - f ds PAp (s ) 

= rx [d(y) - d(x)] - J: ds P SPfJ aad(s)· (65) 
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Therefore, we obtain, after expanding in 1] and retaining only 
the non vanishing contributions for 1]---+0, that 

;exPie[n(y)-n(X)- f dS'PAp(s)]; 

---+1 + ie(y~ 1]P a pd -1]P€ pfJ aad) + ~1]ar/ 
X; - e2(rx aad - €ap aPd Hrx afJd - €fJfJ aad) 

+ ie(rx aaafJd - €afJ aaafJd);. (66) 

Combining this with the remaining expressions in (64), we 
find, after a straightforward computation using the averag
ing process described in Appendix A and Eq. (61) that the 
fermion kinetic term when properly defined yields 

i¢yl' a vifJ ---+~i[ :¢yl' a vI/!: - a v:¢yl'I/!:] 

+ m:(a I'p - m€l'a aa d ) aVe; 

- m; a I'O'a vd; 

+ Im2gl'v:a Pd a d: 2 • p., (67) 

where m2 = e2 hr. Evaluating the rest of the terms in K I'V 

and combining all the results, we obtain 

KI'V 

= F[:¢rl' a V¢': - aV:¢rI'I/!:] + a;aVea I'b - a l'ea Vb; 
-m:€l'a a IaVe+I€!lPa aVe ,a P 

+ (a 1'0'- m a I'd)a Vd; 

+ m2;~l'v a pd aPd - al'd a"d; 

- m;.2' al'a"d + (a/m)b€l'p a pa"d; 

+gI'V; _ !m2I2 + !ab2;. (68) 

After some rewriting we then obtain the Hamiltonian 

H = f dx l ; ~ [¢yO aol/! - ao¢yOI/!] 

+ a(aoa aob + ala alb _ b
2

2
) 

+ a {3 (a 0p aOb + a Ipalb) - +[ (ao(O' - : b)y 

This can also be rewritten as 

H=Ho+H I 

with 

H o= f dx l ; ~ [waol/!-aoWl/!] 

+ a(aoa aob + ala a Ib _ b
2

2
) 

+ ~202 + ~)[(aoh)2 + (alb f] 

+ ~ [(ao.2')2 + (alIf + m2I2]; 
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and 

HI = - ~ fdXI:[ao(p -a~+ ~)b)r 

+[al(p-a~+~)b)]\ (72) 

Ho is clearly the Hamiltonian ofthe free building-block 
fields a, b,.I, and 1/1. Similarly starting from equation (68) we 
find that the momentum operator is given by 

P = J dXIKol = Po + PI' (73) 

where 

Po = J dXI J¢rfa 11/1 + ala laaob + aOaa Ib) 

+ a2~2 + ~)aOba Ib + a°.Ia I.I: (74) 

Here again Po is the momentum operator for the free build
ing-block fields a, b, .I, and 1/1. The Lagrangian correspond
ing to Ho and Po is 

X' 0= :¢iy.a1/l: + a:a I-'a a I-'b -!b 2: 

+ !a(p2 + 2Plm):(al-'b )2: 
+ !:(a I-'.I f + m2.I 2: 

and involves only the free fields 1/1, ¢, a, b, and .I. 

(76) 

A straightforward application of the equal-time com
mutation relations listed in Appendix B yields 

[Ho, 1/1] = - iip, 
[Ho, a] = - iiI, 
[Ho, b ] = - ib, 
[Ho, u] = - iiT. 

[Ho, .I ] = - it, 
[Ho, b ] = - ih, 
[Ho,p] = - ip, 

(77) 

Using the equal-time commutation relations listed in 
Appendix B once more, we then find 

[H,1/I] = - iip + [ii![p - alP + lIm)h] 

- [iT - alP + lIm)b ]rJ1/I, 

[H, 1/1] = - it, 

tions (78), this Hamiltonian H is also a time evolution opera
tor for the algebra of fields ~(A I-' ' f/J, '¢ ). This point will be 
clarified after we discuss the field algebra in the next section. 

What is the role of these two Hamiltonians? Ho pro
vides the time evolution of ~ but does not provide the full 
physical content of the theory. The subtle message obtained 
from the full operator H is that in addition to the obvious 
spectrum obtained from H o there are infinitely many Poin
care-invariant states so that we have infinitely many copies 
of the spectrum of Ho (excluding the fermions) built up on 
these translation invariant states. The details of this will be 
expounded in Secs. 6 and 7 and will reveal just how subtle the 
confinement offermions (exclusion from the spectrum of H) 
is. 

5. THE ALGEBRA OF FIELDS 

We consider those objects which are local relative to the 
fields f/J, ,¢, and A 1-" Some of the useful properties of this 
algebra ~ are 

(i) b = a I-' A I' E~. 

(ii) Since b is not local relative to f/J we have bE~. How
ever, a I'h = E I'V a Vb E~. 

(iii) .I = - (lIm)EI'VFl'vE~. 

(iv) The dipole field is not local relative to f/J and hence 
aE~. However, 

al'[a+(p+ lIm)p] =AI' + (alm2) al'a.A 
- (lIm2)aVFl'vE~. 

The next property of the algebra requires a proof and is 
thus stated as a lemma. 

Lemma: 
(v) p,ill' = (lI[ii)a I'P, u, and a I'u are not elements of 

~ if A 1" f/J, and '¢ are irreducibly represented. 
Proof Suppose they belong to ~ and choose P = - 11 

m; then they commute with f/J, ,¢, and A I' and should be c
numbers. This is contradicted by 

(Olp(x)p(y)IO) = - iD(+)(x - y), 

(Olu(x)u( y)IO) = - iD (+)(x - y), 

(Olu(x)p(y)IO) = - i.D(+)(x - y). 

For a general value of P consider 

Po =p - alP + lIm)b, 

uo=u-a(p + lIm)b. 

Then Po and U o again commute with f/J, ,¢, and A I' and the 
same argument applies. 

(vi) Combining the results of(iv) and (v), we find that for 
[H, a] = - iiI - i(P + lIm)fP - alP + lIm)h], 

[H, b] = - ih, [H, b] = - ib, 
(78) P -1= - 11m 

[H,p] = - ia(p + lIm)h, [H, u] = - ia(p + lIm)b. 

The sets of equations (77) clearly show that H o provides a 
time evolution operator for all the building-block fields and 
hence for the full algebra of fields ~(A 1-" f/J, ~ ). This is in fact 
what one would naively expect. 

In addition to Ho' we have, however, the full Hamilton
ian H, and, although it is not obvious from the set of equa-
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a I' a = a I' [a + ( P + 11m) p] - (P + 11m) a I'pE~. 

(vii) Since {;a and {;: are not local with respect to f/J and 
~, they also do not belong to ~. 

In view ofthese results, it is convenient to use instead of 
the original building-block fields a and 1/1 the compound 
fields 

ao = a - (alm2)b + (P + lIm)p (79) 
and 
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(80) 

These fields commute with each other and satisfy the same 
field equations as a and "p, respectively. Furthermore, we can 
express A I' and ¢' in terms of these fields 

AI' =al'ao+~El'vav2, 
m 

¢' = :exp{ - ie[ao + (alm2)b 

+ (lIm)(2 - (alm)b )r]:; j, 

(81) 

(82) 

and we see that the parameter /3 has completely disappeared. 
Next we find that 

[H,;] = - it, (83) 

[H, ao] = - iao, (84) 

[H, b] = - ib, (85) 

[H, b] = -ib, (86) 

[H, 2] = - i.t. (87) 

It is still true that ;, ao, and b are not elements of 2l:. If, 
however, we choose test fU!lctions!oEY vanishing at p I' 
= 0, then both ao(fo) and b (fo) belong to 2l:, the algebra of 

fields. It would now be easy to read off the spectrum of H 
except that we find a host of Poincare-invariant states in 
addition to the obvious vacuum. We examine these next. 

6. POINCARE-INVARIANT STATES 

To find translation-invariant states, we begin by "un
dressing" the fermion field ¢'. To do this requires exponen
tiating certain elements of the algebra 2l:. We define such 
exponentials using the triple-dot-product. Thus for any free 
field AE21:, we define 

: exp A: -exp A (-) exp A (+). (88) 

For convenience we also choose the value/3 = - 11m in this 
section. Since 2E21:, we can "remove" 2 from ¢' and obtain 

¢'o(x)=exp(ielm)r2 (-)(x)¢,(x)exp(ielm)r2 (+)(x) 

= Z -I exp[ - ie(a - (alm2)rb )H](XJt (x) 

(89) 

Since a~21: but a I'a is, we cannot "undress" ¢'o any further. 
For this reason we consider bilocal fields which can be un
dressed as far as the field a is concerned. Due to the presence 
ofr, the b cannot be removed. Thus we consider 

¢'o(x)¢, ~(y) exp [ - ie f ds I' a I'a(s) J 

and multiply by the necessary c-number factors to obtain the 
bilocal field 

B (x,y) = exp[(iealm2)(b (x)rx - b (y)~)H];(X); *(y) 

Xexp[(iealm2)(b (x)rx - b (y)~)(+)], (90) 

which belongs to the algebra ~L This field has the following 
local properties: 

[A I' (z), B (x, y)] = (elm2) [a I'D (z - x)rx 

-a)j(z-y)~]B(x,y), (91) 
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[¢' (z), B (x, y)] 

= {exp i1r[D (z - x) - D(z - y)] - 1 jB (x,y)¢, (z) 

for ;(x) = ;(y) 

= - {exp i1r[D(z - x) + D(z - y)] + 1 jB(x,y)¢' (z) 

for;(x)#;(y), (92) 

and we see that both commutators vanish whenever z is 
spacelike with respect to both x and y. Thus B (x, y) is truly 
bilocal. 

We next consider the vacuum expectation value 

(Ol¢' (x)¢' *(y)B (z, w)IO). 

Then (keeping always/3 = - 11m) using the commutator 

K(+)(x,y)=[E(+)(x), E(-)(y)] 

= - (ila)I(+)(x,y) - (ilm2)D(+)(x - y) 

+ (ilm2)(rx + ~)D(+)(x - y) 

- (ilm)rx~L1 (+)(x - y) (93) 

and the identity given by Eq. (25), we find 

(Ol¢' (x)¢, *(y)B (z, w)IO) 

= Z -I exp [e2 K(+)(x, y)] (P/21T) 2 

X { 8xw 8xy exp i1T rw 
X[D(+)(y -z) -D(+)(x -z) +D(+)(x - w) 

- D (+)( y - w)] + 8xw 8yz[1 - 8wz] 

X exp i1T rw [ - D (y - z) + D (+ )(x - z) 

+ D(+)(x - w) - D(+)(y - w)]j, (94) 

where the Kronecker delta refers to the Lorentz indices. 
Next we take the limit w--+z and consider the three com

ponents B II' Bn. and B 12 separately to find 

lim (Ol¢' (x)¢' *( y)B I dz, w)IO) 

= lim (Ol¢' (x)¢' *(y)B22(Z, w)IO) 
W~Z 

= Z -I exp e2 [K(+)(x, y)](P/21T)2 

so that 

lim B II (z, w) = lim B22(z, w) = JiI21T. 
UJ--... z W--+Z 

On the other hand we obtain 

lim (Ol¢' (x)¢, *(y)Bdz, w)IO) 

= Z -1(p/21T)2exp e2 K (+)(x, y) 

X exp 21Ti[D (+)( y - z) - D (+)(x - z)] 

= - (.u/21T)(OI¢' (x)¢, *(y)O" +(z)IO). 

(95) 

(96) 

(97) 

We now look for translation-invariant states by Fourier 
transforming the relevant part of Eq. (97) with respect to z. 
For convenience we also choose x = o. The relevant expres
sion is 

f d 2Z e - Ijn exp 21Ti[D (+)(y - z) - D (+)( - z)] 

=+ fdZ+ dz- exp[ - ~ (p+z- +p-z+)] 

X (Y: - z: -~E )1/2( - z: _ ~E)I/2. 
Y - z - IE - Z - IE 
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Ifwe consider the integral over z+ we find 

L"'", dz+ e- irz+/2[ (Y+_~~+_~:E)1/2 - 1 + 1] 

= 2m5(P2-) + 21Ti·28 (p-) 

(99) 

The second term is an analytic function of p - since it is the 
Fourier transform of a function with compact support. 

Thus Eq. (98) becomes 

f d 2z e- ip·z exp 21Ti[D (+I(y - z) - D(+I( - z)] 

= (21T)28 (21(p) + terms in 8(p-)8(p+), 8(p+)8(p-) 

and 8 (p-)8 (p+) multiplied by analytic functions in 

p+ and p-. (100) 

From this we conclude that the state (21T1f..l); rtlIO) is a 
normalized, Poincare-invariant state. With these prelimin
aries out of the way we can finally discuss the spectrum of the 
Hamiltonian H. 

7. THE SPECTRUM OF THE HAMILTONIAN 

Using the results of the previous section, we see that we 
have the normalized Poincare-invariant states 

In) = ((21T1f..l); t;d(,n, 
+ n)l2((21T1f..l); n2)(ln,- nI/210), 

n = 0, ± 1, ± 2, .... (10 1) 

Each of these states can be used as a cyclic vacuum with 
regard to the fields I, ao, and b, where the field ao is not 
allowed to carry zero frequencies. In this way we build up a 
Fock space Gn of I (f), ao(fo), b (f), whereJEY(R2) and 
JoEY 0(R2) C Y(R2) is the space of test functions whose sup
port excludes the origin p I" = O. The Hilbert space G of 
asymptotic states is then the direct sum over the individual 
Fock spaces Gn : 

(102) 
n= - r$J 

It is now clear that each space G n contains the same spec
trum as Ho if the fermion term is dropped from Ho. Thus in 
each space Gn no vestige of the fermions remains. The fer
mions are confined. Nevertheless, a hint of their existence is 
manifested by the infinite degeneracy of the spectrum. 

Another comment is in order. Since ao is a dipole field 
(except for the Landau gauge, a = 0), neither Ho nor H can 
be diagonalized. 5,6 

8. RENORMALIZATION 

In defining the electromagnetic current in Ref. 1 we 
used a split-point regularization and gauge invariance. The 
current was then defined by 

147 

j I" (x) = lim {¢ (x + E)Y I"<P (x) 
E....o 

E"#o 

xexp[ - ie f A,,(x + s) dSV - < )o]}. (103) 
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It is, however, possible to maintain gauge invariance by us
ing a different definition. Thus we now consider the current 
J I" defined by 

JI" (x) = lim {¢ (x + E)Y I"<P (x) 
E....o 
E"#o 

where 

V,,(x) = A,,(x) + ua"a·A (x) + vJ"FA,,(x) (105) 

and u, v are two real parameters. This definition also leads to 
a viable current. As we now show, the net effect of replacing 
j I" by J I" is to renormalize the Lagrangian (1). 

Using the same procedure as in Ref. 1 to triple dot order 
the terms in (104), we find for small E that 

JI"(x) =j I" (x) - (euI21T) al"a·A (x) - (evI21T) J"FA" (x), (106) 

where we have also made extensive use ofthe Dirac equation 

(i~ - eJ. )<p = o. (107) 

With the above result we find that the equation of motion for 
A" is 

(1 + e2vI21T) J"FAI" + (a + e2u/21T) a l"a.A = ej I"" (108) 

Equations (107) and (108) describe the new equations of mo
tion due to usingJ instead ofj. They can be considered to be 
the equations of motion arising from the renormalized for
mal Lagrangian 

X R = - !Z3(F 1",,)2 - !aZa (a·A )2 + ¢ (i~ - eJ. )<p (109) 

with 

Z3 = 1 + e2vI21T, Za = 1 + e2uI21Ta. (110) 

By rescaling the fields we can rewrite this Lagrangian as 

X 0 = -l(FI",,)2 - !a(a.A f - ¢ (ia - eJ. )<p, (111) 

which is of the same form as the original Lagrangian (1) 
except that we have replaced a by 

_ Za 1 + e2ul21Ta 
a=a-=a (112) 

Z3 1 + e2v121T 
and e by 

e = eZ 3- 112 = e(1 + e2vI21T)-1/2. (113) 

The mass arising from X 0 is 

-2 e
2 

e
2 
( e

2
v) - I 2( e

2
v) - I m =-=- 1 +- =m 1 +- . (114) 

1T 1T 21T 21T 

Thus various choices of the parameters u, v lead to equiva
lent theories. 

As a final item we consider the analytic properties of the 
Wightman functions with respect to the coupling constant. 

9. ANALYTICITY IN THE COUPLING CONSTANT 

Schwinger's7 original solution of the Schwinger model 
was given in terms of perturbation theory. Since then there 
have been other perturbation theoretic considerations of this 
model. 8,9 As we now have all the Wightman functions of this 
model explicitly displayed, it is feasible to examine their 

A. Z. Capri and R. Ferrari 147 



                                                                                                                                    

analyticity properties with respect to the coupling constant 
e. 

We begin by considering the e-<J limit of the various 
Wightman functions. To accomplish this, we need only con
sider the two-point function for A 1" the fermion 2n-point 
function, and the mixed three-point function. From Eq. (26) 
we see that due to the presence of the term (itT/e2) a I"av 

x [.1 (+) - D (+)] the limit e-<J exists only if we take test func
tions which vanish for P I" = O. In that case we obtain 

On the other hand, using Eqs. (15) and (20) of Ref. 1, we find 
that 

lim [.1 (+)(m 2, x) + (l/1Ti) In Z] = D(+)(x) 
k->O 

so this limit exists. 

(116) 

We next consider the e-<J limit for the 2n-point fer
mion functions given by Eq. (20), namely, 

W. (x, y) = Z - • exp [y(l)(x, y)] w~n(x, y). 

Using Eq. (116), we obtain 

lim Z -n exp Y+(x,y) 
.->0 

= exp{ - n In Z + In Z [i'~ 1 rx,¢' ~j 

- . i (rx,rxj + r;,r;j]}' 
I<J~ 1 

(117) 

If we now take the spinor indices of the first k<.n fermion 
fields to be 1 and the spinor indices of the remaining n - k 
fermion fields to be 2, then we can evaluate the sums over the 
r matrices to get 

n 

I rx,r;j = k 2 + (n - k)2 - 2k (n - k) = (n - 2k )2, 
i,j~ 1 

(118) 

• I rx,r;j = ~k (k - 1) + ~(n - k)(n - k - 1) + k (n - k). 
i,j~ 1 

Combining these results, Eq. (117) becomes 

exp In Z [ - n + (n - 2k)2 - k (k - 1) 

(119) 

- (n - k)(n - k - 1) - 2k (n - k)) = 1. (120) 

Thus 

lim W. (x, y) = w~n(x, y). (121) ._0 
Finally we consider the limit e-<J for the mixed three-point 
function given by Eq. (34). To obtain this limit, we must 
simply consider the limit of the function G (1"+ )(x, y) given by 
Eq. (32). Again using Eq. (116), we easily obtain that 

lim G (1"+ )(x, y) = O. 
.->0 

(122) 

Thus the limits of all these Wightman functions exist in the 
sense of distributions in Yb whose test functions are Fourier 
transforms of functions in Y with their support excluding 
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the origin P I" = O. In spite of this, the Wightman functions 
are not analytic in e. To see this, consider the fermion two
point function 

(Ol¢' (x)¢' *(y)IO) 

= Z -I exp e2[ - (ila)I(+)(x _ y) _ (i1T/e2) 

X [.1 (+)(x - y) - D(+)(x - y)] Jw~(x,y), 
(123) 

where we have used that rx r; = I for this case. 
Now for small m 2 = e2/1T we have 

.1 (+)(m, x) = - J... H (1)(im(-x2 +i€xO)1/2) 
4 

1 = _ _ H(1)(y) 
4 

= - :{Jo(Y)[I+~'(r+ln~)]- ~ 
00 (_ qn(y/2)2k (II)} xI 2 1+-+ .. ·+-. 

k~O (k!) 2 k 

This clearly shows that 
(124) 

exp[ - hT[.1 (+)(m, x) + (l/hT) In Z] J 

~exp[ -! Jo(y)ln(y/2) -In Z] 
m->O 

and has a cut in m. 
Thus we find that the coupling constant e is not a suit

able expansion parameter around zero. In spite of this, when 
such an expansion is summed, the correct analytic properties 
in e are obtained. 

10. CONCLUSIONS 

We have studied certain properties of the Schwinger 
model. In particular, we have obtained all the Wightman 
functions for this model. We have also studied the algebra of 
fields and representations of this algebra. A particularly in
teresting object of this model turns out to be the Hamilton
ian. It does not consist simply of the Hamiltonian Ho for the 
building block fields, although this one does yield the correct 
time evolution for the algebra of fields. The full Hamiltonian 
H reflects the "confinement" of the quarks in that the only 
vestige of the fermions that remains are zero-energy (actual
ly Poincare-invariant) states in its spectrum. 

We also briefly discuss renormalization of the theory 
and analyticity of the amplitudes in terms of the coupling 
constant. 

ACKNOWLEDGMENTS 

This research was supported in part by the Natural Sci
ences and Engineering Research Council (NSERC) of Can
ada. One of us (R. F.) would also like to thank the theoretical 
Physics Institute of the University of Alberta for support 
during his visit there. 

APPENDIX A: AVERAGING OF POINT SPLITTING 

In computing the energy-momentum tensor regular
ized by point splitting, one obtains expressions of the form 
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'TJ ".'TJ in the point splitting parameter 'TJ". We prescribe ,.,.. /-In r-

an averaging method over "all directions" of nil· 
Since the Lorentz group is noncom pact, we go to the 

Euclidean region 'TJo-+i'TJo to perform our averaging. In this 
case keeping the length of 'TJ Il fixed is no problem. 

Thus we define the average in the Euclidean region by 

Letting 'TJo = R cos e, 'TJI = R sin e, the integral becomes 

r21T 

I J . In = Jo de"2 R n dR 2 8(R 2 - a2)(cos e)k (sm e )In - k I, 

(A2) 

where we have assumed that k of the fli values have the 
value 0 and the rest have the value 1. It is easy to see that 
unless nand k are even In vanishes. For n, k even we obtain 

I = an .21T (k - I )!!(n - k - I)!! . 
n 2 n!! 

(A3) 

These results now immediately yield: 
15 0+ ... + 15 0 a2n(i) ",. "2no 

'TJ ... 'TJ = 
PI J.l21TEuc11dean (2n)!! " 8 ···8 ~ /lif·.l} J-lk JI-,' 

partitions 
in n pairs 

(A4) 
which in Minkowsky space becomes 

('TJ2t 
'TJ Il, ... 'TJ 1l2" = (2n)I.I. + I g Ilill/··g Ilkll" (A5) 

partitions 

where the sum is over the partitions of the 2n indices into 
pairs (flo flj) with i < j. Furthermore, we immediately find 
that the "average" of an odd product of 'TJ Il 's vanishes. 

APPENDIX B: EQUAL-TIME COMMUTATORS FOR 
BUILDING-BLOCK FIELDS 

Using the various commutators for the building-block 
fields, one easily finds the following useful equal-time (anti-) 
commutation relations: 

falx), b (O)]x"~o = - i/a8(xl), (BI) 

falx), a(O)L" ~ 0 = i( /3 2 + 2/3 /m)8(xl), (B2) 

[h (x), a(O)L"~o = - (i/a)8(xl), (B3) 

[..!' (x),..!' (O)L" ~ 0 = - i8 (Xl), (B4) 

Lo(x),p(O)L"~o = - i8(x l ), (B5) 

[a lo-(X),p(O)]xo~o = i8(x l ), (B6) 

[a Ip(x), l7(O)]x"~o = i8(x l ), (B7) 

[ir(x), o-(O)Lo~o = - i8(xl), (BS) 

[¢(x), ¢(O)Jxo~o = yD8(xl), (B9) 

[¢(x), ¢(O)Jxo~o = yD8(xl), (BlO) 

[pIx), ¢(Y)Lo~yo = - {tT¢(y)8(XI), (BII) 

[a Ip(x), ¢(Y)Lo~yo = - {tT r¢(y)8(xl), (BI2) 

[ir(x), ¢(Y)Lo~yo = {tT r¢(y)8(xl), (B13) 

[a Io-(x), ¢(Y)]x"~yO = {tT ¢(y)8(xl). (BI4) 
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Moreover, we find that 

[:¢yla 1¢:(y),p(x)]yO~XO = -p(X)8(XI - yl) (BI5) 

and 

(BI6) 

APPENDIX C: THE LANDAU GAUGE 

We briefly consider the Landau gauge here. It is ob
tained as the a-+ 00 limit of our solutions if one keeps 

bo(x)=ab (x) 

fixed. 
It then follows from Eq. (79) that 

ao(x) = a(x) - bo(x)/m2 + (/3 + lIm)p(x) 

and 

(Olao(x)ao(O)IO) = (i/m2)DI+I(x). 

whereas 

and 

(Olao(x)bo(O)IO) = - iD 1+I(x) 

(Olbo(x)bo(O)IO) = 0, 

(Olao(x)bo(O)IO) = - iD I+I(X). 

Moreover, both ao and bo are scalar fields: 

Dao = 0, Dbo = o. 
The fields ¢J and A Il are now given by 

¢J (x) = ;exp { - ie[ ao(x) + b~~) 

+ ~(..!'(X) - b~))rx] :;(X)}, 

All = a Ilao + (lIm)€ IlV av..!', 

(CI) 

(C2) 

(C3) 

(C4) 

(C5) 

(C6) 

(C7) 

(CS) 

(C9) 

where; is still given by Eq. (SO). The content of these equa
tions is clarified if instead of the two massless scalar fields ao, 
bo we introduce two commuting massless scalar fields 

al = mao + (lIm)bo, a2 = mao, 

bo = m(a) - a2 ), ao = (lIm)a2 • 

We then find 

(Olal(x)al(O)IO) = - iDl+I(x), 

(0Ia l(x)a2(0)10) = 0, 

(0Ia2(x)a2(0)10) = + iDl+1(x). 

Thus the field a2 carries a negative norm. 
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A novel mass-eigenvalue problem for spinors in deSitter space 
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Sharp Physics Laboratory. University of Delaware. Newark. Delaware 19711 
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It is shown that an unambiguous quantum theory of spinors in positively curved deSitter space, 
based on distinguished coordinates in a Hamiltonian framework, leads to a set of spinors 
corresponding to unsharp energy but sharp mass defined in a family of novel eigenvalue problems. 
An example is given in which partly real and partly complex discrete mass spectra come forth. 

PACS numbers: 11.10.Qr, 04.90. + e 

Spinors in spaces of constant curvature [deSitter spaces 
of 0(3,2) or 0(4,1) symmetry] have received continuing at
tention 1 for nearly fifty years. Their structure is of interest 
not only in its own right since deSitter spaces are the physi
cally distinguished ones having maximal (tenfold) symme
try, but also because they are local osculating spaces2 (rather 
than mere tangent spaces) to more generally curved Rie
mann spaces, attaining thereby a prototypical role. Further, 
they form background spaces for supersymmetry,3 and have 
been broached4 as closed up "microuniverses" for consider
ing particle confinement at a basic geometrical level. 

In the present paper an unusual family of eigenvalue 
problems is brought out for the mass of a spinning particle 
running along a geodesic of 0(3,2) deSitter space. This re
sults from a well-set and essentially unique Hamiltonian for
mulation of the motion developed in recent years,5 in con
trast to the formal spinor theories usually invoked. I 

In the latter, governed by general con variance consider
ations, Klein-Gordon equations are typically factorized to 
curved-space Dirac equations (yli(X)V Ii + m)t/' = 0 as a mat
ter of formal prescription (V Ii = covariant derivative). The 
coordinates remain ambiguous, and of course commutation 
rules are renounced. The Hamitonian formulation, on the 
other hand, relies on distinguished coordinates and proceeds 
through clear commutation rules to a quite unambiguous 
statement of quantum theory. The basis here is a specialized 
subgroup of the projective transformations x; 
= Ai (x,a)/.::1 (x,a) ==:ri(x), with Ai and.::1 inhomogeneous 

linear functions of space Cartesians X1,X2,X3 = r and time 
Xo = t, and a = a universal length. These are isomorphic to 
the deSitter group of pseudo rotations 0(3,2) in the five-space 
of homogeneous coordinates Xi' U (Xi ==XJ U). What is no
table is that x' and x are in the relationship of coordinates of 
inertial frames, since d 2r' I dt ,2 = 0 is sent into d 2r I dt 2 = 0 
and conversely, making these coordinates clearly distin
guished above all others. While the appropriate invariant 
line element indeed describes constant curvature 1/ a2

, the 
geodesics one and all are the global free-particle motions 
d 2r I dt 2 = O. Given this order of simplicity, general covar
iance is rendered irrelevant, and only the automorphism of 
space-time under x' = r (x) is consequential, as with the au
tomorphism of Minkowski space under the Poincare group. 
Coordinate ambiguities and equivocal quantization recipes 
may then be set aside, and instead the usual commutation 
rules (xi,pJ) = i'/wij' etc. (i,) = 1,2,3) tenably introduced as 
the primary physical hypothesis for the quantum dynamics 
of a free particle, in accord with all physical experience. 

Useful coordinate transformations can now (post settle
ment of the physical basis) be performed, such as p(r,t ) and 
7(t) described earlier,S that rephrases the straights d 2rldt 2 
= 0 as the harmonic-oscillator geodesics d 2pl dr + (e2 I a2) 
p = 0 otherwise familiar in deSitter space, and that gives a 
ladder spectrum of Klein-Gordon energy eigenvalues. The 
further transformation R = p/( 1 - p2 I a2) I /2 brings the Ha
miltonian-squared 

(1) 

K2 = m2c2a2/fz2 -!, p=~(I + RR/a2)·pc + h.c., 

where Pc is canonical mate - iflV R to R, and L is RXP, 
with I the unit dyadic. 

This reduction forces into particularly clear view the 
issue oflinearization to determine H upon the primary phys
ical basis, an issue distinct from generally covariant factori
zation of V liV Ii + m 2

• As has been remarked,6 there does not 
exist any ordinary matrix squareroot of H i + ~ H ~ in 
Dirac matrices or otherwise (except for K = 0). Since this 
point is central to any consideration of spinor theory on a 
Hamiltonian base, the proof will be briefly reviewed. 

Taking fl,c,a = 1 from here on, the one-dimensional 
form of Eq. (1) already reveals the difficulty: 

H 2 =p 2+K2(1 +X2), 

(where both the terms L2/a2 and fz2la 2 are to be dropped in 
one dimension). If His F (x)P + G (X), it is then required that 

F2 = 1, 

FG + GF= iFF', 

G 2 _ iFG' = ~(1 + X 2), 

be identically satisfied in X, whereF' means (1 + X2)d F IdX 
and similarly for G '. Multiply the second, right and left, by F. 
This brings FF' = F' F, while the first states that 
FF' + F'F = 0. Hence FF' = ° = F'F, so that F' = 0 and 
FG + G F = O. Now multiply the third, right and left, by F, 
producing FG' = G 'F. But (FG + GF)' = FG' + G'F = 0, 
whence G'F = 0 = FG'. Consequently G' = 0, and then 
G = const, cannot satisfy the third (except for K = 0). 

In short, while H i and H; are separately Dirac lineari
zable,5 for example as 

HI = (l.p - (F·L - 1, 
(2) 

H2 = {J + i {J(l·R, 
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with standard Dirac matrices p,a,CT, the pieces HI and H2 
are incompatible in that they cannot, in general, be brought 
together to give a general overall linear Hamiltonian. The 
choices for HI and H2 above are not unique but are here 
selected for simplicity. (A second possibility for HI is 
a·P + a·L - iY5' while the roots of I + R 2 for Hz are very 
numerous; but in all cases a single general Hamiltonian is 
ruled out.) 

To hold to the Hamiltonian framework, and accord to 
the Hamiltonian its master dynamical role of generator of 
time (T) translations, is nevertheless achievable (notwith
standing the incompatibility of HI and H2 ), provided the 
spinors to be considered are suitably restricted, and as well 
the value of the mass parameter K = (m 2 

_ !)I/2. 
Clearly, if t/! is a spinor such that 

HIt/! = AH2t/!, (3) 

then for these spinors an overall linearization of H becomes 
possible, 

(A,a l,a2 numerical parameters) since 

H2t/! = [aiHi + a la 2(HIH2 + HzH.) + a~Hnt/! 

= [(ai + alaz/A )Hi + (a; + Aala 2)Hnt/!· 

This requires only that 

ai +ala 2IA= I, a~ +Aala2=~' 

or that 

(4) 

a l = (I + ~/A 2)-1/2, a 2 = (K2IA )(1 + ~I A 2)-112, 

bringing Eq. (4) to 

. at/! ( ~ )112 
1- = 1+- HIt/! 

aT A 2 

=A(I+ ;z)1I2H2t/!. 

If ¢' is some initial spin or, one gets [t=(1 + K21A 2)1/2] 

t/! = [exp( - i;HIT)¢' = [exp( - iA;H2T)]¢" 

so that this initial state is constrained to satisfy 

HI¢' =AH2¢,· 

Stationary states are here ruled out. 

(5) 

(6) 

(7) 

As will be shown below, Eq. (7) does not allow arbitrary 
A or arbitrary ¢'; rather a discrete spectrum of eigenvalues Aj 
and eigenstates ¢'j is demanded. But then in Eqs. (5) and (6) 
the operators (1 + K21A J) 1I2H I or Aj(I + K21A J)I/2H2 are 
not uniquely valued [i.e., are not independent of the indexj 
labeling the eigensolutions of Eq. (7)] unless K is restricted. 
Taking uniquely valued spinor wave equations as a basic 
requirement, two mutually exclusive restrictions on K stand 
forth, which may be called cases (A) and (B). These corre
spond to 

(1 +K2IAJ)1I2 =131 (A) 

or 

Aj(I +~/A})I/2=/32' (B) 

where/3I' /32 are arbitrary real numbers independent of the 
labelj. Not both of (A) and (B) can be allowed simultaneously 
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since 1321/31 = Aj is ruled out. Then 

KJ = (Pi - I)). J (A) 

or 

KJ = 13 ~ - A J, (B), 

(8) 

prescribe the allowed mass spectra, while the uniquely val
ued spinor wave equations are 

i at/! = /3IH lt/!, 
aT 

(A) 

or 

i at/! = /32H 2t/!, 
aT 

(B) 

with /3;H; remaining Hermitian when H; are Hermitian 
(/31,/32 may be absorbed into scale changes in T if desired). It 
is easily demonstrated that J = L + ~CT commutes with both 
HI, Hz of Eq. (2), so that t/! may be an eigenstate of total 
angular momentum, but it clearly cannot be an eigenstate of 
energy (either HI or H2)' 

We may summarize as follows: Within the Hamiltonian 
framework in deSitter space, spinors exist which are not eigen
states of the Hamiltonian but rather are eigenstates of a 
"mass-generating operator" H 2- IHI [Eq. (7)] whose eigen
values prescribe afamily of allowed masses (Eq. 8) and whose 
elements HI> H2 are Dirac square roots of well-defined opera
tors within thatframework. In a word, these particular states 
are unsharp in energy but sharp in mass. To the extent that 
one may regard the parameters/3I' /32 as running freely over 
their real values, the mass spectra are of the nature of bands, 
with individual bands labeled discretely according to the 
eigenvalues of the H 2- IHI operator. 

A further perspective on the reduction given above is 
sketched in the Appendix, where a novel square root pro
cess6 for H i + K2 H ~ in total is reviewed, and the case where 
A = K is particularly obtained. 

Turning to the eigenvalue problem of A, Eq. (7), we may 
use HI and H2 from Eq. (2) as an example. In view of the 
many possible choices for H; noted before, this will be under
stood to be primarily illustrative rather than exhaustive or 
definitive, demonstrating the principal point that A has a 
discrete spectrum. Since the HI' H2 of Eq. (2) do not com
mute, the mass generator H 2- IHI in H 2- IHI¢, = A¢' is not 
Hermitian, SOA cannot be expected to have a completely real 
spectrum in the present example. 

Eq. (7) is readily analyzed upon recognizing certain 
structural similarities to the classical Dirac-Coulomb prob
lem as set forth particularly by Foldy. 7 First it is convenient 
to return to the harmonic-oscillator coordinate p or p,e,¢, in 
polar coordinates (O.;;;p.;;; I) with corresponding momentum 
p = - iVp' Then employing FoIdy's operators 

k =/3 (CT·L + I), 
ap = a'plp, 

Pp = (l/p)( p.p - i), 

the operators HI> H2 are 

HI = (I - p2)1/2(ap Pp + (ilp)ap /3k) 

+ ~ ipap/(1 _p2)1/2 -/3k, 

H2 = /3 + i/3ap pl(I _ p2)1I2. 
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The operators /3, k, L z, J, are intercommuting and their 
common eigenvector, which depends only on () and ¢, may 
be designated as 5, belonging respectively to the eigenvalues 
1, k, 1(/ + 1), m j • A sec~nd angular spin function 7]=iap5 is 
also an eigenvector of k and Jz with the same eigenvalues k 
andmj ass [though it is not an eigenvectorofL z belonging to 
I (I + 1)). Since 7] is an eigenvector of/3belonging to the eigen
values - 1, it is orthogonal to 5. Hence when one introduces 

¢ = (f(p)/p)5 + (g(p)/p)7], 

into H 1¢ = AHz¢, one obtains terms only in 5 and 7], and 
thence by their orthogonality, the pair of coupled radial 
equations 

dl +(_!:. _~_p_ -A-P-)I 
dp p 2 1 _ p2 I _ p2 

k+A -0 
+ (l_p2)1/2 g- , 

dg +(!:. _~_P_ +A-P-)g 
d P P 2 1 - p2 1 _ p2 

k+A 1=0 + (I _ p2)1/2 . 

Here k is an eigenvalue of k, namely k 2 = (j + i)Z with 
j = ~,~, ... , that is, k = ± 1, ± 2, ... or Ik I==s = 1,2, .... 

The normalization of ¢ is defined by 

(9) 

t 1/12 + Igl 2 pZdp = 1 
Jo p2 (1 _ p2)5/2 ' (10) 

when 5 and 7] are normalized according to 

f 5 +5 sin () d() d¢ = 1 = f 7] + 7] sin () d() d¢, 

where the factor (1 - p2) -5/2 comes from the invariant line 
element in p,r variables that prescribe the invariant volume 
element (1 - p2)-5/2dp dr in deSitter space. Consequently I 
and g must be regular at p = ° and vanish sufficiently fast at 
p=1. 

One very simple solution to Eqs. (9) stands out at once in 
the case k + A = 0, 

l=pk(l_p2)-1/4-11I2IA, 

g=p-k(l_ p 2)-1I4+ I II2 IA. 

Not both of these may be retained, but only 

1= 0 g = pSt 1 _ p2)11/21S - 1/4 

or 

g = ° 1= pSt 1 _ p2)11/21S - 1/4 

with eigenvalues 

A. 2(S) = S2 = 9,16, ... 

for s = 3,4, ... in view of Eq. (10). 
Proceeding to the general situation, write 

1= (1 - p2)1/4F, g = (1 _ p2)- 1I4G 

to get rid of roots of 1 _ p2, 

, (k p) k+A. F - - +(1+A.)-- F+ --G=O, 
P 1 _p2 1 _p2 
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G' + (!:. + A. ~) G + (k + A )F = 0, 
P I-p 

and decouple to obtain a second-order equation in G alone, 

G" _ -p-G' + [-k(k+ 1) 
1 _ p2 p2 

_ (k+A.)2+2M+k + A.-A~2]G=0. 
1 _p2 (I -p2f 

Now extract the characteristic behavior atp = ° andp2 = 1 
through 

G = pa(1 - p2fs 

to obtain the indicial roots 

a = -k, k+ 1, 

/3= !A, !(l - A. ), 

with S satisfying the differential equation of essentially hy
pergeometric type 

S" + (2a _ (1 + 4/3)p)S' _ _ Y-S=O 
p 1 _p2 1 _p2 

y=(k + A. )2 + 2kA + k + a + 2 {3 + 4a {3 - A. 

In the customary way, the series solution S = ~av p" 
produces the recursion 

av + 2 = (v+a+2/3 +q)(v+a+2/3-q) 

av (v + 2)(v + 1 + 2a) 

q2 = (a + 2{3 )2 - Y = - 4kA. 

The even and odd solutions here are then 

Se = 2 F1((a + 2{3 + q)/2,(a + 2/3 - q)/2;a + ~~2), 
So = P3 F2(1,(1 + a + 2{3 + q)/2,(1 + a + 2/3 - q)/2; 

~,1 + a;p2). 

(11 ) 

The recursion relation Eq. (11) shows that S behaves 
like (1 - p2)112- 2/3 near p = 1. This overwhelms the factor 
(1 - p2f in G when at the outset Re( /3 ) is taken as positive to 
ensure that G vanishes appropriately at p = 1. Hence the S 
series must be broken off in a polynomial, 

n + a + 2{3 ± q = 0, 

n = 0,1,2, .... 

Therefore when a = - k (knegative) = sand{3 = A. /2 
one obtains the A. spectrum 

A. 2 + U (n - s) + (n + S)2 = 0, 

A. (s,n) = s - n ± 2i-jSn, 

requiring s>n + 3 for satisfactory Re( /3) > ° [the root 
{3 = (1 - A.)/2 of the indicial equation is ruled out]. 

Similarly, whena = k + 1 (k positive) and{3 = (1 - A.)/ 
2, the A. spectrum is 

A. (k,n) = n - k + 2 ± 2i~k (n + 2), 

with k>n + 4 for suitable Re( {3) (the indicial root{3 = A. 12 
being ruled out here). The case a = ° (k = - 1) is not al
lowed. 

This concludes the illustration of how the mass gener
ator H 2- IHI eventuates in a spectrum of eigenvalues A (s), 
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A (s,n), A (k,n) and corresponding spinors belonging to sharp 
masses. In the case of the real eigenvalue A (s), the mass spec
tra according to Eq. (8) are 

mJ = ( f3 i-l)(j + ~)2 + l (A), 

or 

mJ = f3 ~ + l - (j + !f, (B) 

j=;,~, ... , 

where (A) describes an infinite real discrete spectrum for 
f3 i > 1 and a finite real spectrum for f3 i-I small and nega
tive; while (B) describes a finite real spectrum for adequately 
largef32' Corresponding mass bands are defined whenf3I' f32 
are allowed to range freely. The complex eigenvalues A (s,n), 
A (k,n) of course do not admit ready interpretation [though 
perhaps hinting to a later discrete spectrum of (composite) 
particle decay times accompanying discrete masses]. Indeed 
the meaning of mass altogether in such totally closed up or 
'interior' geometry as that of 0(3,2) remains in issue until 
that geometry is clarified as a locale of an 'exterior' large
scale geometry suited to physical observation. 
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APPENDIX 

The fundamental eigenvalue problem HI¢J = AH2¢J of 
the present work also occurs, for A = K, upon introducing6 a 
novel square root process for 

P;¢ = (Hi + ~H~)¢, 
(PT = ia jar). Namely the linearization 

I®NoPT¢ = (HI ®NI +KH2 ®N2)¢ 

is feasible in that iteration produces 

(I®No)2 P;¢ = (I®No)2(Hi + ~H~)¢, 
when N ~ = N i = N ~, and (to overcome the incompatibil
ity of HI' H2) NIN2 = 0 = N2N I. That is, the N; are suitable 
singular matrices which are nilpotent like N; = O. The anal
ysis shows6 that N; must be at least 4 X 4 and then of typical 
structureN; = niT (upon enforcing n; Hermitian and Tuni
tary) 

·r1 . 
n l = = o EllA;, 

· 1 . . 

· . . . 

n2 = . r' . = OEllA6 · · . . 1 

· . 1 . 
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Here dots stand for zeroes, ® for direct product, Ell for di

rect sum, and No = (NI + N2)1-./2 while Ti3,T22,T31,T41 = 1 
(T;j = 0 otherwise) and AI,A.6 are two of the conventional 
generators ofSU(3) [other SU(3) generators and other uni
tary T are possible, as are higher-dimensional 
n; = 0 Ell SU(N) for all N>3 but N < 3 is ruled out]. In short 
unitary spin comes forth quite directly in a fusion with Dirac 
spin, and here is not an ad hoc appendage. 

The unitary transform <P = I ® T¢ brings the linearized 
wave equation 

I ® no PT<P = (HI ® n l + H2 ® n2 )<P, (12) 

with no = (nl + n2)1-./2. Introducing <P as col(<Pa ,<Pb,<Pc,<Pd ) 

with indices tied to the n-matrices, <P a of course falls aside, 
leaving Eq. (12) as 

i<P; = HI <Pc , 

i(<P b + <P d) = HI<Pb + KH2<Pd , 

i<P; = KH2<Pc' 

where <P' = a<p jar' (r' = r-./2). It is sufficient to span uni
tary-spin space, to take i<P b = HI <Pb and i<P .1 = KH2<P d' 

leaving 

<Pc = [exp( - iHlr')]¢J = [exp( - iKH2r')]¢J, 

and requiring 

HI¢J = KH2¢J, 

as in Eq. (7). 

(13) 

Hence in the present spin ® unitary-spin scheme the 
mass parameter K is directly fixed as eigenvalue ofEq. (13), 
for example K = S = Ij + ~I forj = ;,~, ... as before. In the 
latter case, 

mJ =j(j + 1) +! = ¥,§(, .... 

This result resembles that ofBarut and Bohm8 for a so-called 
deSitter "rotator," which, however, stems not from 0(3,2) 
but from 0(4,1), and refers not to a particle but to a compos
ite system. 
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Properties of noninteracting vortices in a class of models which generalize the Ginzburg-Landau 
model of superconductivity are described. Previous results of existence and uniqueness for 
solutions to the first-order equations are extended to cover the case in which the gauge photon and 
the scalar meson become massless, when long range interactions exist. Several properties of the 
solutions are also discussed. With some assumptions, and with restrictions on the class of models, 
all finite-energy solutions of the second-order equations are shown to be solutions of the first
order equations. The second-order equations are formulated in a gauge invariant way, resulting in 
a second-order elliptic system of two coupled nonlinear equations, which completely determine 
all gauge invariant quantities. 

PACS numbers: 11.15. - q, 74.20.De 

I. INTRODUCTION 

Finite-energy solutions in field theories are of impor
tance because they serve as good starting approximations for 
the quantum field theory. For nonabelian gauge theories in 
three space dimensions these solutions are magnetic mono
poles, and detailed properties of these monopoles and their 
interactions are obtained from a study of the relevant field 
equations. The simplest of the gauge theories with nontrivial 
finite energy solutions is the abelian Higgs model in two di
mensions, for which the static equations are the Ginzburg
Landau equations of superconductivity. A detailed study of 
the static solutions (vortices) has been undertaken in Refs. 1-
3. Of particular interest is the noninteracting case when the 
coupling constant A. assumes a critical value (A. = 1); for this 
value, static solutions exist which describe vortices located 
at arbitrary positions in the plane. Evidently, the opposing 
forces due to the massive gauge photon and the scalar (Higgs) 
meson cancel exactly. 

In Refs. 4 and 5 a model has been described which gen
eralizes the Ginzburg-Landau equations by incorporating 
into the model an arbitrary nonnegative function F (It,h I) of 
the scalar field t,h. This generalization is of interest because it 
preserves the noninteracting nature of the vortices; proper
ties of the Ginzburg-Landau equations are revealed to be 
special cases of similar properties for the general system. 
Solutions can be found by solving three first order equations, 
and in Ref. 5 solutions were not shown to exist which de
scribe, as for the Ginzburg-Landau equations, vortices lo
cated at arbitrary positions in the plane. 

In this paper we extend our previous analysis of the 
generalized system. First, we strengthen results5 on the exis
tence and uniqueness to include a class of solutions of parti
cular interest. As mentioned above, in general the class of 
models we consider share features similar to those of the 
Ginzburg-Landau theory, which appears as the special case 
F(It,h 1)=1. An exception arises when F(It,h Il assumes an 

asymptotic value F (1), which is zero. The masses of the pho
ton and the scalar meson, which are equal for the noninter
acting theory, are given by the value of F(l) so that for 
F (1) = 0 we have massless particles. Insteady of the short
range interaction experienced by the massive particles, we 
now have long-range interactions, with the fields decaying to 
their asymptotic values according to an inverse power law. 
In Sec. III we demonstrate the existence and uniqueness of 
solutions to the first-order equations under very general cir
cumstances, including also the massless case, and dispensing 
with the assumptions of Ref. 5, excepting, of course, the fin
ite-energy condition. Here we draw on the results of Benilan, 
Brezis, and Cranda1l6 and recent work by Vazquez,7 which 
investigates equations of the form 

-..::1u+,8(u) 3 g on RN
, (Ll) 

where,8 (u) is a maximal monotone graph andg is a measure. 
This equation is precisely of the type which appears in Sec. 
III. Also discussed in Sec. III are several properties of the 
solutions, including asymptotic estimates. 

Now, we turn attention to the full second-order equa
tions obtained by varying the Lagrangian for the generalized 
model. We pose the question as to whether all finite-energy 
solutions of the second-order equations are also solutions of 
the first-order equations. For the Ginzburg-Landau theory 
the answer is in the affirmative,2.3 and we extend this result, 
using maximum principle type arguments, to the general 
case provided some assumptions are made on F(lt,h I). One 
assumption is a growth condition on F, which enables us to 
conclude that 1 t,h 1 is bounded, and another assumption, F> 0, 
is also necessary but excludes the massless case. A conven
ient feature ofthe abelian gauge theory under consideration 
is that the gauge covariant equations are readily expressible 
in gauge invariant form; we can write a closed second-order 
system of equations for the two gauge invariant quantities 
It,h 1 andJ, where/is the Maxwell field tensor. From the solu-
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tions for I and I tP I the gauge potential A can be constructed in 
a suitable gauge using Maxwell's equations. The gauge in
variant system is derived in Sec. IV and the equivalence of 
the first- and second-order equations demonstrated in Sec. 
V. The proofs follow the same strategy as in Refs. 2 and 3 but 
require modification, particularly with the application of the 
maximum principle. The difficulty in generalizing the proofs 
is the appearance in the field equations of a term which lies in 
L I(R2) [see Eq. (2.6)], and for which a priori estimates are 
difficult to obtain. However, first we discuss in Sec. II some 
properties of the model. 

II. THE MODEL 

Define the energy functional4.5 

E= I U(Fij)2+!F(ltP1)ID;tPI2+!W2], (2.1) 

where the integral is understood to be over R2,F(ltP Il is non
negative, and w is defined for each F according to 

w(ltP Il = t sF(s) ds. (2.2) 
JI~I 

The field tensor FA is given in terms of the gauge potential 
A = A;( x) dx; as follows (for notation see Jaffe and 
Taubes3

): 

FA = dA =! Fi" dx; Adx j = ~(V;Aj - VjA;) dx; Adx j , 
~ (2.3) 

and the covariant derivative by 

DA t/J = D;tP dx ; = (V; t/J - iA;tP ) dx ;, (2.4) 

where t/J is a complex valued function on R2. The Ginzburg
Landau energy functional is recovered by choosing F = 1, in 
which case the potential !w2 reduces to the usual t/J 4 interac
tion. Notice that we have set the electric field potential Ao' 
equal to zero. This follows in fact from the requirement of 
finite energy, E < 00, provided that F (1) > 0 (see also Julia 
and Zee8

). The particle masses m can be determined heuristi
cally by identifying the coefficients of the quadratic terms in 
the fields with m2

, and we find m2 = F(I), where m is the 
mass of both the gauge photon and the Higgs meson; these 
masses are equal provided the coupling constant A in the 
interaction AW2/2 is equal to 1, as in Eq. (2.1). For F(l) = 0, 
then, the photon and meson are massless; this is verified by 
the asymptotic estimates of Sec. III (see Proposition 3.7). 

The variational equations which follow from (2.1) are 

dl + It/J IFJ = 0, (2.5) 

*DA *(FDA t/J) + wFt/J - !F'¢ IDAt/J 12 = 0, (2.6) 

where IDA t/J 12 = *(DA t/J A * DA tP), 

1= - *FA =F21, (2.7) 

¢ = t/J /It/J I and J is the dual of the Noether current: 

(2.8) 

Equations (2.5) constitute Maxwell's equations, coupled to a 
complex scalar field t/J determined by (2.6). Notice that the 
generalization of (2.1), by including the arbitrary function 
F (It/J I), has not changed the form ofMaxweU's equations; by 

putting t/I = t/J,fE, Eqs. (2.5) take the usual form 
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(2.9) 

Observe that when F (1) = 0, rp will attain an asymptotic val
ue of zero, and that in this case there is no symmetry break
ing if we regard rp as the fundamental field. However, (2.6) is 
of a form different to that when F = 1, in particular the term 
F'¢ IDA t/J 12 on the right-hand side is new. 

The space of continuous gauge potentials with finite 
energy separates into disjoint sectors labeUed by the vortex 
number n,3.9 where 

n = _1 If, 
21T 

(2.10) 

and is an integer. In each such sector the energy is bounded 
below, 

E>21TW(0) In I. (2.11) 

This follows from the decomposition, valid for sufficiently 
smooth fields, following Bogomol'nyi,4.10 

E =! I HI ± W)2 + FIJ ± d ItP 1121 ± 21TW(0)n. (2.12) 

The lower bound is therefore attained if and only if 

1= w, J = d It/J I for n > 0, (2.13a) 

or 

1= - w, J = - d ItP I for n < O. (2.13b) 

These equations can be reduced to a single equation for ItP I, 
by eliminating the potential A (see Refs. 2-4): 

Inl 
.:i loglt/J I + w(ltP I) = 21T L 8 (x - a;), (2.14) 

;=1 

where the 2n parameters (a i
) are the locations of the n vorti

ces in R2. The gauge fields are constructed from 

A = - da + *d (loglt/J I), (2.15) 

where a( x) is a gauge parameter. Therefore, from a solution 
of (2.14), supplemented by the requirement of finite energy, 
we obtain a solution of Eqs. (2.5) and (2.6). 

Let us also make the following observations. Since solu
tions of (2.14) satisfy 

E = 21TW(0) In I, (2.16) 

we must demand that w(O) < 00. This excludes functions F 
with behavior that is too singular at It/J I = 0, as is evident 
from (2.2). This includesF= ItP 1-2

, i.e., w = -loglt/J I, for 
which (2.14) is linear. Evidently this corresponds to the free 
field case for theories of the type in Eq. (2.1), in which the 
kinetic and potential terms are related by the definition (2.2). 
This is made manifest by defining a new field u = - 10gltP I, 
and the fields A and u are then seen to be decoupled in a 
suitable gauge. 

Note also that the Hamiltonian (2.1) retains its form 
under the transformation 

(2.17) 

together with the redefinition It/J 1-4F(It/J 1-I)-F(It/J I). This 
provides a way of defining finite-energy vortices in a model 
with singular behavior at It/J I = O. For example, F = It/J 1-4 

violates w(O) < 00 but under (2.17) the Hamiltonian (2.1) is 
transformed into the Ginzburg-Landau model, with F == 1. 
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III. EXISTENCE AND UNIQUENESS OF VORTEX 
SOLUTIONS 

We have seen that vortex solutions for the models under 
consideration can always be constructed from solutions of 
Eq. (2.14). Let 

U= -logl¢l, {:1(u) = w(e- U
). (3.1) 

From the definition (2.3) for w, the condition hO, and as
suming local integrability for sF (s), {:1 is continuous mono
tone nondecreasing on R and hence maximal monotone. 
Equation (2.4) becomes 

Inl 
-Llu + {:1(u) =21T L D(x-ai ). (3.2) 

;=1 

This equation is of the form 

- Llu + {:1 (u) 3 g, (3.3) 

which is studied in Refs. 6 and 7, where{:1 is a maximal mono
tone graph in lit In Ref. 6, gEL I(R2), and in Ref. 7 results are 
extended to the case whereg E vU'(R2), the space of bounded 
Radon measures in R2, This latter result is obtained by ap
proximating g E vU'(R2) with a sequence I gn } such that 
gn E C'" (R2)nL I(R2) and using the results of Ref. 6. In order 
to state the existence results, we define first the Marcin
kiewicz space M p (R2) and then the exponential orders of 
growth of {:1: 

Definition 3.1: Let u be a measurable function on R2, 
1 <p < 00 and lip' + lip = 1. Then IlullMp 
= minlc E [O,oo]ISn lu( x)1 <c(meas fl)l/p' for all measura

ble fl C R2) . MP (R2) is the set of measurable functions u on 
R2 satisfying liuliMP < 00. 

Definition 3.2: The exponential orders of growth of a 
maximal monotone graph {:1 at infinity are defined as 

a+({:1) 

= {sup{a 'f" {:1(s)e- as ds= oo} if supD({:1)= 00 

00 otherwise, 

a-({:1) 

= {sup{a l - LX> {:1( - s)e-
aS 

ds = oo} 

00 otherwise, 

if inf D ( {:1) = - 00 

where D ({:1) is the domain of {:1. 
It is assumed for (3.3) that 

o E {:1 (O)nInt {:1 (R). (3.4) 

Observe that the condition 0 E Int {:1 (R) implies a ± >0. De
fine also the Sobolev spaces W k,p (fl), w ~~ (fl ) in the usual 
way. We need to consider only g E vU'(R2) of the form 
g = ~t= ICiD( x - ai),ai E R2, where the Ci E R are the point 
mass coefficients. We can now state: 

Theorem 3.3 (Vazquez?): Let{:1 have finite exponential 
orders and let g E vU'(R2). There exists a U E W t.;! (R2) with 
IVul EM2(R2) and a w EL 2(R2) such that w E{:1(U) a. e. and 
Ll u = w - g if and only if every point mass coefficient of g, 
ci , is such that c- <A <c+, where the critical values are de
fined by c ± = ± 41T / a ± . In addition, the solution is 
unique of{:1-I(O) = !O), or Sg#O. 
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This theorem enables us to generalize the results of Ref. 
5; we can now include the case F (1) = 0 of massless particles 
and dispense with other assumptions as well. In order to 
apply the theorem and its further consequences, we note first 
from (3.1) that 

{:1(0) = O. 

We also demand 

o <{:1 (00), 

and, because of finite energy [see (2.16)], 

{:1(00) < 00. 

A further natural requirement is 

{:1- 1(0) = ! OJ, 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

for this is equivalent to demanding that the potential term 
w2/2 in the expression (2.1) should have a unique minimum, 
which will lie at I¢ I = 1. This ensures that the symmetry 
breaking, and the asymptotic value of I¢ I, are uniquely de
fined, and excludes functions Fwhich are identically zero in 
a neighborhood of I¢ I = 1. However, solutions still exist and 
are unique even if(3.8) is violated, and the asymptotic value 
of I¢ I is then smallest I¢ I for which w( I¢ I) = O. 

Since in our application g>O, it follows that any solu
tion u satisfies u>O (Ref. 7, Proposition 2). Together with 
(3.5) and (3.6) this fact ensures that (3.4) is satisfied. Further
more, (3.7) implies that the exponential order a+ takes the 
value O. a- takes a value which depends on F; but, since 
a- >0, c- = - 41T/a- <0, and we find the conditions 
c- <ci <c+ of the theorem always to be satisfied. We con
clude therefore that a solution to Eq. (3.2) exists, and is 
unique. 

Remarks 3.4: (i) The unique solution has finite energy. 
Given I¢ I, we construct the gauge potential according to 
(2.15) and the vortex energy (2.1) is given by [using 
F = w2,IDA ¢ 12 = 2(VI¢ In 

E = f (F(VI¢ W + w2
). (3.9) 

In order to demonstrate that E < 00, we apply Lemma A.l of 
Ref. 7, which extends Lemma A.I3 of Ref. 6. Since{:1(u) 
E L I(R2) there is a k> 0 such that meas[u > k] 
< 00. Provided {:1 E C I(R), at least on [0,00 ), we can choose 

p(u) = {:1 (u)/{:1 (00); then p E C 1 (R)nL 00 (R) is nondecreasing, 
and satisfies !PI < 1. The equation 

f p'(u)IVuI 2 + f p(u).B(u)<21Tlnl (3.10) 

from Lemma A.l, Ref. 7, then shows that E < 00. In addi
tion, SLlu = 0 shows that Sw = 21Tlnl, i.e., the solution de
scribes n vortices. 

(ii) The regularity of the solution depends on the proper
ties of F. Since I¢ 1<1 (u>O), the regularity of the solution 
depends only on that of F(I¢ I) on [0,1]: 

Proposition 3.55
: If the first k derivatives of F(I¢ I) are 

bounded on the interval [0,1], then I¢ I E Ck + I (R2). 
(iii) If I¢ I E C 2(R2), an application of the strong maxi

mum principle using I¢ 1<1 shows that I¢ I < 1 (u > 0). 
(iv) Define {:1 ~ I(S) = sup( t:{:1 (t) 3s}. Then we have: 
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Proposition 3.6 (Vazquez,7 Lemma 4): Letg E ~(R2) 
have support in B R (0), R > 0 (choose R > maxi [ lai I )). Then 
u is locally bounded outside B R (0), and we have the estimate 

u( x), - 2lnllog(1 - R /Ix!) + P :;: 1(2Inl/R (21xl - R I). 
(3.11) 

Thus, if P - 1(0) = [0), u converges uniformly to 0 at infinity. 
It is of interest to improve the estimate (3.11), in particu

lar to demonstrate the different behavior of the massive 
[F(l)#O] and massless [F(l) = 0] models. The former will 
have an asymptotic dependence u - exp( - m Ix I), where m 
is the mass, while for the latter u will decay more slowly, 
u -Ix I - P for some exponent p, as is shown in the following 
estimates. Let us note that more precise asymptotic esti
mates, for P(u) of the formp(u) = ulul q 

- I have been given 
by Veron. 11 

Proposition 3.7: (i) Suppose Fis continuous on [15,1]; F' 
exists on [15,1] for some 0 <15 < 1, andF(l)#O. Then for any 
€ > 0 there exists M < 00, R (€) > 0 such that 

O<u(x)<Mexp[ -lxl(~F(I) -€)], Ixl>R(€). 
(3.12) 

(ii)SupposeF(n - II, n;;. 1, is continuous on [15, 1], andF(nl 

exists on [15,1] for some 15>0, withF(i-I I(I) = 0, i = 1, ... ,n, 
F(nl (1) # O. Then there exist 0< MI ,M2 < 00, R > 0 such that 

M l lxl- 2In ,u(x),M2Ixl- 2In , Ixl >R. (3.13) 

Proof (i) From Proposition 3.6, for sufficiently small 
15 > 0 there exists R (D) > 0 such that 0 < u < 15, for Ixl > R. 
Using Taylor's theorem for P (u) on [0,15], there exists 
S E [0,15] with 

P(u) =P(O) + uP'(s) 
= uF(e-S)e- ZS 

;;'u(F(I) - €) 

by continuity of F. Hence, for Ixl > R, 

.Ju;;,u(F(I) - €). (3.14) 

Now, since u E C 2(R2) we can apply Proposition 7.2 of Ref. 3 
to obtain the result. 

(ii) As in (i), apply Taylor's theorem toP (u) for u E [0,15]: 

P(u)=[un+lj(n+l)!]pn+l(s), SE[O,D]. (3.15) 

Hence Clun + I ,p (u),C2u
n + I, for constants 0 < CI'C2• 

Define, for Ixl ;;.R, v = M Ixl- 21n , satisfying 

(3.16) 

Now apply the strong maximum principle to u - v, to obtain 
upper and lower bounds on u( x), Ixl > R. For example, 
choosing 4M- n /n 2 ,CI , 

.J (v - u),CI(vn+ I _ un+ I) 

= C(x)(v - u), 

where 

( 
n+1 n+l) 

O,C( x) = CI V - u ELOO (R2). 
v-u 

(3.17) 

Apply the maximum principle to (3.17) on { Ixl > R J, noting 
that we can choose M sufficiently large to ensure that 
v - u Ilxl = R ;;.0, to obtain v - u ;;.0, for Ix I > R. Similarly we 
obtain the lower bound. 
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For the massless case, it is not difficult to find examples 
which allow explicit solutions. A simple example is the fol
lowing, in which the polynomial decay for the massless fields 
is evident: 

Example 3.8: 

F= 811- It,b 1
2 1. (3.18) 

The unique solution to (2.14), for n = 1, is 

(3.19) 

The gauge potential A (in the Coulomb gauge), the field!, 
and the vortex mass E are readily calculated using formulas 
such as (2.15) and (2.16), and we find 

A = - [lxlz/(1 + IxI 2
)] dO, 

/= w = 2/(1 + IxI 2
), (3.20) 

E=41T. 

IV. SECOND-ORDER EQUATIONS 

Following the existence of solutions which achieve the 
lower energy bound shown in (2.11), a natural question arises 
as to whether these solutions exhaust all finite-energy solu
tions. To answer this, we need to return to the second-order 
equations (2.5) and (2.6). By using maximum principle type 
arguments, and by modifying the proofs in Ref. 3, we find 
that, with some assumptions, no new solutions exist. First 
we simplify Eqs. (2.5) and (2.6), casting them into a gauge 
invariant form which requires us to solve only two coupled 
equations, for/and It,b I· The gauge covariance ofEqs. (2.5) 
and (2.6) implies that there are only three independent equa
tions, for I t,b I and for the two components of A. The equation 
for w(lt,b I), which follows directly from (2.6), is 

.Jw = pw - yF21t,b IZIDA t,b 12, 

where 

p=FIt,b12, 

_ (Flt,b 12)' 
y- 2F21t,b 13 

(4.1) 

(4.2) 

From Eqs. (2.5), which are second order in the potential A, 
we can derive a second-order equation for/by differenti
ation. We find [using the definition (2.8) for J] 

.J/=p/-yFz lt,b12i*(DAt,b/\ DAt,b). (4.3) 

By squaring (2.5) and using 

IJ 12 = IDA t,b 12 - (Vlt,b 1)2, (4.4) 

we find 

IV/1 2 =F21t,b 121DAt,b 12 - (Vwf. (4.5) 

Again, using the definition of J, 

(J,d It,b I) =! i*(DA t,b /\ DA t,b ), (4.6) 

and we obtain the following gauge invariant system, involv
ing only the unknowns/and It,b I: 

.J/ - p/ + 2yVfVw = 0, 
(4.7) 

.Jw - pw + y[(V/)2 + (VW)2] = O. 

The boundary conditions for (4.7) are determined by the fin-
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ite-energy requirements, which can be written as follows, 
again using (4.5): 

f 12 < 00, f w2 < 00, 

(4.8) 

f (V/)2 f (VW)2 
Flt/J IZ < 00, Flt/J IZ < 00. 

The system (4.7), (4.8) forms a closed elliptic system fori 
and It/J I, and our aim is to find all solutions ofthis system. 
Evidently, solutions can always be obtained by putting 
1= ± w, with w determined by (2.14). With the solutions of 
(4.7),(4.8) we can construct the gauge fields using Maxwell's 
equations (2.5). In order to see this, put 

(4.9) 

where a( x) is a gauge parameter, necessarily multivalued for 
nontrivial solutions.3 Equation (2.5) can be written 

A = -da - *dlfFIt/J 12. (4.10) 

Therefore, given/and It/J I as determined by (4.7),(4.8), we 
need only to choose a gauge to be able to write down the 
solution for A. Ifwe can determine that all solutions satisfy 
1= ± w, we recover Eqs. (2.15); that is,J = ± w together 
with Maxwell's equations imply the remaining first-order 
equations J = ± d It/J I, which appear in Eqs. (2.13). 

Using (4.10), the equation for I can be cast into a useful 
divergence form: 

(4.11) 

where g( x) = [V l' V z]a( x) is singular, being nonzero only at 
points where It/J I = 0. This is evident from Eqs. (4.9) and 
(4.10) since, in order that (A,t/J ) be sufficiently smooth, the 
zeros of It/J I should coincide with the points where a is dis
continuous. In the next section (Proposition 5.2) we demon
strate, following Ref. 2, that we can always choose a gauge in 
which A is smooth, provided F is sufficiently smooth and 
assuming local regularity properties of (A,t/J ). It is worth re
marking that Eqs. (4.7) and (4.11) for/and It/J I can be ob
tained as the Euler equations of the following functional 

.af(f,It/J I): 

.af(f,It/J I) = f [(V/f - (Vw)z + P - WZ - 2/g]. 
, Flt/J 12 

(4.12) 

Next we describe a virial theorem, following Ref. 3. De
fine the Maxwell stress tensor 

Tij = {ViWVjW - Vi IVj 1+ ! tJij [(V/f + (.:lw)Z] lfF It/J 12 
+! tJij(fZ - w2). (4.13) 

It follows from (4.7) that 

VjTij=O, (4.14) 

and from (4.8) that 

f ITijl < 00· (4.15) 

Proposition 4.1: Let (f,w) be a solution to Eqs. (4.7),(4.8). 
Then the stress tensor (4.13) satisfies 

(4.16) 
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Proof See Jaffee and Taubes,3 p. 31. 
As a consequence, we have the following useful rela

tion: 

(4.17) 

V. EQUIVALENCE OF FIRST- AND SECOND-ORDER 
EQUATIONS 

We now require several assumptions on the behavior of 
F, and also assume local regularity of (A,t/J ). We show then 
that It/J I is bounded, and, following Taubes,2 show that, with 
a suitable choice of gauge, (A,t/J) is smooth. This will imply 
that land ware continuous, and from (4.7),(4.8) we then 
show that w> I I I; combined with (4.17) this impliesl = wor 
1= - wand, as explained above, this is sufficient to demon
strate the equivalence of the first- and second-order equa
tions. The assumptions on Fare 

(i) F>O, (5.1) 

(ii) there exists a constant K> 1 such that for all s > K, 

F(s) + ! sF'(s»O, (5.2) 

(iii) FEe 1[0,00). (5.3) 

The first condition is used to obtain a lower bound on F, 
although it excludes the massless case. The second condition 
is used solely to show that 1It/J II 00 <X; it means that F (S)s2 is a 
nondecreasing function of s, for s > K, and is satisfied by any 
positive polynomial F and by any function Fwhich increases 
fors>K. Using (5.3), It/J I<KimpliesthatF(It/J I) is bounded 
above and below: 

(5.4) 

for finite constants k) and k2• Similarly, becauseF' is contin
uous, 

(5.5) 

The third condition (5.3) also ensures that the solutionsf, 
WEe 2(R2), and so in fact are classical solutions (see Proposi
tion 3.5). 

We also assume that the components of A belong to 
W l~(R2), and that It/J I E W~~(R2). This last assumption is 
stronger than that used by Taubes2 and has been necessary, 
in order to ensure thatl and ware sufficiently smooth, be
cause of the difficulty posed by the extra L ) term in the field 
equations (2.6). This assumption implies that It/J I is contin
uous. 

Proposition 5.1: With the above assumptions, It/J I <K. 
Proof Let 

v = t dsF(s). 
)14>1 

v satisfies the distributional equation 

(5.6) 

.1v = It/J IFw - (F Iit/J 1+ W')IDA t/J 12 + (F flt/J IHVIt/J If 
(5.7) 

DefinebR (x) = b (lxlfR), whereO<b (Ixl)< 1 isaC;' mono
tonically decreasing function with 

b (Ixl) = {I, 
0, 

(5.8) 
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Define 1] E W ~.2(B 2R (0)) by 

1] = bR max(O,It,61 - K). (5.9) 

Equation (5.7) implies 

l'R [V1]'Vv + F·It,6lw1] - (1]/It,6I)(F + !1t,6IF ')IDA t,612 

+ (1]F 11t,6I)(VIt,6 W] = 0, 

where fl2R = ! x E JR21 1t,6 I( x) > K )nB 2R (0). Observe 
that all terms are finite, due to the local regularity assump
tions and finite energy. Using definitions (5.6) and (5.9) and 
collecting terms, 

l'R bR! [(1t,6I-K)/It,6I](F+ !1t,6IF ')IDA t,612 

Let 

+ (KFllt,6 IHVIt,6 1)2 -FIt,6lw·(It,6I-K)) 

= - f [F'(lt,6I- K )VIt,6I.VbR ]. JnZR 

G(It,6I)= ( F(s)(s-K)ds. 
)I~I 

For 1t,61 >K>l, 

f'~' 
IGI<)I F(s)(s+K)ds 

f'~' «K + 1))1 F(s)sds = (K + l)lwl· 

(5.10) 

(5.11) 

(5.12) 

The integral of the left-hand side ofEq. (5.10) is nonnegative 
[using (5.2)], and with the definition (5.11) we obtain 

lR {[(It,61 - K)/It,6I](F + ~1t,6IF')IDA t,612 

+ (KF 11t,6IHVIt,6 W - Fw·It,6I(It,61 - K)) 

< f VbR.VG 
)02R 

< [ l'R G 2
] 1I211AbR ilL' 

< [(K + 1)21R ] IIAb IIL'lIwIIL" (5.13) 

where we have integrated by parts, used HOlder's inequality, 
the estimate (5.12), and the scaling properties of bR • Since 
flR c;;,flR· for R '>R we conclude thatflco has zero measure 
and hence 1It,6 II co <K. 

Next, with the above assumptions, we prove (following 
Taubes2) that it is always possible to choose a gauge in which 
the potential A is smooth. 

Proposition 5.2 (Taubes2): Let (A ,t,6 ) be a weak solution of 
Eqs. (2.5) and (2.6). Then there exists a pair (A,~) related to 
(A,t,6 ) by (A,~) = A - da,t,6eia

), where the components of 
A E C I(JR2), ~ E CO(JR2) and a E W 2

•
2(fl) for all open sets 

fl C JR2 with compact closure. 
Proof We need only outline the proof, which is to be 

found in Ref. 2. Bya weak solution A ofEqs. (2.5) we mean a 
potential A with locally integrable components, and locally 
integrable first derivatives, satisfying 

(5.14) 
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whereb has components in W 1.2(JR2) and 1t,61 E Wf~(JR2). We 
determine the gauge parameter a( x) which transforms A 
into the Coulomb gauge, in B = B2(0); that is, we choose 
a E W 2

•
2(B) as the unique solution of 

Aa = *d*A, alaB = O. (5.15) 

Then, using 1t,61 <K, the standard regularity estimates (Mor
rey, 12 Chap. 6) and the Sobolev imbedding theorem,13 we 
find that A = A - da is continuous in B. Since we have as
sumed that 1t,6 I E W 2

•
2(B) we can iterate, using FEe 1[0, 00), 

to obtain that A and its first derivatives are continuous in B. 
This means that! = - *dA is continuous in B. Further iter
ations, using also Eq. (2.6) for t,6, are possible if extra smooth
ness is assumed for F. Since the origin was chosen arbitrarily, 
we find that/, and by assumption 1t,61, are continuous in JR2. 
By a patching procedure we can also construct a such that 
a E W 2

•
2(fl) for any bounded set flCJR2. 

Let us now return to the gauge invariant formulation of 
the second-order equations (4.7). By adding and subtracting 
these equations, we obtain 

Liu-pu+r(Vu)2=0, (5.16) 

which holds for each of u = w + /, u = w - fUsing 1t,6 I <K 
we find that F 1t,612 is bounded above and hence, from (4.8), 
IIVFIIL' < 00, IIVwIIL2 < 00. This implies that/, 
WE W 1.2(JR2), i.e., u E W 1.2(JR2). A consequence of this and 
(5.16) is that u>O. This is straightforward to prove ifF is such 
that r>O, by application of the maximum principle, 14 as in 
Refs. 1 and 2. For more general r we note: 

Lemma 5.3: With the above assumptions on F, r( 1t,6 I) is 
bounded below. 

Proof From (4.2), for any E> 0, 

r> [(F')2/16F41t,612][ 16F3/(F')2 - E] - liE. 

Now, 

16F3/(F')2>k> 0, 

for some positive constant k, since by (5.4) and (5.5) IF'I is 
bounded above, and F>kl for some kl > O. Hence, by choos
ing E sufficiently small, 

r> -c, (5.17) 

for some c > O. • 
Lemma 5.4: The function (eV 

- 1) for v E W 1.2(JR2) is 
square-integrable on L 2(JR2). 

Proof See Taubes,1 Lemma 4.6. 
Using Lemma 5.3, we obtain 

Liu-C(VU)2_ pU <0. (5.18) 

Proposition 5.5: For u E W 1.2(JR2)nCO(JR), c>O,p( x»O, 
and bounded, (5.18) implies that u>O. 

Proof Define the test function v E W ~.2(B R (0)) by 

for u <0 
otherwise, 

(5.19) 

where bR is the cutoff function defined above [see Eq. (5.8)]. 
Since v is compactly supported and v>O, we can multiply 
(5.18) by v and integrate by parts: 

- f Vv·Vu - c f vlVul 2 - f puv<O. (5.20) 
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Using (5.19) and collecting terms, 

c r (VU)2- r pu(e- CU _l) 
JaR JaR 

(5.21) 

whereflR = I xEJR2Iu(x)<OjnBR (0).Aboundforthe 
right-hand side of(5.21), using Holder's inequality, is 

I LR (e-
CU 

- I)Vu·VbR I 
.;;;( IIVb 1100 /R lIlVullL,lle- cu 

- l1IL2. (5.22) 

Since u E WI.2(JR2), we have IIVullL 2 < oo,lle- cu 
- l11L' 

< 00 by Lemma 5.4. Taking lim inf R-oo, we find that fl 00 
has zero measure, i.e., u;;;,O. 

Since u can be either w + lor w - J, we find w;;;, I I 1;;;,0. 
Equation (4.17) implies, using continuity,f2 = w2

, or 
I( x) = ± w( x). Substituting into Eq. (4.11), we find 

.:llogl¢ I + w = 0, 11,6 1#0. (5.23) 

Lemma 5.6: Either w=O or w> O. 
ProofSincewehaveassumedFE C 1[0,00),11,6 I E C 2(JR2) 

(see Ref. 5, Proposition 3.5); also w;;;, I II implies 11,6 I.;;; 1. Now 
apply the strong maximum principle to (5.23) on the set 
I x 111,6 I ( x) > 0 j to complete the proof (for details, see Ref. 5, 
Lemma 5.2). 

Finally, using Lemma 5.6 and the continuity properties 
of/and was in Ref. 3, we deduce that/( x) = ± w( x) holds 
with the same sign everywhere, this sign depending on the 
sign of n by (2.10): 
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I=w if n>O, 
(5.24) 

1= - w if n<O. 

As explained in Sec. IV, Eqs. (5.24) imply the first-order 
relations (2.15), which together with an analysis of the zeros 
of 11,6 I (see Refs. 3, Chap. III) imply Eq. (3.2), which was 
investigated in Sec. III. 
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In this paper we shall construct the Lagrangian of a gravitational Poincare gauge theory using 
degeneracy in the Euler-Lagrange expressions as a primary restriction. Such a generalization of a 
Lorentz gauge theory requires the addition of not only a translation gauge connection, but also a 
Goldstone field. The intractability of the field equations is lessened somewhat by means of a 
particular choice of gauge which acts like a Higgs mechanism. With one further assumption a 
complete reduction to the corresponding Lorentz theory can be made, and the Einstein vacuum 
field equations with cosmological term are recovered. 

PACS numbers: 11.30.Cp, 11.l5.Kc, 12.25. + e, 04.20.Fy 

1. INTRODUCTION 

Several authors 1 have sought to show how their gravita
tional field equations can be characterized as those of a 
unique Poincare theory. In most instances the Poincare 
transformations involved are actually coordinate transfor
mations with parameters from the Poincare group and not 
true internal gauge transformations. 

It was shown in an earlier paper2 how the Einstein vacu
um field equations with cosmological term could be derived 
as a consequence of the Euler-Lagrange equations of a Lor
entz gauge theory which is in some sense unique. Since the 
Lorentz group is a subgroup of the Poincare group, we could 
also say we have a Poincare gauge theory. Nonetheless, the 
absence of any reference to the translation subgroup in the 
determined Lagrangian should stop us from using this ter
minology. The aim of this paper is to construct a true Poin
care gauge theory by generalizing the Lorentz theory. 

We shall make use of the formalism developed in two 
previous papers. 2

,3 Thus, a Poincare gauge transformation is 
characterized by associating at each point of the space-time 
manifold M (local coordinates Xi, i = 1,00.,4) an element 
u = U(Xi) of the connected component of the identity of the 
Poincare group. The coordinates of U(Xi) relative to a canoni
cal chart of the first kind4 are uaP (Xi) = - upa(xi) and ua(xi), 
a,f3 = 1, ... ,4. 

To generalize the Lorentz gauge theory to a true Poin
care gauge theory, we shall introduce not only a translation 
gauge connection A f, but also what turns out to be a Gold
stone field5 cP a. As was shown in Ref. 2, the inclusion of A f 
in the formulation of the variational principle without cP a is 
futile since the invariance identities eliminate A f when the 
Lagrangian is actually constructed. The insertion of cp a 

leads to only one additional term to the Lorentz Lagrangian, 
viz., 

d ijkh I' a I' P 
e 'TJaPJi jJk h' 

where d is an arbitrary constant, ~jkh is the four-dimensional 
Levi-Civita symbol, 

'TJaP=diag( - 1, - 1, - 1,1) 

and/; aj is defined in terms of the Poincare gauge curvatures2 

FaP. and Fa. as 
l} l J 

I'a -FaP Ihr+Fa Ji j= i j'TJpr'V i j' 

A simplification of the resulting field equations is ob
tained by means of a particular choice of gauge which acts 
like a Higgs mechanism. 5 In this gauge cp a vanishes and A f 
is no longer regarded as a translation gauge connection but 
as a set of vectors. 

To check the validity of the theory, we find that we can 
reduce it to the Lorentz theory by imposing 

cp alii = Kh f, 
where a double bar signifies the double covariant deriva
tive, 2,3,6 K is an arbitrary constant, and the h f are the compo
nents of the orthonormal tetrad (or vierbein). 

2. PRELIMINARIES 

With a true gauge theory the gauge potential should be 
a connection in a principal fiber bundle,7 In particular, the 
group acts freely on the fiber, i.e., only the action of the 
identity leaves each element of the fiber invariant. Thus we 
violate this condition when the action of the Poincare group 
is restricted to being 

(2.1a) 

where a~ is a Lorentz matrix and a prime indicates the 
gauge-transformed quantity. 

We need to introduce an additional object in the man
ner of Pilch8 whose components cp a undergo the Poincare 
gauge transformation 

cpP=a~ cp,a+aP, (2.1b) 

where aP characterizes a translation. A coordinate transfor
mation leaves cp a invariant. When a canonical chart of the 
first kind is used, the gauge transformation laws (2.1) can be 
expressed2 as 

h 'a i = .?'P h f 
and 

cp la = .?'P cpP - .?'PI~ ur, 

where 

.?'P=exp( - uar'TJrp) 

and 

(2.2) 
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In addition to (/J a, we shall also make use of the object 
with components 

(/Ji h~ (/Ja, 

which enables us to put the transformation laws (2.2) into the 
form 

[~l = [_:j~:y ~] [~l (2.3) 

where h ~ is the inverse of h f and ~ denotes the inverse. The 
purpose of this is to take advantage of the formalism intro
duced in a previous paper3 where we now make the identifi
cation 

Under a coordinate transformation Xi = xi(xi) with 

Ji=JX
i 

1 Jxj 

and 

J -detJj >0, 

we have 

[ h~]=[J;{jt ?] [h~] 
(/J I 0 J j (/Jl ' 

where we have used a horizontal bar to denote the corre
sponding quantity in the new coordinate system. 

Since pA transforms linearly and homogeneously under 
both Poincare and coordinate transformations, it is possible 
to take its double covariant derivative2,3.6 and obtain 

h ~lIa = h ~.a + L i a lh~ - A ~Yh P 1J ya 

and 

(/J Iia = (/J i.a + L i a l (/Jj + A ~h~, 

where L i a l is the Christoffel symbol of the second kind and 
A ~y is the Lorentz gauge connection. The corresponding 
commutation laws3 for the second derivatives are then 

h i hi - R i h j F py hi allab - allba - jab a - a b p1Jya 

and 

where Rj iab is the Riemann curvature tensor. It is also possi
ble to show that 

and 

m.y m.y -I'Y-FYP m.w+FY 
'P lIab - 'P IIba - Ja b= a b 1Jpw 'P a b' (2.4) 

Note that the gauge transformation law for (/J Ylla is the same 
as for h ~, i.e., 

(/J 'Ylla = 2'~ (/J '"lla' 

and we also have 
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3. DEGENERACY 

In Ref. 2 it was found that 

L - ijkh F ap F yw + ...ijkh F ap F yw 
- alE EafJyw i j k h a2~' 1Jay 1Jpw i j k h 

+ b hh i h j 1JI-'Y1JW"E F.afJ, 
1 J.lV a{3YW1J 

+ b2hh ~h~ FiaPj + ch, 

where ai' a2 , b l , b2 , and c are arbitrary constants, Eapyw is a 
four-dimensional Levi-Civita symbol, and 

h det h f, 
is the most general Lagrangian of the form 

L = L (h f; A ffJ; A f.1; A f; A f.j)' 
which has the transformation laws 

L=JL 

and 

L'=L, 

(3.1) 

and is degenerate in the sense that its Euler-Lagrange ex
pressions 

Ek=~_~(~) 
GT- JA ar Jxh JA GT 

k k.h 

and 

are such that 

(3.2) 

JEk JEk 
__ G __ O, and __ G_-O. 
JA ':'P

h 
JA a

h It} I.} 

We shall now generalize this result to a Lagrangian which 
includes (/J i, i.e., 

L = L (h ,:,. (/J i;A aP. A aP. A a. A ':'.) 
I , I' 't)' I , 't} 

and demand the same transformation laws (3.1) and degener
acy (3.2). The construction of the Lagrangian follows closely 
that of Ref. 2 to which the reader should refer constantly. 
Also, several lemmas were proved in Ref. 2 which are re
quired here and are listed in the Appendix. 

To simplify our calculations, we shall use upper case 
Greek letters to represent all ten gauge indices, so that, for 
example, A f, ~ = 1, ... ,10, signifies the ordered pair 
(A fP.A f). The degeneracy condition (3.2) can then be ex
pressed as 

JE1 
---0. 
JA 1j h 

As in Ref. 2, this condition, together with the invariance 
identity corresponding to (4.5) in Ref. 3, implies that J 2L / 
JA 1j JA fh is totally antisymmetric in its Latin indices. 
Thus, 

(3.3) 
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where we have made use of the transformation laws of L AI 

inherited from a 2 L / aA tj aA f.h and the invariance identity 
corresponding to (4.6) in Ref. 3. Upon integrating (3.3) twice 
with respect to A tj while noting the appropriate invariance 
identities we obtain 

L - l-ijkhL F I FA + IT ij (hfL'<Pa\J;'.A 
- gt:. AI k h ; j ~ A a' ~ I , 

+ Lo(h~;<pa), 

where L ~ and Lo transform in the same way as aL faA tj 
and L, respectively. When we return to lower case Greek 
indices, we can express the above as 

L = ~jkh 1 afJyw(h ~;<pa)F; aPj Fk YWh 

+ ~jkh 1 (h fL.<p a\J;'.afJF Y apy a' ~ I , k h 
+ ~jkhLaP(h ~;<P a)F; aj FkPh 
+ 1~p(h~;<pa)FtPj +L~(h~;<pa)F;aj +Lo(h~;<pa). 

It is actually more convenient to express L in terms of/;aj 

rather than F; aj , whereby the Lagrangian becomes 

All that remains in the construction is to determine the 
structure of the various concomitants of h ~ and <p a as a 
consequence of their symmetry properties and transforma
tion laws, viz.: 

(i) Lapyw = - Lpayw = - L apwy , 

L apyw = L apyw ' 

L ~vaT1~ 1p1~1: = LaPyw; 

(ii) Lapy = - L pay , 

L apy = L apy , 

L~va1~1p1~ = L apy ; 

(iii) LaP = LaP' 

L ~v1~1p = LaP; 

(I'V) L ij - Lj; - L ij ap - - ap - - pa' 
Lij JaJb- JLab ap ; j - ap, 
L,ij 1fL 1 v = L ij . fLV a pap, 

(v) L~ = -L~, 

Lij rJb= JL ab 
a 'J a' 

L,ij 1fL =Lij· 
f.l a a' 

(vi) Lo = JLo. 

Lo =Lo· 

We begin by considering the quantity 

Bo = Bo(h ~;<P a) = LoIh, 

which has the transformation laws 

Bo=Bo 

and 

Bo =Bo· 

Expansion of (3.5) gives 
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(3.5) 

B o(1~h~;<pa - h p/~ u4» = Bo(h~;<pa). 

By taking the derivative with respect to uY and evaluating at 
the identity transformation, we obtain 

_ aBo h a = 0 
a<p a y 

and thus 

aBo = o. 
a<p a 

Lemma A 1 of the Appendix then yields 

Bo=c, 

where c is an arbitrary constant and hence 

Lo =ch. 

In a similar manner the remaining quantities are all 
independent of <p a, and we have: 

(i) L apyw = al€apyw + !a2(1Jay1Jpw -1Jaw 1Jpy), 

by Lemma A2 of the Appendix; 

(ii) L apy = 0, 

by Lemma A3 of the Appendix; 

(iii) LaP = d1JaP' 

by Lemma A4 of the Appendix; 

(iv) L ~p = hh ~h~ ifY1JvW[ bl€apyw 

+ !b2(1Jay 1Jpw - 1Juw 1Jpy)] , 

by applying Lemma A2 of the Appendix to 

Dapyw-(lIh )1JYfL h r1Jwv h i L ~p; 

(v) L~ =0, 

by applying Lemma A3 of the Appendix to 

Dapy =(lIh )1JafL h r1Jpv h iL~; 

where ai' a2 , bl , b2, and d are all arbitrary constants. 
We have thus established the following: 
Theorem 3.1: If a Lagrangian of the form 

L = L (h u.<p;. A aP;A aP. A a. AU) 
I , , I 'tj' I , It} 

has the transformation laws 

L=JL 

and 

L'=L, 

and is degenerate in the sense that its Euler-Lagrange ex
pressions satisfy 

Ek = Ek (h u·h U .'<p;.<p;. A uP;A aP;A a;A a.) 
UT err " I.}' , ,), , I,) I l,j 

then L is restricted to being 

L - -ijkh F ap F yw + -ijkh F ap F yw 
- alt:· €aPYw ; j k h a 2t:· 1Jay 1Jpw ; j k h 

+ b hh ; h j flY YW F ap + b hh ; h j F ap + h I fL Y 1J 1J €apyw ; j 2 a 13 ; j C 
··kh I' P 

+ dE" 1JaPJtj !k h' (3.6) 

where a I' a2, hi' h2' c and d are arbitrary constants. 
Remark 1: There is only one additional term due to the 
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presence of (/> j in the Lagrangian, viz., the coefficient of d. 
Remark 2: It was shown in Ref. 2 that the coefficients of 

a l and a2 are divergences, and thus their Euler-Lagrange 
expressions are identically zero. 

The Euler-Lagrange expressions for the Lagrangian 
(3.6) take the form 

and 

3's - aL b h (h S h j hj,..,J-Ly vw F ap 
.p = ah.p = I .p I" v'l TJ €aPyw i j 

S 

- 2h S hi h j ,..,J-LYTJvw€ F.aP.) I" .p v'l apyw,} 
+b2h(h~ h~h~ FiaPj -2h~ h~h~FiaPj) 

+ chh ~ + 2d *fi/Fi apjTJp.p (/> s, 

E.= aL - 4d *'fa b hI" )- a(/>j - I" IIba j' 

E~ = - 4d *fsa tilt' 

E~p = bl tK~p + b2K~p - 2d (TJpy (/> Y *ra t)lIt 

(3.7) 

(3.8) 

(3.9) 

+ 2d (TJay (/> y *r/)lIt' (3.10) 

where 

*'fi j=~jkhTJ I' P a - apJk h' 

K~{3- - 2h (h [a h p ))11" 

tK~p=K~v rfY TJvw€aPyw' 

and square brackets around indices denotes antisymmetriza
tion. It should be noted that Ej and E ~ are not independent. 
In fact, even for a Lagrangian which is not degenerate, one of 
the conservation laws corresponding to (4.8) in Ref. 3 is 

Ej = - hjE~lIa' 

4. A CHOICE OF GAUGE 

The lack of independence of the Euler-Lagrange ex
pressions suggests that perhaps a particular gauge transfor
mation could simplify the field equations while reducing the 
degrees of freedom. Such a transformation is given by 

uaP = 0 

(4.1) 
and 

in which case the transformed field variables (signified by a 
dot), are 

hi =hi a a 

and 

(Pi = O. 

Thus, (/> i can be thought of as a Goldstone field. 
Even though 

(pa=o 

and 

Pi aPj = Fi aPj , 

and hence 
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the double covariant derivative of (p a does not vanish; in 
fact, 

(4.2) 

Thus any reference to (/> a and its derivatives can be eliminat
ed from both the Lagrangian and the field equations. 

We still have the freedom to perform any Lorentz gauge 
transformation. It is then possible to say that we have ob
tained a Lorentz gauge theory from a Poincare gauge theory 
by means of a Higgs mechanism. The Lagrangian is of the 
form 

L = L (h a;A' aP. A aP. A a. A a) 
I " J,j' I , I,}' 

and A f is no longer regarded as the translation gauge con
nection, but as a set of vector fields which transform in the 
same way as h f. The Lagrangian (3.6) can then be expressed 
in this gauge as 
L - a ,.ijkhc F ap F yw + ,.ijkh F ap F yw 

- I c· "'apyw i j k h a2c· TJayTJpw i j k h 

+ blhh ~h~rfYTJvw€aPyw F/Pj + b2hh ~h~ FiaPj + ch 
ijkh . a . P 

+ 4dE" TJapA ilUA kIIh' (4.3) 

where we have made use of(2.4) and (4.2) and it is now legiti
mate to consider the double covariant derivative of A f. 

Corresponding to (3.7)-(3.10), we have the Euler-La
grange expressions 

cbs _ b h (h S h i hj,..,J-LY vw F ap o .p - 1 .p I" v'l TJ €apyw i j 

- 2h ~h ~h~ rfYTJvw€apywFi ap
j ) 

+ b2h (h ~h ~h~ FiaPj - 2h ~h ~h~ Fi apj ) + chh~, 
(4.4) 

E· S = 8d,.stij A' P a - C TJaP ilUt 
4d,.stij A' YF pw 

- C TJapTJyw i j " (4.5) 

and 

E· S -b tKs +bK s +4d ,.stij;'w A' y (4.6) ap- I ap 2 ap TJy[aTJp)w c .t':Iilli t· 
Note that we have no Euler-Lagrange expression corre
sponding to (3.8) due to the elimination of (/> i. 

It should be stressed that we do not have a true Lorentz 
gauge theory here, but one that has been obtained from a 
Poincare gauge theory through symmetry breaking involv
ing a Higgs mechanism. The fields A f do not arise in a true 
Lorentz gauge theory without sources. 

5. COMPLETE REDUCTION TO LORENTZ 

In the particular gauge (4.1) where only subsequent 
Lorentz transformations are allowed, the ordered pair (A fP, 

A n can be regarded as the restriction to the Poincare sub
group of a generalized affine connection as defined by Ko
bayashi and Nomizu.9 Furthermore, if we assume 

(5.1) 

then we have a Poincare restriction of their affine connec
tion. In doing so, we have completed a reduction9

•
10 of the 

Poincare theory to a Lorentz theory by means ofsoldering7 
in addition to the use of a Higgs mechanism. The fields A f 
have now been eliminated. 

Some authors8
•
11 regard the assumption (5.1) as essen

tial, while others l2 feel that it is not absolutely necessary to 
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perform such a reduction in all Poincare gauge theories. 
When discussing this point few authors stress the fact that it 
is possible to identify the translation connection and the vier
bein only under this choice of gauge where tJ> a vanishes and 
just Lorentz transformations are then allowed. The two 
quantities transform differently under a general Poincare 
transformation, and it does not make sense to take the dou
ble covariant derivative of A f except under this choice of 
gauge when we consider that we have just a Lorentz theory. 

The above difficulties are overcome by assuming 

tJ> alii = h f (5.2) 

instead,s.1I which reduces to (5.1) under our particular 
choice of gauge. This effectively completes the reduction by 
combining the Higgs mechanism and the soldering into one 
process. A particular choice of gauge is not required. 

To see what effect a complete reduction has on our 
Poincare gauge theory, we shall generalize (5.2) to 

tJ>alli = Kh f, (5.3) 

where K is a constant. This yields the more useful relation 

//j = tJ> a llij - tJ> a llii = K(h ~u - h illi)' (5.4) 

There are actually two ways to impose (5.3). A priori we can 
substitute (5.3) and (5.4) into the Lagrangian (3.6) and there
by reduce the number of field variables. A posteriori it is 
possible to adjoin (5.3) to the Euler-Lagrange equations cor
responding to (3.7)-(3.10). The results are not always the 
same. 13 

When (5.4) is substituted into (3.6), the coefficient of d 
becomes 

_.2 --kh /3 
4K E'J 1] a/3 h ~u h kIIh , 

which can be expressed as 
__ 2 "kh /3 _.2 "kh /3 

(4,.---E'J 1]a/3 h fh k IIh )llj - 4K E'J 1]a/3h fh k 1Ihj' 

By virtue of the commutation law 

h~lIhj -h~PJh = -Rkahjh~ +h'kFh/3Yj 1]y", 

and the identities 

and 

~jkh = _ hh i h j h kh h ".,a/l-".,/3v ".,YU".,WT€ 
a /3 y ill" " '/ '/ Jl.VUT' 

the coefficient of din (3.6) takes the form 

(4~~jkh1]aph fh ~llh )lIj + ~hh ~hjv ifY1]vw€a/3Y", F//3j. 

Since the first term is a divergence and the second term is 
proportional to the coefficient of bl in (3.6), the effective re
duced Lagrangian is 

L = (b l + ~d )hh ~h~ ifY1]a"'€aPyw Fi aPj 
+ b2hh ~ h ~Fi aPj + ch. 

Therefore, the Euler-Lagrange equations yield2 the Einstein 
vacuum field equations with cosmological term, i.e., 

b2 Rij = !cgij' 

provided 

(b l + 2~df + b/#O. 

In a similar, but more tedious, manner, the a posteriori 
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imposition of (5.3) in addition to the Euler-Lagrange equa
tions of(3.6) also yields the Einstein vacuum field equations 
with cosmological term, subject to the same restriction on 
the constants. 

6. DISCUSSION 

We have constructed the Lagrangian of a true Poincare 
gauge theory whose Euler-Lagrange equations can be sim
plified by means of a Higgs mechanism. In this form the 
translation subgroup is manifested only in the translation 
connection A f. The usual interpretation of such A f in a 
gauge theory using a Higgs mechanism is that they are re
garded as a set of vector bosons.5 Thus the generalization of 
the theory from Lorentz to Poincare gives rise to an interac
tion of a set of vector bosons with the gravitational field. An 
interesting feature of the Lagrangian (4.3) is that minimal 
coupling arose without having to impose it. 

In this paper complete reduction of the Poincare theory 
to the Lorentz theory is regarded merely as a check that the 
Einstein vacuum field equations can be obtained in some sort 
of limit. Complete reduction eliminates all aspects of the 
translation subgroup, and thus we no longer have a Poincare 
gauge theory. Therefore, complete reduction should not be 
required. 
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APPENDIX 

The following lemmas which are used in the body of the 
paper were proved in Ref. 2: 

Lemma AI: Ifa quantity Bo = Bo(h f) is a scalar under 
both coordinate and Poincare gauge transformations, i.e., 
Do = Bo and B b = Bo' then 

Bo=c, 

where c is an arbitrary constant. 
Lemma A2: If a quantity Ba/3y", = Bapyw (h f) has the 

antisymmetries 

B apy", = - B payw = - B a{3",y 

and the transformation laws 

and 

then 

where a and b are arbitrary constants. 
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Lemma A3: If a quantity B a{3r = B a{3r (h f) has the anti
symmetry 

B{3ar = - B a{3r 

and the transformation laws 

B a{3r = B a{3r 

and 

then 

Ba{3r=O. 

Lemma A4: If a quantity B a{3 = B a{3 (h f)has the trans
formation laws 

and 

then 
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where b is an arbitrary constant. 
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Models for systems of relativistic particle dynamics are reviewed in terms of a geometrical setting 
for constraint dynamics. They are derived from the same grand abstract space by means of a 
common reduction procedure and are put in correspondence with invariant subgroups of the 
Poincare group. A new model corresponding to the identity subgroup is also discussed. 

PACS numbers: 11.80. - m, 1l.30.Cp, 02.20.Rt 

I. INTRODUCTION: ON THE DESCRIPTION OF 
BECOMING 

Dynamics is the expression of flow by stringing togeth
er sequences of configurations together each labelled by a 
time evolution parameter according to an explicit rule. The 
collections of configurations so strung together in a well
ordered sequence constitute trajectories of the system, and 
each trajectory has certain configurational functionals char
acterizing them. These would be the constants of motion. In 
this account the configurations are the conventional coordi
nate space together with the velocity fibers: whatever consti
tutes the initial specification to make use of Newton's formu
lation of the equations of motion. 

When such ideas are to be implemented for a relativistic 
system, we do encounter some new problems. Traditionally, 
we consider clock time as the time evolution parameter, and 
a configuration is defined by considering simulataneous spe
cification of coordinates and velocities. In relativistic theory 
this poses a problem since distant simultaniety is not relati
vistically invariant. Ifwe insist, nevertheless, on using clock 
time and a canonical formalism, the no-interaction theorem 
tells us that the only relativistically invariant descriptions 
could be for noninteracting systems only . We must therefore 
be prepared to consider other alternatives. 

A satisfactory alternative is to consider a time evolution 
parameter defined dynamically rather than kinematically. 
Dynamical evolution is with respect to a temporal parameter 
that has different significance in different states of motion. 
The dynamical evolution is self-referring and "the time" is 
independent of the external reference frames. 

It turns out that the temporal parameter so defined, 
being Lorentz-invariant, must have a generator of dynami
cal evolution which is also Lorentz-invariant, and is differ-

al supported by the U.S. Department of Energy under Contract DE-AC02-
76ERO 3533. Permanent address: Physics Department. Syracuse Univer
sity, Syracuse, NY 13210. 

bl Istituto di Fisica Teorica. Universita di Napoli and Istituto Nazionale 
Fisica Nucleare. Sezione di Napoli Mostra d'Oltremare Pad. 19. Napoli. 
Italy. 

::Permanent address: Indi~n Institute ofS~ience. Bangalore 560012. India. 
Permanent address: Institute of Theoretical Physics. S-41296. Giiteborg. 
Sweden. 

elSupported by the U.S. Department of Energy under Contract DE-AS05-
76ER03992. 

ent from any of the ten generators of the Poincare group. In 
this 11 parameter generator formalism it has been found pos
sible to construct interacting relativistic systems with invar
iant world lines. 

The natural mechanism for bringing about such a de
scription is to make use of the Dirac constraint formalism 
starting with a system with excess degrees of freedom and 
systematically reducing them by imposing constraints. 
Among those constraints we include one which explicitly 
depends on a parameter 7, which then gets identified with 
being the evolution parameter. We have thus the curious 
situation in which motion is generated by constraints. 

In the recent literature there have been a number of 
such models constructed; they are of three kinds depending 
upon how the initial configuration and phase spaces are cho
sen. Each such group made use of a primary set of dynamical 
variables and a set of constraints. In the first kind of models 
each individual particle is described by four pairs of canoni
cal variables. A system of2N constraints are then imposed to 
produce 3N pairs of canonical variables and an evolution 
parameter to describe N particles in motion. In the second 
kind of model a pair of 4-vectors represent spacetime specifi
cation of a uniformly moving "center" of the system and the 
total4-momentum of the system, respectively. The con
straints then relate these quantities to the particle configura
tions. In the third kind of model the new collective variables 
introduced are a Lorentz matrix and its canonical conjugate 
carrying the burden of the inertial frame. Constraints can 
then be used to obtain interacting relativistic particles de
scribing world lines. 

Each of these kinds of models has its own number of 
starting variables and judiciously chosen constraints. It 
would be desirable to have a systematic method of dealing 
with all three models and to see if there are other possibilities 
of a similar kind. 

The present paper is devoted to this task. We start with 
grand abstract configuration space 1 consisting of the semi
direct product of the Lorentz group with the product of N 4-
vectors. This configuration space thus has 4N + 10 dimen
sions. The phase space has twice this dimension. We then 
take an invariant subgroup G of the Poincare group P and 
take the equivalence classes. 

.I=lIG 

as the configuration space of a model. It turns out that by 
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choosing G to be P itself, the Lorentz subgroup a, and the 
translation subgroup T4, respectively, we get the three kinds 
of models mentioned above. By choosing the identity sub
group of P we are able to generate another kind of model. 

Much of our previous work as well as that of other auth
ors are stated in traditional language of canonical mechan
ics. For making the ideas accessible to a wider group of peo
ple to whom modern differential geometry is a standard tool 
as well as to expose the essential geometric aspects of the 
developments, we have carried out our formulation in the 
language of differential geometry. 

The plan of the paper is as follows: Sec. II recapitulates 
the essential background to establish notation and provide 
the setting. The world line condition is formulated in its gen
eral form in Sec. III. The grand configuration space is intro
duced in Sec. IV along with the equivalence classes which 
realize the four kinds of formalisms. In Sec. V we construct 
the phase spaces and the choice of constraints to build up a 
suitable family of sections of the fiber bundle for each of the 
models. Some remarks in Sec. VI conclude the paper. 

II. A GEOMETRICAL SETTING FOR CONSTRAINT 
DYNAMICS 

In dealing with constraint dynamics, the situation we 
are presented with is the following. 

On a given 2n-dimensional manifold I r = T *.I a set of 
realfunctionsK1, ... ,Kk is given. By choosing a value for each 
one of them a hypersurface M in r is determined. We consid
er the smooth map 

K: r~lRk, 

r~(Kdr),···,Kk(r)), 

and by fixing a value, say OElRk 
, we get 

M=K-l(O) = IrEl':K1(r) = ... = Kk(r) = OJ. 
We assume M to be a submanifold of r, of codimension k. If 
OElRk is a regular value for K, then M is a submanifold. 

By means of the symplectic structure UJ on r we can 
define Poisson brackets and associate vector fields with func
tions. The vector field XI associated with the functionfis 
defined by the relation 

Lxfi= lJ,gJ 
for any function g. An equivalent definition is given by 

iXfUJ = df 

if UJ is the symplectic form of r. 
A set of vector fields X1, ... ,xr spans a tangent subspace 

for each point of r on considering span I X1(r), .. ·,xr (r) J. 
Such spaces will constitute the tangent space of a submani
fold if and only if the relations. 

[X;,Xj ] =C;jXm (2.1) 

are satisfied, with the C;j being functions on r. This is the 
Frobenius theorem. 

A vector field X can be evaluated at points of M. If it 
turns out that X (m) is tangent to M for any mEM, we will say 
that X is tangent to M. 

With the above set of functions we will associate the 
vector fields X K

j 
and inquire about the relation (2.1). It is 
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simple to prove that they satisfy the condition of the Froben
ius theorem if and only if the following relations hold: 

d I K;, K j J = c7j dKm· 

The c7j will then be functions of the K;. We say in this case 
that the K; form a function group. Such a situation leads to a 
foliation on r and the relevant analysis has been carried out 
in Ref. 2, to which we will refer extensively in what follows. 

Here we do not require the K; to form a function group; 
nevertheless, we shall show how, starting with the vector 
fields X K, restricted to M, we can generate a set of vector 
fields tangent to M and satisfying the condition for the Fro
benius theorem. 

If 

i:M~r 

is the identification map, we can consider the 2-form i*UJ on 
M, which is the pullback of UJ by i. In general, i*UJ is degener
ate. If its rank is constant the vector fields on M annihilated 
by it constitute an involutive distribution !iJ, i.e., they obey 
the Frobenius theorem. We will prove that they are combi
nations (with coefficients functions onM) oftheXK . evaluat
ed on M. (Notice that in general the X K, are not t~gent to 
M.) They will be denoted by Y, and the hypothesis is that 
they satisfy 

iy(i*UJ) = O. 

This implies that 

(iyUJ)IM = 0 

and therefore one can write 

iyUJ = C; dK; (summed on i) 
or 

Y=c;XK , 

with the C; being functions on M. (Here there is an abuse of 
notation, as Y is actually a vector field on M, but we do 
consider it as a vector field on r.) 

Such an expression for Y implies 

c;IK;,KjJ =0 onM foranyj= 1, ... ,k. 

When a relation involving Poisson brackets is true only 
when evaluated on M, it is customary to replace the equality 
sign = with the sign ::::; and it is said to be true in a weak 
sense. Thus our relations can be written as 

c;(K;, K j J::::;O for anyj = 1, ... ,k. (2.2) 

It is useful to define the antisymmetric matrix A: 

A;j = IK;, K j J (2.3) 

related to i*UJ by 

rank A (m) = rank(i*UJ)(m), mEM. 

The set of (c;) can now be considered as nullvectors of 
A 1M and the number of independent nonvanishing vector 
fields satisfying (2.2) turns out to be 

d = codimM - rank A 1M' 

If rank A 1M is to be a constant on M, the vector fields Y define 
an involutive distribution !iJ on M with the above dimen
sion. This allows us to foliate M and to consider 

./f/=M /!iJ. 
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In physics it is customary to assume ff to be a manifold 
having the property that 

1T:M-ff 

is a submersion. It can be proved that ff inherits a symplec
tic structure p, which allows us to call it the "reduced phase 
space" or "the frozen phase space.,,3 

But so far no dynamics has been defined at all. This is 
done by introducing a one-parameter family of sections 

(T 

ffXH-M. 

From a global point of view this assumes that a section for 
'IT 

M_ff does exist. (If the vector fields Y integrate to a Lie 

group f§ , such that the leaves of the submersion 1T: M_ff 
are diffeomorphic to f§ , the existence of such a section re
quires the f§ -bundle to be trivial.) It is on u(ffX lR) CM that 
dynamics will be defined, not on M itself. The leaves of 1T are 
d-dimensional, and it turns out that k + d is an even number. 
Therefore, 

dimff= 2n - (k +d) 

is even, and 

dim[u(ffXlR)CM] = 2n - (k +d) + I, d>O. 

Of course, if d = 0, then ff = M, dim u(ffX lR) = 2n - k, 
and our procedure generates a dynamics (the trivial one), i.e., 
a one-parameter group of transformations on M, which is 
independent of K; . But in general this is not the case and the 
set of K; has a further role. All possible dynamics that can be 
defined in such a fashion, corresponding to different choices 
of u, have the property that the manifolds of states of motion 
are all diffeomorphic among themselves. 

If Y\, Y2 , ... , Yd are a basis of vector fields which span 
ker j* each dynamical vector field L1 can be expressed as 

L1 = a;Y; 

with a; functions on M. All this is restricted to the submani
fold u(ffXH)CM. This vector field L1 is tangent to the sub
manifold. 

But another way to build up dynamics and the appro
priate submanifold is commonly used in dealing with con
straint dynamics. Besides the K; functions, another set of d 
real functions X\, ... ,xd is chosen to constitute the smooth 
map 

X:rXH_Hd, 

(y,r)_X'" (y). 

The requirement on the X is that they are functionally inde
pendent and together with the K; define for each value of the 
parameter l' a [2n - (k + d )]-dimensional surface in r on 
which (i) turns out to be nondegenerate. To put it differently, 
the equations 

cm! Sm, Sn J :::::0 

(m,n = 1, ... ,k + d) (summed on m) 

(whereSm stands for K\, ... ,Kk ;X\, ... ,xd) do not have nontri
vial solutions. Then for each 1'EH the surface generated by 

lKXXT
: r_Hd+ k 

by taking the inverse image of OEHd + k is of dimension 
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2n - (k + d). In this way one recovers what was earlier 
called u(ffX H), as will be seen in the next section. 

From the previous discussion it is clear that different X; 
define different dynamical systems even if all of them have 
diffeomorphic spaces of trajectories. Their carrier spaces 
may be different. 

In many physical situations, the starting space r carries 
a symplectic action ~ of some Lie group G, i.e., G acts on r 
via canonical transformations. We ask ourselves what hap
pens to such an action with respect to the constraint surface 
M. It is obvious that only that part of G which maps M onto 
itself is relevant as far as dynamics is concerned. If all the 
infinitesimal generators.xa for ~ happen to satisfy the rela-· 
tions 

(ixG dK; )IM = 0 (i = I, ... ,k) 

then the action carries over to the manifold M. Furthermore, 
as the action of G onM preserves i*(i), it happens thatff also 
will carry a G-action, ~, which is symplectic with respect to 
the symplectic structure p. This statement follows from the 
fact that the vector fields Y defined by 

iy(i) = d (c;K; ) 

when restricted to M coincide with 

Y=C;XKi • 

Since (~)*(i) = (i) and M is invariant under ~, we have also 

(~)*.@ =.@. 

In fact (~)*(ix(i)) = ifW. (i), if X is a vector field on r. 4 

As we have already said, a dynamics is specified only 
after we have a section 

u:ffXH-M 

and it will be a dynamics on u(ffX H). The submanifold 
u(ffx ! 0 J) C u(ffX R) can be thought of as the set of all 
possible Cauchy data for our dynamics. Furthermore, the 
projected action of G on ff gives an action of G on 
u(ffX ! 0 J ) by setting 

~*( g)u(n,O) = u(~( g)n,O), nEJY', gEG. 

This can be extended to u(ffXH) by the relation 

~*( g)u(n,r) = u(~( g)n,r). 

It is obvious that ~* is equivariant with respect to the pro
jection 1T: M_ff restricted to u(ff X lR)-ff. It is also clear 
that it depends on the section u: ffX R-M. Moreover, it is 
canonical with respect to the Poisson brackets on u(ffX R) 
defined by the symplectic form ~ p the pullback of the sym
plectic form p on ff by the map 1T T: u(ff.! l' J )-ff. This 
coincides with the usual action generated by Dirac brackets 
defined on all r and restricted to u(ffX ! l' J ). 

But, to connect all this with the evolution of physical 
objects, it will be necessary to properly define the physical 
variables, namely positions and momenta in spacetime. In 
the following sections, maps ¢a and tPa will be introduced, 
respectively, for the position and momentum 4-vectors of the 
ath particle. As the group G involved will be the Poincare 
group, it will have the usual action on them. We will denote it 
by ~reg. 

We remark that as both dynamics and states of motion 
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are given by the choice of a section u, it is the above action 
Yi* of the Poincare group that is the physically relevant one. 

In the following sections we are going to apply the 
above procedure to some specific models. 

In some of the models the starting functions K satisfy 
the relations 

(Ku K j ) = C;j Km (i,j,m = l, ... ,k), 

i.e., 

fKi,KjJ;::::O. 

They are then said to form a first class set of constraints. The 
additional functions X, meeting the previously stated re
quirements, are said to form, together with the K, a second 
class set of constraints. We have 

rank A 1M = 0, d = k, 

and the determinant of the matrix 

Bm.n = {5m,5n JIM 

reduces to (detl (Ku Xj) 1)2. The Poisson brackets are evalu
ated on (IKXX)-I(O). 

In other models the structure of the matrix B allows us 
to carry out the reduction procedure through intermediate 
steps. For them A 1M is singular and has nonzero rank r. A 
nonsingular submatrixA " of even rank r, is then formed by a 
subset of the K, which are a second class system of con
straints to begin with, so that Dirac brackets can be comput
ed relative to them only. To have the final set of second class 
constraints, one adds to the remaining K an equal number of 
X satisfying the requirement 

det B #0. 

III. WORLD LINE CONDITION 

With the spaceff we can associate dynamics according 
to Sec. II. There we have seen that this dynamics is defined 
on u(ffX R) eM, not on M itself. As already stated, in each 
model a map CPa: r --spacetime will be introduced to denote 
the position 4-vector of particle a. By restricting CPa to 
u(JflX R), with each trajectory we associate a world line on 
spacetime. The physical interpretation of such world lines 
requires that this association has a definite Poincare-covar
iant property. It is this requirement that is usually called the 
world line condition (WLC). The formal statement of this 
condition is as follows. 

The association 

nEJY f---+u( n,R) 

defines a line in u(ffx R) for each n. On such a set oflines we 
had defined a Poincare group action Yi* by setting 

Yi*( g)ou(n,R) = u(~( g)n,R), gEG. 

We can now state the WLC 

CPa oYi*( g)ou(n,lJl) = Yi reg ( g)ocpa ou(n,R), 

where Yi reg is the usual action on the four-dimensional vec
tor space of spacetime positions. 

For computations it is convenient to express the WLC 
in a more explicit way in terms of parametrized lines. Recall 
the one parameter family of section u"T, introduced in Sec II. 
By varying T, a line on M is described for each n. Such a line 
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is in turn projected for each a onto R! by CPa, thus yielding 
the world line of particle a: 

C:(T) = CPa ouT(n). 

The WLC becomes in this context the requirement that the 
actions Yi reg defined on each R4 and &i on ff are physically 
consistent, in the sense that if n' = &i( gIn, then there is aT' 
such that 

(3.1) 

Here T' can depend on T, g, and a. This obviously poses con
ditions on u T

• 

To satisfy the WLC, we construct a section of 1T: M __ ff 
in terms of the real functions X of the previous section, and 
choose the X suitably. We consider the subsets 
(r)-I(O)=N" er. A first requirement is that 

NTnM#O. 

A second is that N 1M be transversal with respect to the fibers 
of 1T: M __ JV. This condition is satisfied if no vector field 
exists in !iJ with a flow tangent to N IM . 

While the first demand is met in all cases by requiring 
that the components ofXT constitute additional constraints 
not identically vanishing on M, the second one needs some 
elaboration. 

Referring to Sec. II, a vector field lying in !iJ was seen to 
be x.,. , with ¢ being such that 

"'1M 

(3.2) 

[¢,KjJIM =0, 'r/j= 1, ... ,k. (3.3) 

Hence 

Lx",Kj = Ci (KuKj) = O. (3.4) 

We proceed to determine the functions Ci • Equation 
(3.4) can be written as 

(Ac)IM = 0, (3.5) 

where C = (c1"",Ck) and A is the matrix (2.3). We recall that 
in all the models 

rank A = r<k. 

This allows us to choose rcomponents oflK in terms of which 
the submatrix A ' of nonzero determinant can be built. They 
will be denoted K i (/ = 1, ... ,r) and the remaining ones K;; 
(h = 1, ... ,d) so that 

¢=c;Ki +c;;K;;. 

There are 00 d solutions of (3.5): the c" can be arbitrarily 
chosen and the c' are then computed as the unique solution 
of a linear inhomogeneous system of dimension r. A set of 
independent solutions is obtained by starting with each K ;; 
in turn. We denote it by, ¢h: 

¢h =K;; - (A ')/~I[Ki,K;;IKi'· 

The ¢h constitute a basis for first class constraints. 
Returning now to the transversality condition, this can 

be formulated as the requirement that the equations 

(b h [ ¢h ,X h' J) = 0 
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with bh real functions on r, have only the trivial solution 
bh = 0. This is possible iff 

detl!tPh,xh.IIMI¥=O. (3.6) 

We note at this point that 

!tPh,Xh' 11M = !K;'Xh' I i'M, (3.7) 

the bracket on the right-hand side being the Dirac bracket, 
relative to the K' only. 

When 

rank A 1M = 0, 

there are no second class constraints (i.e., no K '), and Eq. 
(3.6) reduces to 

detl!Kj'XIII¥=O, j,j' = 1, ... ,k. (3.8) 

In all the schemes considered X r are chosen so that all 
but one, say X~, are r-independent and constitute a Poin
care-invariant set. The Xi (i = 1, ... ,d - 1) define a line on 
each fiber and ~ 1M simply permutes these lines among 
themselves. Thus the WLC is satisfied because in this action 
on lines ~IM and!:!l?* agree. 

Further imposing X ~ = ° then puts a parameter r on 
each line which is not necessarily preserved under the ~ 1M 

action. However, this leads us to define a value for r' in terms 
of r, g and other variables such that the WLC in the form 
(3.1) is satisfied. 

IV. THE CHOICE OF THE VARIABLES 

In this section we will discuss the variables used in each 
model to describe systems of N interacting particles. 

The physical positions and momenta, in spacetime, will 
be denoted by 4-vectors q!: and P!: for the ath particle 
(a = 1, ... ,N). They transform under the action !:!l? reg of 9 
defined by 

!:!l?reg = (L,b )qa, = Lqa + b 

and 

!:!l? reg (L,B)Pa = LPa, 

where L is a 4 X 4 Lorentz matrix and b a translation 4-
vector. Let .!.t' denote the Lorentz group! L I and T4 the 
translation group ! b I. 

We start with an abstract space.1, on which proper 
actions of 9 will be defined. We will then show how the 
various models equipped with such qa andpa emerge. 

Let us define 

.1 = 9 XIo. 

9 is the Poincare group and Io = ® a = I, ... ,N R!. Elements 
of.1 will be denoted [(A,a),(x)], in which (A,a)E9 and (x) 
stands for X1, ... ,xN' Xa being a vector in R!. The following 
action of 9 is defined: 

!:!l?(1)(L,b H(A,a),(x)] 

= [(A ,a)(L,b ) -I ,(L,b )(xj], 

where on the right-hand side the right action on 9 is given 
by group multiplication and the left, on (x), is the !:!l? reg on 
each R4, i.e., 

(L,b)xa =!:!l? reg (L,b)xa = LXa + b. 
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Endowed with such an action,.1 has the structure of a fiber 
bundle associated with the trivial principal bundle 9. It is 
therefore possible to consider equivalence classes with re
spect to !:!l?(1) and obtain distinct spaces 

I =.1 /!:!l?(1)( g) (4,1) 

corresponding to distinct subgroups g of 9, 

r= Y*I, 

such that the basic (abstract) variables are taken and the 
analysis of the previous section starts. 

Another action of 9 on.1 commuting with !:!l?(1) can be 
defined to make.1 a trivial principal 9 -bundle. This is 

!7l(Z)(L,b )[(A,a),(x)] = [(LA,La + b ),(x)]. 

Going to the quotient as in (4.1), it gives rise to an action !7l 
on I, which in turn can be lifted to r. The symplectic mani
fold r therefore carries a symplectic action ~ of 9.5 

Maps will be seen to exist from r to spacetime for the 
physical positions, i.e., 

q!: = ifJ !:(r), rEF, 
with the property that 

ifJa O~(L,b) = !7l reg (L,b )oifJa 

and, analogously, for the momenta, i.e., 

P!: = t/J!:(r), rEF, 

tPa o~(L,b ) = !7l reg (L,b )°tPa· 

The above physical maps need not be defined on the 
whole of rbut rather on the part u(ffX R), where dynamics 
operates, i.e., where all the constraints are satisfied. Further
more, it is there that the generalized mass shell relations 

(4.2) 

will hold. 
In what follows we will consider four models. Each of 

them corresponds to an invariant subgroup of 9 with re
spect to which the quotient (4.1) is taken. Four such sub
groups are considered, namely 9 itself, the Lorentz group 
.!.t', the translations T4, and the identity. 

A. The model 18-11 

The equivalence classes are taken with respect to 9, 
i.e., 

I =.1 /!:!l?(1)( 9) 

and each of them can be represented by a set of N 4-vectors 
(z), so that 

I ~(R4)" N • 

In fact, the class to which [(A,a),(x)] belongs contains also 
[(L,O),(A,a)(x)] and if 

(z) = (A,a)(x) 

this can be denoted I (z) I. 
The other variables in r = T* I are (1]), the canonical 

conjugates to (z). So a point in r is represented by I (z);(1]) I. 
The action ~ can be seen to be 

~(L,b H (z);(1])j = ! (Lz + b );(L1]) I. 
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This allows us to identify these variables with the phys
ical spacetime positions and momenta. The relations (4.2) 
will enter in the definition of M. 

B. The modellpo.11 

Here the subgroup to be taken in (4.1) is the Lorentz 
group .!f and 

~ = 1 /~(I)(.!f). 
Since 

~(I)(L,O)[(A,a),(x)] = [(AL -1,a),(Lx)], 

one sees that [(A,a),(x)] is equivalent to [( l,a),(Ax)]. Thus the 
elements of ~ can be denoted! Q,(z) I, the Q and Za 
(a = 1, ... ,N) being 4-vectors, Z = Ax, so that 

~~(R4)"(N+ I). 

The additional variables for r = T'" ~ will be Rand ('YJ), the 
canonical conjugates to Q and (z). A point of r may be writ
ten! Q,(z);R,('YJ) I. The action of ~(L,b ) on it gives 
! LQ + b,(Lz);LR,(L'YJ) I. The physical variables 

qa = Q + Za' Pa = R + 'YJa 

transform with ~ reg but are not canonically conjugate. The 
relations (4.2) are satisfied once all the constraints on r have 
been imposed, i.e., when the sections (7 have also been intro
duced. 

C. The model 11112 

The equivalence classes are taken with respect to the 
translation group T4, i.e., 

~ = 1 /~(1)(T4). 
Since 

~(l)(1,b )[(A,a),(x)] = [(A,a - Ab ),(x + b)], 

we have 

[(A,a),(x)] = [(A,O),(x + A -Ia)]. 

This allows us to denote a point of ~ by ! A,(z) I where 

Za =Xa +A -Ia. 

This gives 

~~.!.t' X(R4)"N. 

The variables for r = T'" ~ include those for ~ and the 
"momentum" variables Spv = - Svp and ('YJ), which are 
conjugate to A ~ and (z), respectively. The nonvanishing 
Poisson brackets are 

!zap,'YJbvl = DabDpv, 

IA~,SaPI =gvpA~ -gvaA~, 

! Spv,SaP J = gpaSvp - gvaSpp + gppSav - gvpSap' 

As far as ~ is concerned, we see that 

~(2)(L,b )[(A,O),(x + A -Ia)] 

= [(LA,b ),(x + A -Ia)] 

~[(LA,O),(x + A -Ia + (LA )-Ib)] 

so that 

~(L,b )!A,(z);S,('YJ)J = {LA,(z + (LA )-Ib );LSL -I,('YJ)J. 
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The position variables in spacetime are defined as 

qa =Aza, 

and these transform by means of the action on r as under 
~reg· 

The physical energy-momenta are 

PI: = A j'YJ~ + A H m~ + Va (z) + l1a 'l1a ] 112. 

This allows us to satisfy the relations (4.2). Such Pa trans
form properly as 

Pa-LPa 

since the Va (z) will be chosen to be functions of the differ
ences Zb - Zc . 

D. The model IV 

The equivalence classes are taken with respect to the 
identity subgroup so that 

~=1=~oX9. 

The variables of ~ are then A, Q, and (z), where A E.!.t' and Q 
and (z) are vectors in R4. The variables of T * ~ are those of ~ 
and the "momentum" variables Spv = - Svp, R, ('YJ). Here 
Rp is conjugate to Qp and 'YJap is conjugate to zap in the usual 
sense while Spv is the four-dimensional "angular momen
tum" conjugate to A ~. The Poisson brackets are the same as 
for model III with the addition of 

I Qp ,Rv I = Dvp. 

The physical position and momentum variables are given by 

qa = AZa + Q, Pa = A 'YJ. 

The action of the physical (geometrical) Poincare group 
is given by ~ reg' Under this action qa and Pa transform as 
they should: 

~ reg (L,b )qa = Lqa + b, 

~ reg (L,b)pa = Lpa· 

Note thatza and 'YJa are invariant under ~ reg' The mass shell 
relations (4.2) will hold as a consequence of the definition of 
M. 

V. REDUCED PHASE SPACES AND SECTIONS 

To see how the four models fit within the geometrical 
setup of Sec. II, we will construct the reduced phase spaceff 
for each of the four models following the procedure outlined 
before. The additional step will be to consider the choice of 
the constraints X to build up a family of sections of the bun
dle 1T: M_ff. 

The dimension of the J1/'s turns out to be always 6N; 
this is another reason to call them phase spaces. Another 
common feature is that the map lK is taken to be invariant 
under the Poincare group, which therefore renders M invar
iant. 

A. The model I 

The phase space r is of dimension 8N. The 9 -invariant 
submanifold M is constructed by introducing the set of N 
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real-valued functions on r, 
K= (Ka}. 

Ka = P!:Paf.t - m~ - Va' a = 1, ... ,N, 
having the following properties: 

- the zero value is in the image of each of them; 
-(dKIA .. ·AdKN)(m)=!O 't/ mEM=K-I(O) 

(i.e., zerois a regular value for K); 
- each of them is 9-invariant. 

B. The model" 

The phase space r has dimension SN + S. The con
struction of the 9-invariant submanifold M is made by in
troducing 2N + 5 functions: 

K~) =P'Za, 
2) a = 1, ... ,N, 

K~ =P'7Ja, 
N 

K\3) = I 7Jai' i = 1,2,3, 
M =K -1(0) is then a submanifold of r. Since dim r = SN, 
we have dim M = 7N. 

a=1 

N 

K(4) =,fi>Z - I (m~ - 7J~ + Va )1/2, 
The Va satisfy the requirement&-9 0=1 

[Ka,Kb J = 0, a,b = 1, ... ,N. 

Therefore, the matrix A vanishes; and 

d=dim~ =N. 

The vector fields Xa which generate ~ are then defined 
through the relations 

M=K-1(0). 

iXaw = dKa· 

The dimension of each leaf is N; hence 

dim ff = dim M / ~ = 6N. 

The "potentials" Va are taken to be 9-invariant functions of 
Zb - Zc and 7J b' Only 2N + 4 of them are functionally inde
pendent as, for instance, K (5) is a combination of the K \3) due 
to the K~) vanishing; however, 

A point in each leaf, depending on a parameter 'T, is 
obtained by imposing the constraints (dK\I) A .. · AdKWAdK\2) A 

Xa = (btl Pb }(qa +1 - q), a = 1, ... ,N - 1, 

XN = ( £ Ph).ql - 'T. 
b=1 

... AdKWAdK\3) A .. · AdK(4) AdK(5))(m)=!0 

for all mEM. We have 

codim M = 2N + 4. 

As shown in the references quoted, they form, together with 
the Ka a second class system of constraints; therefore, 

Again the zero value is regular and Mis 9-invariant 
since ~ either leaves the components of K invariant or per
mutes them among themselves. 

detl(Ka,XbJIMI=!O, a,b= 1, ... ,N. 

Since A 1M = 0, our transversality condition (3.S) coincides 
with the above. 

The (2N + 5)-dimensional antisymmetric matrixA, the 
elements of which are the Poisson brackets of components of 
K, has the form 

A= 

173 

K(3) 
I 

K(4) 

K(5) 

KII) 
a 

K(2) 
a 

K(S) 

c o 
o 

o c ' X 
• I I N I 

........................................................... ~ ...................................................................... -. ........................................................ ... _I ... .................................. ... 

, , 

-c o o o o 
o 

o -c . , 
........................................................... ~ ................................................................... .I ........................................................ ...... ' ........................... ' .............. ... 

-PI ...... . . 
-P2 

... . . 
-P3 

.. . . . . 

I I I I 

0 
0 
0 

• ••••••••••••• I 

,..,. •••••••• ,. •• I •• ,.,. •••• , 
.,.,.,.,. .. ,. ........ ,. ..... ,. ...... . 

, , 

, 0 

....................................................... ~ .................................................................... __ ............ - - - .. - ........ - ........ .. ' ............... - I. _ ........ .. 

I I " 

o ............. I·· , , , , 
.......................................................... , .................................................................. ... -,- ......... .......................................................................................... ... 

o 
, , 

•••••••••••••• I •••••••••••••••••••• I •••••••• I , 

J. Math. Phys., Vol. 25, NO.1, January 1984 Balachandran et a/. 173 



                                                                                                                                    

where 

c = PI' PI" 

Xa = [p'Za ,K(4)}, 

xa+N = [P·1Ja,K(4)j. 

To compute the latter matrix elements and then to evaluate 
them on M, use is made of the 9 invariance of the Va' This 
means that both Xa and Xa + N are combinations of terms 
each of which hasP,z2 or P'1Ja as factors; then they vanish on 
M. 

To compute the rank of A on M, we note that its minor 
A " formed by the first 2N rows and 2N columns, is nonsingu
lar. We then act on the remaining rows and columns, adding 
to the elements of a line those of other parallel lines multi
plied by suitable constants, to transform A on M into a new 
matrix A having the same rank: 

o 

A' 

o 

o 

the rank of which cannot be 2N + 1 it being anti symmetric. 
Since det A 'i= 0, we conclude that 

rank A = 2N; 

dim g; = codim M - rank A = 4. 

Since 
dim M = 8(N + 1) - (2N + 4) = 6N + 4, 

we have 

dim JV = dim M / g; = 6N. 

The set of constraints K ' leading to the nonsingular ma
trix A ' is made up of the K ~I) and K~) (a = 1 , ... ,N). 

The four remaining functionally independent K form 
the K " set. To these are added four constraints X to form a 
second class set. (The explicit form for X is discussed in Ref. 
11.) The transversality condition (3.7) involves the Dirac 
bracket ! K " ,x 1* relative to the K ' constraints only. This is 
satisfied as a previous analysis of this model shows. II 

C. The model III 

The phase space F has dimension 8N + 12. Here 
2N + 5 functions are introduced to construct the 9 -invar
iant submanifold M They are 

K~) = z~ - z~ + I' 
(2) _ 0 0 a = 1, ... ,N - 1, 

K a - 1Ja - 1Ja + I' 
N 

K}3) = I 1J~, i = 1, ... ,3, 
a=l 

N 

K\4) =! EjklSkl + I (Za ""'a)i, 
a=l 

N 

K(S) = 1J? + v(.Jz) + I (m~ + ",2 + Va )1/2. 
a=l 
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They are either invariant or transformed into each other un
der 9. 

Furthermore the wedge product of their differentials is 
a (2N + 5)-form which does not vanish on M =K -1(0). This 
is therefore a 9 -invariant submanifold of dimension 
6N+7. 

The antisymmetric matrix A of dimension (2N + 5) has 
the following form: 

KI31 

K (4 ) 

KI21 KI31 

o Alii o 

KI41 

o 

K ISI 

1 
o 

.............. <- .............. -:- .............. -:- .............. ~ ............ .. 

o o o 
----- -- .. '-- -.-----'-- -------,-------_! .. _-----" , 

o o o A 121 : 
, . 

.. .. .. .. .. .. .. .. -: ................ -: ................ -I" .............. ~ ............ .. 

o o : _ A (2): A 131 : 

................. -: .................................. -," .............. ~ ............ .. 

K1SI - 1 0 

Here 

2 0 

2 0 

o 2 o 
A (1) = 

0 2 0 
0 1 2 

0 2 

0 K~) -K~I 

A(2)= -K~I 0 K\31 

K~I _K\31 0 

and 

0 K(41 
3 -Ki41 

A (3)= K(41 
- 3 0 K(41 

I 

Ki41 _K\41 0 

Evaluated on M, 

rankA<2(N - 1) + 1. 

A further reduction to 

rankA<2(N - 1) 

is obtained since an antisymmetric matrix of odd order has 
vanishing determinant. Direct computation shows 
det A (I) i= O. Therefore, 

rank A = 2(N - 1). 

In this case g; has dimension (2N + 5) - 2(N - 1) = 7 and 
again dim JV = 6N. 

The set of K' is formed by the 2(N - 1) K~) andK~). 
Imposing only these constraints means restricting the analy
sisto a subset M ' ofF havingdimension6N + 14. IfiM , isthe 
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identification map 

iM,:M'-+r, 

then the original symplectic form (LP, 
N 3 

w = L L dz!: I\d'T/a/l- + w', 
a~ I /I-~O 

when pulled back to M I gives 
N 3 

l"t,W = L L d~ I\d'T/~ - N dZlOl\d'T/lO + w', 
a= 1;= 1 

where w' pertains to the variables A ; and S/l-Y' This 2-form 
on M I is seen to be nondegenerate as a consequence of the K I 

being second class. Introducing new variables to replace Z 10 
and'T/IO' 

Q = ,ffiZIO' R =,ffi 'T/IO' 

we can write 
N 3 

l"t,W = L L d~ I\d'T/~ - dQ I\dR + w', 
Q= 1 i= 1 

This is actually the starting symplectic form for the model 
described in Ref. 12 since the relation between a symplectic 
form 

w = ! w/l-v( s) ds /1-1\ ds v 

and its associated Poisson brackets 

I J, J - oIW ( f:) af ag 
l ,g - ~ as /I- asv 

is given by 

W/l-VWYA = {Jr. 
To form the section u(JY"X R) we need to make specific 
choice of X as described in Ref. 12. 

D. The model IV 

The dimension of T· ~ is 8N + 20 so that a second class 
system of 2N + 20 constraints is required to obtain 
dim JY" = 6N. We may choose them to be the following: 

N 

K (I)-R ~ 
/I- - /I- - ~ Pa/l-' /l,V = 1'00',4, 

a=1 

N 

K~~ = (QI\R )/l-Y +S/l-Y - L (qa I\Pa)/l-Y' 
a=1 

K~) = 'T/~ - m~ - Va' a = 1,00.,N, 

X~) =Zla -Z2a' 

X~)=Zla -Z3a' 

X(4) = ZIO - Z40' 

X~)=R·(qa -qN)' 

i 5
) = R·qN - 7. 

ctl Ea = 1, Ea >0)' 
a<2, 

a<l, 

a = 1, ... ,N -1, 

Here we choose Va in K~) to be functions only of the 
internal variables Za and 'T/a' We choose them to be also in
variant under the "Poincare" group with generators}; 'T/a' 
}; (za 1\ 'T/a) and adjust their functional dependence so that 
the K ~) form a first class set. (This is always possible.9

) With 
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such a choice K (1), K (2), and K (3) together form a first class set 
of (N + 10) constraints. 

The remaining constraints X turn this first class set into 
a second class set. Of these, X (1) to X (4) are generalizations of 
those in model III. The functions Ea are functions only of the 
internal variables (z) and ('T/) and are thus invariant under the 
physical Poincare group. In the free particle limit va-+O, 
they become the "renormalized energies" so that the usual 
free particle trajectories are recovered as in Ref. 12. The 
conditions X (2) to X (4) are designed to fix a Lorentz frame, and 
thus they are conjugate to K 121. For N <3 they are clearly 
inadequate: They must then be replaced by some other 
"frame fixing" condition. Conditions X (5) are the familiar 
constraints conjugate to K(3). 

Since K (1) to K (3) form a first class set K. and the 
(N + 10) X (N + 10) matrix of their Poisson brackets with 
the constraints X is by construction nondegenerate, it is clear 
that the (2N + 20) X (2N + 20) matrix of Poisson brackets is 
nondegenerate. That is, the constraints K. and X form a sec
ond class set. To be precise, there are degeneracies in these 
matrices whenever X (2) to X (4) fail to fix a frame, for instance, 
when ZI' Z2' and Z3 are parallel. Such situations have to be 
handled as in Ref. 12, 

Thus M = K. -1(0) has dimension 7 N + 10 and the dis
tribution g; has dimension N + 10 and is formed by the 
vector fields X K' The transversality condition for the (T de
fined in terms of X reduces to (3.8) and is satisfied as K and X 
form a second class set. 

We note the following. The constraints K (1) and K (2) en
sure that in the reduced phase space the generators of the 
physical Poincare group have the desirable expressions}; Pa 
and}; qa I\Pa. Also, by virtue of the constraints X (I), Q be
comes the weighted average}; Eaqa as in other models. 10.12 

VI. DYNAMICS AS A GATHERING OF MANY INTO A 
SYSTEM 

In the present paper we have started with a grand con
figuration in which we have a private world to each particle 
with a 4-vector all to itself and a Lorentz matrix describing 
the inertial frame, At this stage we had no particles and no 
motion, no interaction, and no dynamics: We need to gener
ate some togetherness and some self-referral mechanism to 
introduce evolution. Interaction comes from togetherness. 

To form a system, this "preparticle" collection has to 
give up part of its free-wheeling style and subject themselves 
to some constraints. It is from such constraints that the dyn
amical system specification and even the notion of dynami
cal evolution and the evolution parameter emerge. 

In this paper we show many alternate patterns to the 
same goal and how the intermediate stage formulations ap
pear drastically different. We also see in the course of time 
that not all constraints are on the same footing. Some are 
gauge constraints which change only the language of de
scription; but some are essential constraints. Changing the 
latter means changing the physical system. 

It is fairly straightforward to make choice of the con
straints so that the world line condition is satisfied thus ful
filling one of the elementary requirements on relativistic in
teracting systems. But it was essential to go beyond the 
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ten-parameter descriptions to the generalized II-parameter 
form of Dirac's relativistic dynamics. 

In all this discussion the question of separability for 
systems with more than two particles has not been answered. 
We have addressed ourselves to this question elsewhere. 13 

In conclusion, we wish to stress the unifying power of 
geometry allowing us to view different models for relativistic 
interacting particles from a common perspective. The em
phasis on the role of geometry in description of nature goes 
back to Plato, and this point of view has been enriched over 
the centuries by many illustrious scholars. 14 We hope that 
our work is in keeping with this tradition. 

IWe refer to R. Abraham and 1. E. Marsden, Foundations of Mechanics 
(Addison-Wesley, Reading, Mass., 1978) for the theory and notation of the 
calculus on manifolds. 

2G. Marmo, E. 1. Saletan, and A. Simoni, Nuovo Cimento B 50,1 (1979). 
3Peter G. Bergman and Arthur Komar, "The Hamiltonian in Relativistic 
Systems ofInteracting Particles," Syracuse University, 1980; F. Rohrlich, 
Phys. Rev. D 25,2576 (1982). 

"Ref. 1, p. 116. 
'Ref. 1, p. 180. 
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The implicit function theorem is used to study a symmetric exterior problem for the gas dynamics 
equation-an equation of mixed type. The existence of families of smooth C I solutions is 
demonstrated. These solutions are families of smooth transonic flows in the plane and are of 
applied interest. Some of these results have appeared in the literature with an incorrect derivation 
using the Hodograph mapping. This mapping is not invertible in the transonic case. The methods 
of this paper do not use the Hodograph mapping and extend to general (e.g., plasma) flows. 

PACS numbers: 47.40.Hg, 02.30. + g 

INTRODUCTION 

Recently L. M. and R. J. Sibner have constructed a 
family of smooth transonic flows on a symmetric torus. I 
Smooth transonic flows are interesting because of the tran
sonic flow controversy (see Bers2), but a physicist might ob
ject that flows constrained to a torus are not physical. In this 
paper the method of Ref. 1 is extended to construct families 
of smooth transonic flows in an exterior plane domain, 
showing that the above objection is unfounded. 

The extension of their method is necessary because of 
technical difficulties: In a limiting case of our plane flow, 
certain derivatives, which are always finite in toroidal flow, 
become infinite. Also our flow domain is not compact. To
gether, these two facts require the modification of certain 
Arzela-Ascoli arguments in Ref. 1. The new arguments use 
Dini's theorem on the convergence of monotone function 
sequences instead of the Arzela-Ascoli theorem. 

In the toroidal flows shock solutions may also occur. In 
plane flows, when the polytropic constant y = 3, we show 
that shocks do not occur. Our proof uses the Prandle-Ran
kine-Hugonant relations for shocks in a polytropic gas. The 
author conjectures that shocks do not exist for any value of 
y> 1. 

Our construction of smooth transonic flows is interest
ing because it never uses the Hodograph mapping, a map
ping which may not be invertible in transonic flow. See 
Bers,2 for a discussion of the inapplicability of the Hodo
graph method in transonic flow, and Courane for the Hodo
graph approach. 

1. DESCRIPTION OF THE PROBLEM 

We seek an irrotational, stationary polytropic flow in 
the exterior of the unit circle considered as a domain in the 
Euclidean plane. This flow is assumed to have a constant 
angular speed, i.e., to be independent ofthe polar angle. We 
show, directly from the defining differential equation, that 
there are three flows of this type: purely rotational vortex 
flow, purely radial source flow with constant mass flow 
through the circle, and spiral flow with constant mass flow 
through the circle. The most interesting flow is the spiral 

alSUpported in part by NSF Grant MeS 77-18723 A04. 

flow because this case includes a family of smooth transonic 
flows. 

Our results follow from a complete analysis of the mass 
flow-circulation problem below: 

The mass flow-<:irculation problem 

Consider the exterior of the unit circle as a domain in 
the Euclidean plane: Show that, in this domain, there exists 
an irrotational, stationary, polytropic flow that is indepen
dent of the polar angle, that has prescribed circulation about 
the circle, and that has prescribed radial mass transport 
through the circle. 

Remark: The data for the mass flow-circulation prob
lem must lie in certain ranges determined later. The reader 
will find a complete statement of the results in Sec. 4. 

2. THE DIFFERENTIAL EQUATION 

We now describe the model of polytropic flow used in 
this discussion. This model was developed by Sibner and 
Sibner4

•
5 to describe stationary irrotational polytropic flow 

on a Riemannian manifold. 
In this model a flow is described by its velocity field 

given as a differential I-form lU that satisfies the equations 
below: 

dlU = 0, 

8p(Q (lU))tU = 0, 

where Q (lU) = tjlUjlUj is the square speed and 

(2.1a) 

(2.1b) 

p = (1 - !(y - l)Q(lU))I/(Y~ lly> 1 is the polytropic density 
function (see Bers2). We require thatp be nonnegative which 
forces O<Q (lU)<2!(y - 1). 

Remark: Physically, Eq. (2.la) is the irrotationality of 
flow, and Eq. (2.1b) is the conservation of mass. These equa
tions are a mixed quasilinear system. When O<Q (lU) < 2! 
(y + 1), this system is elliptic and the flow is subsonic; hence, 
2/(y + 1) is the square sonic speed; when Q(lU) = 2!(y + 1), 
the system is parabolic; when Q (lU) > 2!(y + 1), the system is 
hyperbolic, and the flow is said to be supersonic. This system 
is the prolongation of the gas dynamics equation to the co
tangent bundle of a Riemannian manifold. See Ref. 4 for 
details. 
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For flows exterior to the unit circle in the Euclidean 
plane, it is convenient to use polar coordinates Rand e. With 
these coordinates gil = 1, gn = R 2, and gl2 = g21 = O. 

Equation (2.la) reduces to 

(A) alJ = B R , where IiJ = a dR + (J de. (2.2) 

Equation (2.lb) reduces to 

(B) ~[Rpa] + ~[~(J] = o. 
aR ae R 

In the next section, we show that solutions of (A) and (B), 
which are independent of e, satisfy a nonlinear algebraic 
equation. Compare Ref. 1. 

3. THE MASS-FLOW RELATION 

From now on we consider only flows in the exterior of 
the unit circle, which are independent of the polar angle. 
These flows have constant angular velocity (hence (J is con
stant) and are radial, rotational, or spiral flows. 

We show that such flows satisfy a conservation law giv
en by a nonlinear algebraic equation-the mass flow rela
tion. 

Consider Eqs. (A) and (B). In combination they tell us 
that any solution IiJ = a dR + (J de, which is independent of 
e, must satisfy 

a a ( 1 ] BR = alJ-(Rpa) + - -p(J = o. 
aR ae R 

(3.1) 

Since (J is constant, this implies that a = aIR ) is a func
tion only of R. Recall that, in this geometry, gil = I, 
g22 = R 2, gl2 = g21 = O. Since Q (1iJ) = gijliJ;liJj 

= a2 + (J21R 2, we see that Qis independent ofe. Moreover, 
because p2 = (1 - ~(y - I)Q )2!(y - 1), we also see that the 
density p is independent of e. 

Thus the partial differential equation above becomes 
the nonlinear algebraic equation 

R 2p2a 2 = K, for some nonnegative const K, (3.2) 

and, since Q = a2 + (J 21 R 2 with (J constant, we obtain the 
mass flow relation (MF) R 2p2(Q - (J 21 R 2) = K with (J con
stant and K a nonnegative constant. 

The mass flow relation has physical as well as math
ematical importance. Physically, it says that the mass flow 
through the circle is zero in rotational vortex flow and con
stant in both radial and spiral flow. Mathematically the mass 
flow relation is (for fixed values of K and(J ) a relation for Q (1iJ) 
as a function of the radius R and this relation determines a 
from Q = a 2 + (J 21 R 2. 

In any case, a flow satisfying the mass flow relation is 
presented by two parameters: (J (which determines the circu
lation C = 21T(J) and K (which determines the radial mass 
flow). 

4. A DESCRIPTION OF PLANE FLOWS EXTERIOR TO 
THE UNIT CIRCLE-A LIST OF THE RESULTS 

This section describes all the solutions to the mass flow
circulation problem. These solutions are symmetric, station
ary flows, with fixed circulation 21T(J: Purely radial (source) 
flow, purely rotational (vortex) flow and spiral flow. Both 
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Q 
Axis 

R=l 

FIG. I. Radial flow. 

R Axis 

vortex and spiral flow include solution families that are ever
ywhere smooth and transonic. 

Purely radial (source) flow 

Here (J is zero. The speed is given by Q = a 2(R ) and the 
mass flow relation reduces to K = R 2p(a2)a2. 

The constant K parametrizes the solutions. If K is too 
large, there is no flow at all. Any smaller value K corre
sponds to two flows. The first flow is everywhere supersonic 
with a limiting square speed of 2!(y - 1) at infinity. We de
note this flow by Q +. The second flow is everywhere sub
sonic with a limiting speed of zero at infinity. We denote this 
flow by Q -. See Fig. 1. 

Since p2(R ) = (1 - !(y - I)Q )2(y - 1), we see that if 
Q = 2!(y - 1), the density vanishes. Thus Q = 2/(y - 1) is 
the square vacuum (or cavitation) speed. Since Q + = 2! 
(y - l)atinfinityandK = R 2p(a2)a2

, bothQ + andQ - have 
no mass flow at infinity. 

When the initial speed is sonic, i.e., Q (1) = 2!(y + 1), 
corresponding to the largest value of K for which there is 
flow, the two flows bifurcatefrom R = 1. See Fig. 1. We call 
such flow critical flow and K = Kc critical mass flow. Both 
critical solutions Q / and Q c- are everywhere smooth (C I), 
except when R = 1, where d [Q +]ldR is infinite. 

Remark: Shock flow-that is, flow that starts on the 
Q + curve and finishes on the Q - curve labeled by the same K 
(see Figs. 2 and 3)-might occur. However, we show in Sec. 
n that, when y = 3, shocks never occur. 

Purely rotational (vortex) flow 

This is a trivial case. This flow is a vortex with constant 
angular speed parametrized by (J. The streamlines are cir
cles, concentric and exterior to the unit circle. There is no 
radial mass transport (K = 0). 

R=RS 

FIG. 2. Shock in critical flow. 
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FIG. 3. Shock in noncritical flow. 

Since in this case Q = /3 21 R 2, the flow is everywhere 

subsonic when /3> ~2/(y + 1) and otherwise smooth tran
sonic. The limiting speed is zero. 

Spiral flow 

This is the most interesting flow. It combines the bifur
cation feature of radial flow with the smooth transonic flow 
feature of spiral flow. 

In this case the flows are parametrized by K and /3. 
Physically this says the flows are parametrized by mass flow 
(K) and circulation C (C = 21T/3). 

Just as in the case of purely radial (source) flow, in spiral 
flow we have two solutions corresponding to each value of K, 
up to a critical value Kc of K. and then no solutions if K > Kc . 

However, in spiral flow the critical mass flow constant 
Kc depends on/3.1t is a consequence of this dependence that 
spiral flows have families of everywhere smooth transonic 
flows. 

To see this, we must think in terms of bifurcation 
points. In purely radial flow, bifurcation occurred at R = 1 
when K = Kc and Q c± (1) = 2/(y + 1), the sonic speed. But 
in spiral flow bifurcation occurs at R = 1 when K = Kc ' and 
K depends on/3. Because of the mass flow relation Kc deter
mines Q c± (1) [just let R = 1 in (MF)] and this means that 
bifurcation occurs when R = 1 and 

Q(I)=Q(I)= [2/(y+ 1)](1 +/3 2
). (4.1) 

The new bifurcation point is called the critical speed. 
The critical speed is generally larger than the sonic speed (if 
/3> 0) and replaces the sonic speed as a bifurcation point in 
spiral flow. See Fig. 4. 

Since k determines Q (1) from the mass flow relation, we 
could also parametrize the Q ± flows by /3 and Q ± (1). 

In spiral flow shocks might occur (although the author 
conjectures that they do not). When y = 3, we show in Sec. 
11 that shocks never occur. 

However, we do have families of smooth transonic 
flows. To see this, consider the Q_ flows, with/32 < 21 

A 

(y - 1), and with 2/(y + 1) < Q -(1)<Q(I). These flows are a 
family of everywhere smooth transonic spiral flows with 
zero limiting speed at infinity. 

5. TWO EQUIVALENT PROBLEMS 

We reformulate the mass flow-circulation problem as 
an initial value problem. 
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FIG. 4. Spiral flow. 
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Consider the following two problems: 
Problem I: Massflow-circulation problem: Find C 1 

functions Q ± (R ), satisfying R 2p2(Q - /3 21 R 2) = K, where 
R> 1, K> 0,0</3 2 < 2/(y - 1),K, and/3are prescribed con
stants, and where p2 = (1 - !(y - I)Q )2/(y - 1). 

Probelm II: Initial value problem: Find C 1 solutions 
Q ± (R ) with prescribed/3, 0 </3 2 < 2!J:~ - 1), with prescribed 
initial data Q +(1» Q(1) or Q -(I)<Q(I) satisfying 

R 2p2(Q _ /3 21R 2) = K = p2[Q ± (1) - /3 2]. (5.1) 

These problems are equivalent. More precisely, we 
have: 

Proposition 5.1: Solutions of I satisfy II and vice-versa 
provided that K = p2(Q± (1))(Q± (1) - /3 2) in I. 

Which follows from: 
Proposition 5.2: Solutions of either I or II satisfy the 

algebraic mass flow relation 

(MF) R 2p2(Q ±)(Q ± -/3 2IR 2) = K, 

and C 1 solutions to the relation (MF) satisfy problems I and 
II for noncritical K and noncritical initial value Q ± (1) such 
that p2(Q ± (1 ))(Q ± (1) - /3 2) = K. 

Proof The relation p2(Q ± (1 ))(Q ± (1) - /3 2) = K is 
simply the mass flow relation (MF) when R = 1. The two 
problems are equivalent since Problem II is a Problem I with 
this relation used to replace K by Q ± (1). 

6. LOCAL EXISTENCE THEORY 

We seek a local solution Q = Q (R ) of the initial value 
problem: 

R 2(Q - /3 21R 2)P2 = K on [R 1,R2]C[I, 00), 

K a positive constant, Q (R d = QI' and/3 21R i < QI < 2/ 
(y-l). 

Dejinition:Q (R) = [2/(y + 1)](1 + fPIR 2) is called the 
critical curve. A solution that lies above Q is called supercri
tical and is denoted by Q +. A solution that lies below Q is 
called subcritical and is denoted by Q - . 
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K 

FIG. 5. Dependence of K on Q. 

Theorem 6.1: There exists a critical value of K, K = Kc' 
such that for givenR), Q), andK, whereO<K <Kc(R)), there 
is an interval [R ),R 2] in which there exist two local C) solu
tions Q + and Q - of the initial value problem above. 

Moreover, Q + and Q - satisfy: 
(i)K=R 2(Q± -/l2/R2)[I-~(r-l)Q± ]2/(r-l); 
(ii) {32/R 2 <Q - <Q<Q + <2/(r - 1); 
(iii)(a) Q + (resp. Q -) is a monotone increasing (decreas

ing) function of K, (b) K increases monotonically as a func
tion of increasing Q -, (c) K decreases monotonically as a 
function of increasing Q +; (6.1) 

(iv) Q - /' Q and Q + '" Q as K-Kc' see Fig. 5; 
(v) Kc(r l )<K(r2) ifrl <r2; 

(vi) ifQ± (R) satisfyingQ± (Rd = QI can be continued 
to R = R2 then Q (R 2) is an increasing function of Q (R I)' 

Proof These results are proved for toroidal flow in Ref. 
1, p. 372. Our theorem follows identically with the substitu
tion R = f The proofs in Ref. 4 follow by application ofthe 
implicit function theorem to the function 

thus, 

and 

F(R,Q) = R 2(Q - {32/R 2)P2 - K; 

dQ_ -FR _ -8 I{Q[I-~(r-l)Q]} 
dR --p;-- r+ 1 R Q-Q . 

The conclusions follow from arithmetic consideration 
of these expressions. Note that dQ / dR is infinite if Q = Q. 
This is the analytic meaning of Q. 

Remark: (vi) tells us that the local solutions are mono
tone increasing as functions of their initial values. In other 
words, if Q a+ (1»Q b+ (1), then Q a+ (r»Q b+ (r) for any r> 1. 
When we have found that global solutions of the mass flow
circulation problem (vi) will also tell us that these solutions 
Q ± are also monotone increasing functions of their initial 
data. 

The formula for dQ / dR above tells us that each solution 
Q + is monotone increasing and that each solution Q - is 
monotone decreasing as functions of the radius R. The same 
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facts hold for global solutions of the mass flow-circulation 
problem. 

The considerations of this remark are an important tool 
in the proof of convergence to the critical solutions of Sec. 9. 

7. SOME LOCAL LEMMAS 

We state some necessary technical lemmas that are al
most identical to the corresponding technical lemmas of Ref. 
1. Indeed the proofs in Ref. 1 apply to our case with just a 
change in notation and domain. We need these technical 
lemmas in the global existence theory. 

Recall Problems I and II of Sec. 5. Let R> 1 as usual. 
Proposition 7.1: Let Q ± (R ) be a solution of the initial 

value problem II on some interval [Rmin' Rmax ] for which 
qJ (R ) = [Q (R ) - Q ± (R W is positive. Then qJ (R ) has a 
unique minimum at R = R min . 

The proof of this proposition follows from this lemma: 
Lemma 7.1: (a) The function (Q - Q± f satisfies the 

differential equation 

~ [Q - Q ± F = !g(R,Q ±(R)), (7.1) 

where 

g(R,Q± (R)) = [l/(r+ I)HQ± (R )[1- ~(r- I)Q± (R)] 

/'- + (/32/R 2)[Q± (R) - Q(R )]). (7.2) 
(b) If [Q (R ) - Q (R )] > ° on an interval [Rmin' Rmax ], 

then g(R,Q (R )) > C (K) > 0, where 

C(K)= 1 +--2 ( {32) 
(r + 1)2 R ~ax 

[
. K (r - 1 K ) 2/

IY- 11] X mm -2-' -- -2-

Rmax 2 Rmax 
(7.3) 

is a monotone increasing function of the mass flow constant 
K. 

Proof With the substitution R = land by replacing the 
torus with the interval [Rmin' Rmax] as domain, the proof is 
identical to that of Lemma 5.2 of Ref. 4. 

Pro%/Proposition 7.1: In Ref. 1 the second derivative 
test was used, but here it does not apply since the minimum 
now occurs on the left end point. 

We see this because the derivative of the function in 
question is positive and this function is continuous on a com
pact set. Here, the minimum occurs on the left end point. 

Corollary 7.1: If Q - is a solution of Problem II in some 
interval [Rmin' Rmax] in which Q + (R ) - Q - (R ) > 0, then 

Q +(R) - Q(R »Q +(Rmin) - Q(Rmin»O. (7.4) 

We also have: 
Lemma 7.2: Let N = [Rmin' Rmax ] be an interval con

tained in [1,(0). There exists a unique C 1 subcritical (resp. 
critical) solution Q - (resp. Q +) of Problem II (equivalently 
of Problem I) with noncritical data on N. 

Proof This follows just like Theorem 5.1 in Ref. 1 with 
the substitution of N for the torus and R for f 

Remark: The above supercritical solutions Q + are 
monotone increasing, and the above subcritical solutions Q -
are monotone decreasing because of the differential equation 
above: The sign of the derivative of Q ± depends on whether 
'" Q - Q ± is positive or negative. 
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8. GLOBAL EXISTENCE THEORY FOR NONCRITICAL 
FLOWS 

We establish the global existence and uniqueness of 
noncritical flow solutions of the mass flow--circulation prob
lem. The method of proof is somewhat different from the 
method of Ref. I because of complications due to the non
compact nature of our domain. 

We now state and prove the main theorem of this sec-
tion. 

Theorem 8.1: Let 0</]2 <2!(y - I) and O<,K<Xc' 
where Kc is the critical mass flow constant, corresponding to 
{3. There exists a unique C supercritical (resp. subcritical) 
flow Q + (resp. Q -) with mass flow constant K and circula
tion 21T'{3 about the unit circle. 

At no loss of generality, we carry out the proof in the 
supercritical Q + case. 

Proof First, we show uniqueness. 
Suppose that we have two solutions. We show that the 

set S on which they are equal is nonempty and open and 
closed in the relative topology that S inherits as a subset of 
[1,00). Then, because [1,00) is connected, S is [1,00). 

We start by showing that S is nonempty. Any solution 
of the mass flow--circulation problem (Problem I) is also a 
solution of the initial value problem (Problem II) with initial 
data Q (1) determined by K. Since both solutions have the 
same mass flow constant K, they have the same initial value 
Q(I). Thus they agree at R = 1, andS is nonempty. 

We now show that S is relatively closed and open. Any 
solution of the mass flow--circulation problem must satisfy 
the mass flow condition (MF) at every point of [1, 00). This 
condition is a continuous algebraic functional relation on Q. 
Thus S is closed. The implicit function theorem shows that S 
is open. 

Thus S is [1,00), and the two solutions are equal-uni
queness is proved. 

Remark: We used the noncritical nature of K, when we 
envoked the implicit function theorem. Because K is noncri
tical dF I dQ is nonzero and noninfinite. See Sec. 6 for the 
formula giving DF IdQ. 

We now show existence by construction. Let N = [I ,R ] 
and M = [I ,R ] be subintervals of[ 1,00 ) such that N C M. The 
local existence theorem (Theorem 6.1) gives us C I solutions 
Q + N andQ + M of Problems I and II on NandM. We show 
that Q + M is the unique continuous extension of Q + to M 
that is a solution of Problems I and II on M. 

Let S be the set of points where Q + Nand Q + M agree. 
Clearly SCN. We show that S is nonempty, and also closed 
and open in the relative topology that N inherits as a subset 
of M. The proof is very similar to the uniqueness proof 
above. 

Sis nonempty because Q + Nand Q + M have the same 
initial value at R = I as solutions of Problem II. S is closed 
because Q + Nand Q + M both satisfy the algebraic mass 
flow relation (MF), which is a continuous algebraic func
tional relation on Q. Finally, S is open by the implicit func
tion theorem since K is noncritical and 0 < dF I dQ < 00. 

Thus S = Nand Q + M is the unique continuous exten
sion of Q + N as a solution of Problem I. 
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Now let R-+oo. The local solution Q + M tends to a 
global solution Q + of Problem I. QED 

The argument for Q - is identical. 
Corollary 8.1: Q + is monotone increasing as a function 

of R with limiting speed 2/(y - I) at infinity. Q - is mono
tone decreasing as a function of R with limiting speed zero at 
infinity. 

Proof The monotonicity follows from the sign of 
dQ ± Idr (see Sec. 6), now that we know that Q + and Q -
exist. We see the limiting speed behavior by looking at the 
algebraic mass flow relation (MF). Both Q + and Q - must 
satisfy (MF). Let R'--'I 00. Because K I R 2 then goes to zero, 
either p(Q",) or Q", must vanish. 

Since Q + is monotone increasing, this forces the limit
ing square speed to be the square cavatation speed 2/(y - I), 
similarly, because Q - is monotone decreasing its limiting 
speed at infinity must be zero. QED 

We also have two more corollaries. 
Corollary 8.2: The global C I solutions Q ± satisfy the 

differential equation 

~ [Q _ Q ±]2 = !g(R,Q(R)), (8.1) 

where g is the same as it was in Lemma 7.1. 
Proof Q ± exist. The conclusion of this corollary is a 

local condition on Q ± which was proved in Lemma 7.1. 
QED 

Corollary 8.3: The global C I solutions Q ± satisfy the 
integral equation: 

Q ± =Q± {[Q(l)-Q(lW 

+ iR 

(81t )g(t,Q (t)) dt } lIZ. (8.2) 

Proof Integrate the differential equation of the previous 
corollary. QED 
9. CONVERGENCE TO THE CRITICAL SOLUTIONS 

We show that as K approaches its critical value Kc ' the 
solutions Q + and Q - approach limiting functions Q c+ and 
Q c- that solve the mass flow--circulation problem when 
K=Kc· 

Slightly abusing terminology, we call Q c+ and Q c- sub
critical. The two critical solutions Q / and Q c- satisfy the 
critical mass flow relation: 

(MFC) Kc = R 2(Q c± -{32IR 2)P2(Q c±). (9.1) 

Q c+ is monotone increasing as a function of R with a limiting 
square speed 2(y - 1) at infinity, Q c- is monotone decreas
ing as a function of R with a limiting square speed of zero at 
infinity, and Q c+ and Q c- bifurcate at R = 1 with vertical 
slope. See Fig. 4. 

Although the critical solutions Q c± satisfy the algebraic 
relation (MFC), we cannot prove local existence using the 
implicit function theorem alone because the required deriva
tive is infinite at R = I (compare Sec. 6). We prove local and 
global existence and uniqueness using convergence argu
ments. 

These convergence arguments construct Q c± as the lim
it of noncritical solutions Q ± as K approaches its critical 
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value K = Kc. The convergence arguments are more deli
cate than one might at first suspect because our domain is not 
compact, and thus we do the convergence arguments in care
ful detail. 

We now state and prove the theorem. 
Theorem 9.1: There exist unique solutions Q c+ and Q c

to the mass flow-circulation problem with critical mass flow 
K=Kc· 

These solutions are C I when R > 1 and satisfy: 
(a) Q c+ is monotone increasing as a function of R with 

limiting square speed 2!(r - 1) at infinity. 
(b) Q c- is monotone decreasing as a function of R with 

zero limiting sReed at infinity. 
(c)Q c+ > QwhenR > 1 (we say then that Q + issupercri-

A 

tical) and Q c- < Q when R > 1 (we say then that Q - is subcri-
tical). 

(d) Q c+ and Q; bifurcate from R = 1 with infinite 
slope at R = 1. 

(e) Let Q it denote solutions of the mass flow-circula
tion problem with noncritical mass flow K. Then as K ap
proaches the critical value K = K c ' Q f approach Q c± 
pointwise. In fact, Q -: '-Q c+ and Q K /' Q c- uniformly on 
any compact subinterval of [1, 00). 

(t) Q c+ and Q; also solve the initial valu~'problem 
(Problem II) with critical initial value Qc (1) = Qc (1). 

(g) Let Q ~ denote solutions of the initial value problem 
with noncritical initial value Q(I) = QI' Then, as the)nitial 
values QI approach the critical initial value Qc(l) = Q(I), 
Q ~ approach Q c± . In fact, Q J; '-Q c+ and Q Q. /' Q c- and 
the convergence is uniform on any compact subinterval of 
[1,00). 

(h) The critical solutions satisfy the critical mass flow 
relation 

Kc = R 2(Q! - (J21R 2)Vi(Q c±))' 

(i) They satisfy the integral equation 

Q c± (R ) = Q (R ) ± { [Qc (1) - Q! (1)] 2 

+ i R 

g(t, Q ± c (t )) dt } 112. 

(j)They have derivatives for R > 1 given by 

dQc± = dQ _J..~ (RQ ±(R)) 
dR dR 2 R

g 
c 

X { [Qc ( 1) - Q c± ( 1 ) ] 2 

(9.2) 

(9.3) 

+ IR (81t )g(t,Q ± (t)) dt} - 112. (9.4) 

Proof: We prove the theorem for Q +. The prooffor Q -
is identical. 

Proof of Uniqueness: Let Q cj and Q c;z be C I (when 
R> I) global solutions of the mass flow-circulation problem 
with critical mass flow constant K = Kc' Then, Q C;I and 
Q c;z satisfy the critical mass flow relation 

(MFC) [Q/(R) -{J2IR ]p2(Qc+)R 2 =Kc' 

Let S be the set of points where Q cj = Q c;Z. Then because 
these solutions have the same initial value, Sis nonempty 
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(i.e., K = lES). Because (MFC) is algebraic and thus contin
uous as a function of Q c+ , the set S is closed. When R > 1, the 
initial value theorem implies the local solvability of the rela
tion (MFC) and thus S is relatively open in [1,00 ). Therefore, 
S is all of [I, 00) and Q cj = Q c;Z. Now, we prove the exis
tence of a global critical solution that is C I when R > 1. 

We now construct the supercritical solution Q c+ . 
Consider a sequence (Q :..) of solutions to Problem I 

corresponding to a sequence of noncritical mass flow values 
Kn (for (J fixed!) converging to the critical mass flow value 
Kc' Since K determines Q (1) from the mass flow relation at 
R = 1, the remark at the end of Sec. 6 (and Theorem 6.1) 
imply that at each point x of [1,00 ) the sequence (Q it.) is 
monotone decreasing and bounded from below (by zero); 
hence it has a limit point Q c+ (x). Thus the function sequence 
(Q it.) converges pointwise to a limit function Q c+ . More
over, a standard interlacing sequence argument shows that 
the limit function Q c+ is independent of the choice of the 
sequence (Kn)' 

The limit function Q c+ is continuous, as can be easily 
proved by a standard "three epsilon" argument. More is 
true: Because the sequence (Q it.) is monotone, Dini's 
theorem (Ref. 6, p. 248, Ex. 9.9) assures us that the conver
gence is uniform on any compact subset of [1,(0). 

Each member (Q it.) of the sequence satisfies the mass 
flow relation 

(9.5) 

Because p is continuous as a funciton of Q, the sequential 
continuity of this relation implies that Q / satisfies the criti
cal mass flow relation 

(MFC) Kc =R2(Qc+ -(J2IR2)P2(Qc+), (9.6) 

which proves (h). 
We now show that Q c+ is C I whenR > 1. We do this by 

computingdQc+ IdR . Along the way, we establish (i) and (j). 
By Corollary 8.3 each element (Q it.) of the sequence 

globally satisfies the integral equation 

Q it. (R ) = Q (R ) + { [ Q (1) - Q it. (1)] 3 

+ i R 

(81t )g(t,Q it.) dt r2

, 

where g is given by 

(9.7) 

g(R,Q(R)) = [1!(r+ 1)]!Q(R )[1- ~(r- I)Q(R)] 
+ (fJ21R 2)[Q(R) - Q(R )]J. (9.8) 

Because g(R,Q ) is continuous as a function of Q, and 
because the convergence of Q:" to Q c+ is uniform on com
pact sets by Dini's theorem, we have that Q / satisfies the 
integral equation 

Qc+ =Q(R)+{[Q(I)-Qc+(1)] 

(R }1/2 (9.9) 
+ JI (81t )g(t,Q c+) dt . 

Now by the fundamental theorem of calculus we can 
differentiate this relation at any interior point of [I, 00) to 
obtain 

P. D. Smith 182 



                                                                                                                                    

A 

dQ/ dQ 
--=-

dR dR 

{[Q(1) - Q /(1)]2 + iR 

(8It)g(t,Q c+) dt r2

' 

(9.10) 

Thus Q c+ is C I if R > 1. These last two equations have many 
consequences. A 

Fron;.. the equation for Q / we see that Q (1) = Q c+ [and 
similarly Q(I) = Q c-]; thus Q c+ (1) = Q c-(I) = Q(I), show
ing that Q / and Q c- bifurcate from R = 1. Also from this, 
we see that Q / solves initial value problem II as well as 
mass flow-circulation problem 1. 

From the above expression for dQ c+ I dR we see that 
Q c+ is monotone increasing as a function of R (similarly Q c

is monotone decreasing as a function of R ) and also that 
dQ / IdR is infinite when R = 1. 

From the integral equation above for Q c+ it follows by 
algebra that: 

d~(Q- Qc+)2 =~(R,Q/), (9.11) 

where 

g(R,Q / (R)) = [I1(y - 1)] 

X ! Q / (R l[ 1 - ~(y - l)Q c+ (R )] 

+ (f321R 2)[Q/(R) - Q(R)] J, (9.12) 

from which, repeating the proof of Corollary 8.1, it follows 
that Q c+ is supercritical. Similarly, Q c- is subcritical. 

Finally the critical mass flow relation implies that at 
infinity Q + = 2/(y - 1) (the square cavitation speed) and 
Q- =0. QED 

10. THE CASE OF y = 3 

When y = 3, the mass flow relation becomes quadratic 
and Q ± satisfy a quadratic equation. Compare Ref. 1. 

In this case we have 

Q ±' - 2Q (R )Q ± + (f3 2 + K )/ R 2 = 0, (10.1) 

and Q ± satisfy 

Q ± = _ Q(R) ± [Q2(R) _ (f32 + K)/R 2] 112, (10.2) 

where Q (R ) = ~(I + /3 21 R 2). The discriminate vanishes 
when K = Kc and R = 1, which shows that Kc 
=!(l +/3 2

)2 -/3 2
• 

11. SHOCK SOLUTIONS 

Consider Figs. 2 and 3. Each figure shows a flow that 
starts out on the Q + curve and drops to the Q - curve at 
R = Rs. Such a flow is a possible solution of the mass flow
circulation problem because Q + and Q - have the same mass 
flow constant K. 

These solutions ae called shocks. In Ref. 1 such solu
tions also occurred. There because of the periodic nature of 
the flow, it was shown that shocks were possible only for 
critical mass flow and indeed must occur there. 

In our problem the flow is not periodic, so shocks might 
also occur if K is not critical. See Fig. 3. However, they might 
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not occur at all. In fact, when r = 3, we give a proof that 
shocks do not exist. 

The proof is based on the Prandle-Rankine-Hugonant 
condition below for shocks in a polytropic gas. See Ref. 3. 

Prandle-Rankine-Hugonant condition 

Let a shock occur at R = Rs. Let Vnl be the velocity 
normal to the shock ahead of the shock and let Vn2 be the 
velocity normal to the schock behind the shock. Then: 

Vnl Vn2 = 2/(y + 1) (11.1) 

We now show: 
Theorem 11.1: Let y = 3. There are no shock solutions 

to the mass flow-circulation problem. 

Proof We first show that the shock is oblique and nor
mal toR atRs. 

SinceQ +(Rs)andQ -(Rs )sharethesamevalueof/3, the 
8-velocity is invariant across the shock. So, the 8 direction is 
tangent to the shock. See Fig. 6. 

We now show that Rs < 1, which proves shocks are im
possible since our flows are exterior to the unit circle. 

Recall that when y = 3, Q + and Q - satisfy the quadrat
ic equation 

Q ±' - (1 + /3 21 R 2)Q ± + (f3 2 + K)/ R 2 = O. (11.2) 

Let 

Q +(Rs) = Q/, a+(Rs) = a/, 

Q -(Rs) = Q s-' a-IRs) = a s-' 

Then, 

(11.3) 

(11.4) 

Q s±' - (1 + /3 21 R ;)Q!, + (f3 2 + K )/ R ; = O. (11.5) 

Thus 

Q/ +Qs- = 1 +/3 2IR;, 

Q s+ Q s- = (f3 2 + K )/ R ;. 

In terms of a/ and as+ we have 

(11.6) 

(11.7) 

as+'+as-'= [Qs+ -/3 2IR;] + (Qs- -/3 2IR;) 
(11.8) 

or 

a+'+a-'=1-/32/R 2 
s s s 

and also 

(a+ 2 + /3 21R ;)(a-2 + /3 21R ;) = (f3 21R ;) 

= (f32+K)/R; 

Shock 
tangent to e. 

FIG. 6. Oblique shock. 

P. D. Smith 
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or, equivalently, 

a,+'as-' + {as+ +as-')/32/R; 

+ (/32/R;f = (/32 + K)/R;. 

Since a+ 2 + a- 2 = 1 - rp/R;, we have 

a s+ 'as-' + (1 - rP/R ;){PR; 
+ (/3 2/ R ; f = (/3 2 + K )/ R ;. 

(11.11) 

( 11.12) 

Consider a s+ 'as-'. Because the shock is normal to Rat 
R = Rs> a s+ = Vnl , and a s- = Vn2 • Thus by the Prandle
Randkine-Hugonant condition above, a s+ 'a s-' = 2/ 
(r + 1) =!. 

Thus we have 

! + (1 - /3 2/R ;)/32/R; + (/32/R;f = (/32 + K)/R;. 
(11.13) 

At present let K = Kc. When r = 3, we showed in the 
previous section that 

/3 2+Kc=!(1+/3 2). (11.14) 

The last two equations give the equation below for Rs . 

~R: + (¥J2 - !)R; + (/32 - /3 4) = 0, (11.15) 

which has roots 

(11.16) 

Thus, 

R ; < 1 (when /3 = 0, Rs = 1Iv'2). (11.17) 

So, if K = Kc' shocks do not occur. Now if K =/=Kc' then 
K < Kc and K + /3 2 </3 2 + Kc <!( 1 + /3 2). Replacing the 
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quadratic above by a quadratic inequality proves that again 
Rs < 1. QED 

We have thus proved that if r = 3, shocks do not occur. 
When r =/= 3, the author conjectures that shocks also do 

not occur. A proofproabably would involve Prandle's condi
tion and careful estimates based on the integral equation for 
Q±. 

12. CONCLUSION 

We have demonstrated a family of smooth transonic 
flows in the plane. The method also can be used to analyze 
other transonic plane flows (e.g., Ringleb flow3

), previously 
incorrectly treated by the Hodograph method. In addition, 
the author has also treated certain three-dimensional flows 
by this method (e.g., pipe flow), and here too, smooth tran
sonic families occur. 

lL. M. Sibner and R. J. Sibner, "Transonic Flow on an Axially Symmetric 
Torus," J. Math. Anal. (to be published). 

2L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics 
(Wiley, New York, 1958). 

'R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves 
(Interscience, New York, 1948). 

4L. M. Sibner, and R. J. Sibner, "Non-Linear Hodge-de-Rham Theorem," 
Acta Math. 125, 57-73 (1970). 

5L. M. Sibner, and R. J. Sibner, "Non-Linear Hodge Theory: Applica
tions," Adv. Math. 31, I-IS (1979). 

'1'. Apostol, Mathematical Analysis (Addison-Wesley, Reading, Mass., 
1974), 2nd ed. 
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Symmetry of the complete second-order conductivity tensor in a Vlasov 
plasma 

Jonas Larsson 
Department of Plasma Physics, Umed University, S-901 87 Umea, Sweden 

(Received 22 June 1983; accepted for publication 2 September 1983) 

This paper has two purposes. The first is to consider the origin of a recently derived symmetry 
property including the pole contributions of the second-order conductivity. The second is to show 
how certain general formulas for the conductivities easily lead to much more convenient 
expressions than those used in the above-mentioned derivation of the symmetry. 

PACS numbers: 52.25.Fi, 02.30. + g 

The second-order conductivity tensor for a plasma de
scribed by the Vlasov-Maxwell equations can be expressed 
in terms of an integral involving poles due to resonant wave
particle interaction. The nonresonant particles determine 
the principal part of the integral while the resonant particles 
give pole contributions. Neglecting the pole contributions, 
we obtain the very well-known symmetry leading to the 
Manley-Rowe relations. Recently a symmetry relation was 
found I involving also the pole contributions. The derivation 
was a straightforward but lengthy calculation resulting in a 
very extensive formula for the second-order conductivity 
tensor in an un magnetized relativistic plasma. 

In this paper we observe that previously derived2
--4 gen

eral formulas for the conductivities directly lead to symme
tries involving both the principal parts and the pole contri
butions. The symmetries are valid for a relativistic plasma 
also in the magnetized case. It will be shown below that the 
symmetry in Ref. 1 is included. 

It is convenient to consider the quantities V, related to 
the second-order conductivity as4 

Via, 1,2)= V(ko,Eo,kl,El'k2,E2) 

= (2i/cuo)Eo·(T~I,k, (E I,E2 ), 

where k) = (cu) ,k)), j = 0,1,2 and 

CUo + CUI + UJ2 = 0, ko + k1 + k2 = a 

(la) 

(Ib) 

and Ej are arbitrary vectors used as arguments in (Ia). Now 
V may be writen as4 

V(0,I,2) 

= f fo(v)A (ko,Eo,kl,EI,k2,E2,V)leV 

= J fo(v)A (0,I,2v)d 3v, (2) 

where A is symmetric in the indices (0,1,2), i.e., 

A (0,I,2,v) =A (a,,B,y,v) for (a,,B,y) = [0,1,2), (3) 

There are, however, poles in the integrand of (2) due to de
nominators (cuj - kj.v) for an unmagnetized plasma and (UJj 

- k jz Vz - ncue) for a magnetized plasma, These poles must 
be treated properly. Let us introduce operators P and R

j
, 

where P stands for the principal part and Rj stands for pole 
contribution of the denominators containing UJj mentioned 
above treated according to the prescription cuj + i1], 
1] -+ ° + ' Then we have4 

V(a,I,2) = PV - Ro V + RI V + R2V, (4) 

In (4) we have for brevity not indicated the arguments on the 
right-hand side since the symmetry (3) implies 

pV(a,I,2) = PYla, /3,y), Rj V(0,I,2) = Rj V(a,,B,y) 

for (5) 

[a,/3,yl = [0,1,21· 

It is clear from (4) that V(0,I,2) does not have the correspond
ing symmetry, A calculation of V(0,I,2) naturally means a 
calculation of each term in (4). Then we have determined not 
only V(0,I,2) but also all Via, /3,Y), where 
( a, /3, y J = f 0, 1,2 J. More substantial symmetries may be 
obtained in situations where some of the pole contributions 
may be neglected. 

Considering resonant wave interaction between two 
high-frequency waves ko and kl with the low-frequency 
wave k2, we may sometimes take Ro V = R I V = 0. Then 
V(0,I,2) = V(I,0,2) = PV + R2V, while 
V(2,0,I) = PV - R2 V. The coupled mode equations, in 
which we now may omit the linear damping of wave ° and I, 
are then simplified. Different particular forms of these equa
tions are considered in Ref. 5. 

Let us now compare with the symmetry result (26) in 
Ref. 1. We may write it in the form 

V(0,I,2) = (P+R 1 +R2)S(I,0,2) 

+ (P + RI - Ro)S(1,2,0), 

where S is related to the tensor Sij/ in Ref. 1 as 

S(0,I,2)=S(ko,Eo,kl,EI,k2,E2) 

(6) 

= - iq(21T)4(CU#IUJ2)-ISij/( - ko,kl,k2)Eo;Elj E 2l , 

together with (Ib). We also have 

V(0,I,2) = S(0,I,2) + S(0,2,I). 

It follows directly from (I) in Ref. 1 that 

(7) 

(8) 

R2S(I,0,2) = R2 V(I,0,2), RoS(I,2,0) = Ro V(I,2,0), 
(9) 

and we may thus rewrite (6) as 

V(0,I,2) = PV(I,0,2) + R t V(I,0,2) 

+ R 2 V(1,0,2) - RoV(I,2,0). (10) 

But (10) follows directly from (4) and the derivation is thus 
completed. 
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We finally give a formula for the second-order conduc
tivity tensor in an unmagnetized relativistic plasma. It is a 
particular case of the general formula3 rewritten in more 
familiar notations and is clearly much more convenient to 
use than the formula which one obtains by straightforward 
calculations. \ The result is 

V(O, 1,2) = - _1_' f Fo(v) 
m~ 

X---------------------------------
(cuo - ko·v - i7])(cu\ - k\·v + i7])(CU2 - k2·v + i7]) 

X (ko.Fo - (qcuolc2
!v.Eo (F\.F

2 
_ q2c-2V.E

1
v.E

2
) 

CUo - ko·v - 17] 

+ even permutations of (0,1,2)) (1 - v2/c2)d 3v, 

where 

( kXE) Fj= q Ej+vX~ and 7]---+0 +. 

(11) 

(12) 

The property (3) is manifest in (11). The tensor Sijl i~ explicit
ly obtained from (7) and (11) by substituting Ej = xj , where 
(xo,x I>X2 ) are our orthonormal unit vectors. 

The expression (11) is a good example of the usefulness 
of the general current response formulas2

•
3 and it may sim

plify future application of them if we consider the notational 
change needed to obtain (11). From (2.11) and (2.13 )-(2.15) in 
Ref. 3 we obtain in the notation of that paper 

iU·Ka oXa = oua, 

iU'KaOUa = i( qlmoc
2

) KaA ¢a 'U, 

¢o·A ~I.K,: ¢I ¢2 = !ic3mo 1./o(U)[Ko.OX(0)OU(I).OU(2) 

( 13) 

(14) 

+ even permutations of (0,1,2)] du, (15) 
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where Ka = (cualc)eo + ka and U = uO(eo + vic) so that 

U'Ka = - (u°lc)(cua - ka·v), (16) 

where UO = (1 - v2lc2)-1f2. 

In (15) the 4-vectors ¢a are arbitrary. If we take ¢a 
related to Ea as the 4-potential is related to the electric field 
in Fourier space we obtain 

¢o·A ~/.K, : ¢ I ¢2 = - (icl cuo)Eo·d;'l.k, [E1,E2] (17) 

and 

KaA ¢a'u = - iuo 

(18) 

Finally we need the relation between the distribution func
tions/o(u) and Fo(v). The 4-current is 

qc 1./o(U)U du = q f(ceo + v)Fo(v)d 3v. (19) 

Taking the eo-part of (19) we get the correspondence 

/o(u)UO du = Fo(v)d 3V• (20) 

Or in more exact words, when we make the variable change 
U ---+ v defined by the relation cu = uO(ceo + v), then (20) is 
valid. From (la), (13)-(18) and (20) we now obtain (11). 
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ERRATA 
Erratum: Some remarks on the classical vacuum structure of gauge field 
theories [J. Math. Phys. 22, 179 (1981)] 

M. Asorey 
Departamento de Ffsica Teorica, Facultad de Ciencias, Universidad de Zaragoza, Spain 

(Received 12 October 1983; accepted for pUblication 28 October 1983) 

PACS numbers: l1.1O.Np, 02.40.Vh, 99.10. + g 

N 
(1) Page 182 left column: Delete 

AfU(l)= {(expiA. 1, ... ,explil.N )EU(I)"': 
AjE[O, 21T), A1';;;"'';;;A N , (1I21T) ,LAjEN}. 

j= \ 

N (2) Page 182 left column: Delete 
AjE[O, 21T),A\';;;"'<AN _ P (1I21T),LAjENj, 

;=1 

and replace it by 

~V~k, ;::::U(1);::::~9~k' ;::::SO(2);::::r~j~s' ;::::U(I), 

and replace it by 

A f U( 1) = {(exp iA \,. .. ,exp iA. N )EU( 1 )N: r~V~k,;:::: [0, 1T); r~9~k, ;::::SO(2);::::r~1~s' ;::::U(I). 

Erratum: Splines and the projection collocation method for solving integral 
equations in scattering theory [J. Math. Phys. 24, 177 (1983)] 

M. Brannigan 
Department of Statistics and Computer Science, University of Georgia, Athens, Georgia 30602 

D. Eyre 
National Research Institutefor Mathematical Sciences of the CSIR, P. O. Box 395, Pretoria 000], Republic of 
South Africa 

(Received 6 October 1983; accepted for publication 19 October 1983) 

PACS numbers: 24.10. - i, 02.30.Rz, 25.10. + s, 02.60.Nm, 99.10. + g 

1. The line after Eq. (2.1) should read " ... space of con
tinuous functions .... " 

ever, convergence for this method is shown in our subse
quent paper [J. Math. Phys. 24, 1548 (1983)]. 

2. Since the integral operator Y, containing the princi
pal value integral, is not bounded on a space of continuous 
functions then our proof of convergence is not valid. How-

We are indebted to Ian H. Sloan for calling our atten
tion to these points. 

Erratum: Splines and the Galerkin method for solving the integral equations 
of scattering theory [J. Math. Phys. 24, 1548 (1983)] 

M. Brannigan 
Department of Statistics and Computer Sciences, University of Georgia, Athens, Georgia 30602 

D. Eyre 
National Research Institutefor Mathematical Sciences of the CSIR, P. 0. Box 395, Pretoria OOOl, Republic of 
South Africa 

(Received 6 October 1983; accepted for publication 19 October 1983) 

PACS numbers: 03.80. + r, 02.30.Rz, 05.30.Jp, 99.10. + g 

I. On page 1553 the scattering energy should read 
(klkB)2 = 0.64. 

2. Table II shows the square of the L 2-norm. 
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Decomposition of representations into basis representations for the 
classical groups8) 

E. D'Hoker 
Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts 
Institute of Technology, Cambridge, Massachusetts 02139 

(Received 24 February 1983; accepted for publication 24 June 1983) 

We prove decomposition formulae for an arbitrary representation in terms of basis 
representations for the classical compact Lie groups. Using these decomposition formulae, simple 
rules are obtained for the product of two arbitrary representations and for the restriction of a 
representation to a classical subgroup. 

PACS numbers: 02.20.Qs 

I. INTRODUCTION 

E. Cartan I has classified all simple compact Lie groups 
into four infinite sequences of classical groups SU(n + 1), 
SO(2n + 1), SpIn), and SO(2n) of rank n and in addition five 
exceptional groups, E6, E7 , Es, F4, and G2• Weyl2 has shown 
that every finite-dimensional irreducible representation of a 
classical group is in one-to-one correspondence with a com
plex-valued function on the group, called the group charac
ter-or simply character-of the representation. If A (g) is a 
representation, then the character X..t is the trace of A (g): 

X..t(g) = tr A (g). (Ll) 

It has the following properties: 

X..t(hgh -1) = X..t(g), 

X..t"/L(g) = X..t(g) + X/L(g), 

X..t"/L(g) = X..t(g)X/L(g)· 

(1.2) 

(l.3a) 

(l.3b) 

The set of all characters forms a basis for the regular class 
functions on the group. Weyl2 has also shown that the char
acter functions of a classical group of rank n are classified by 
n nonnegative integers. In addition, for the orthogonal 
groups, there are the so-called double-valued or spinor re
presentations, which are specified by n half-odd integers. 
Since the character functions are invariant under conjuga
tion-property (1.2)-they may be completely reconstruct
ed from their value on a Cartan subgroup. Weyl'sfirst for
mula gives the character in terms of n angles ¢I' ¢2' ... , ¢n' 
which parametrize the Cartan subgroup in the standard 
fashion. 2

•
3 We record Weyl's first formulae2 here for later 

reference. We shall henceforth suppress the argument of the 
character function. 

(A) SU(n): 

_ 1~',oo.,i"1 (1 ) 
XU;.h ... ·.!") - 10 10 .4a 

IE ',oo.,E"1 

Here we use the definition I~', ... , i"1 = det(E), with Eij = EY 
where E; = /1'" I? = n - i, I; =/; + I? and the integers/; 
obey II>iz>A>"'>/" and (II + 1'/2 + I, ... ,/" + I) 
==(/1'/2""'/" ). 
alThis work is supported in part through funds provided by the U. S. De

partment of Energy (DOE) under contract DE-AC02-76ER03069. 

(B) SO(2n + 1): 

_ lEI, - E-I',oo.,E
I
• - E-I·I 

XU,.!, .... .!.) - I? _ I? I~ _ I~ (I.4b) 
IE - E ,oo.,E - E I 

Here the I? are half-integers given by I? = n - i + ! and Ii 
= 1: + I? with/; either all integers or all half-odd-integers 

and/l>iz> .. ·>ln >0. 
(C) SpIn): 

_ lEI, - E-I',oo.,i· - E-I·I 
XU,.!, .. .!.) - I? _I? l~ _/~ (I.4c) 

IE - E ,oo.,E - E I 

Here the I? are integers and are given by I? = n - i + 1 and 
Ii = /; + I; with/; integer and/!>iz>"'>ln >0. 

(D) SO(2n): 

_ lEI, + E-I',oo.,i· + E-I·I 
XU,.!, ... .!.) - I? _ I? 10 _10' (I.4d) 

IE + E ,oo.,E • + E ·1 

Here the I? are integers defined by I? = n - i and Ii = /; 
+ I? with/; either all integers or all half-integers and 

11>/2>"'> If,, I> O. When/" = 0, the right-hand side of 
(1.4d) is divided by a factor of2. 

The ordered set (fI,iz, 00',1,,) is called the signature! and 
is also equal to the highest weight vector. To every irreduci
ble representation corresponds one and only one signature 
(/1'/2,00',/,,) such that/l>iz>oo.>/", and this signature is 
called dominant. 

Using algebraic manipulations, one can rewrite expres
sions (I.4a-d) in terms of a set of characters of generating 
representations instead of in terms of the exponential func
tions E;. Weyl's second formula2

•
3 gives the characters in 

terms of the so-called symmetric representations. For SU(n), 
Weyl's second formula reads 

XU,.h .... .!.) = detI, 

~ij = Xd'-i+f,. 

(1.5a) 

(1.5b) 

d k has signature (k, 0, 0, 00" 0) when k;>O, and is defined to 
vanish when k < O. 

Similar formulae exist for the other three series of clas
sical groups.2 Weyl's second formula is quite useful: It pro
vides a practical algorithm for the decomposition ofthe ten-
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sor product of two representations into irreducible 
representations.3 Indeed, from (1.5) it is clear that the tensor 
product of two arbitrary representations A and It can be ex
pressed in terms of products of A with symmetric representa
tions. The latter products may be evaluated using a set of 
rules deduced from Weyl's first formula. 2

•
3 

In the present paper, we shall show that, for the classi
cal groups the character of an arbitrary representation may 
also be expressed as a determinant only involving the so
called basis representations in an elementary way. For a 
group of rank n, there are precisely n basis representations 
whose signatures are listed below.3 (Henceforth, we identify 
a representation with its dominant signature.) 

(A) SU(n + 1): dp = (1,1, ... ,1,0, ... ,0) andp = 1, ... ,n; 
-.--

p (1.6a) 

(B) SO(2n + 1): dp ' p = 1, ... ,n - 1 and the spinor re-

(C) Spin): 

(D) SO(2n): 

presentation s = (!, ... ,!); (1.6b) 

dp ' p = 1, ... ,n; (1.6c) 

dp ' p = l,n - 2, and the two spinor 
representations s+ = (!, ... ,!,!) (1.6d) 

s- = (!, ... ,!, - !). 
Our formulae give all characters in terms of only a finite 
number of generators4

: {Xd
p 

J
p

= I.n for SU(n + 1) and SpIn), 

{Xdp' Xs J p= I.n _ I for SO(2n + 1) and 
{Xdp' Xs+, Xs- J p = I.n _ 2 for SO(2n). The proof of these rela
tions, henceforth called decomposition/ormulae, is the main 
objective of the present paper, and is given in Secs. II, III, IV, 
and V, respectively for SU(n), SO(2n + 1), Sp(n), and SO(2n). 
For each of these groups, we shall first determine rules for 
the product of a basis representation with an arbitrary repre
sentation and then prove the decomposition formulae, essen
tially by explicit calculation of the determinant. 

The case ofSU(n) is simplest, and will be developed in 
much detail; the case of SO(2n + I) requires several impor
tant modifications, which we shall fully describe. For Spin), 
only the final results will be given, and, for SO(2n), special 
attention will be devoted to subtleties like double characters. 
Finally, in the last section we shall discuss three applica
tions. First, we show that our decomposition formulae pro
vide rules for the tensor mUltiplication of two arbitrary re
presentations of any of the classical groups, just as Weyl's 
second formula did.2 These rules are only slightly more com
plicated for the groups SpIn) or SO(n) than for the group 
SU(n), and may present an interesting alternative to the rath
er involved rules discussed in standard references.5 Second, 
we prove a relation between the dimensions of the represen
tations ofSp(n) and these of the spinor representations of 
SO(2n + 1). Finally, we show that our decomposition for
mulae yield a simple algorithm for the calculation of the 
restriction of a representation to a classical subgroup of the 
original group. Thus branching rules for nonmaximal sub
groups can be obtained. Let us also remark that the simple 
rules for products and branching of representations could be 
easily implemented in a computer program. 

The extension of our formulae to the case of exceptional 
groups is presently under investigation. 

2 J. Math. Phys .• Vol. 25. No.1, January 1984 

II. THE SPECIAL UNITARY GROUPS SU(n) 

Multiplication of a basis representation with an 
arbitrary representation 

The weight diagram3 for the basis representations is de
duced from Weyl's first formula (1.4a) 

(2.1) 

The character of the tensor product of dp with a representa
tion A = (f1> /2' ... In ) is found using (1.3): 

(2.2) 

The integers Ii are defined in terms of the h by Ii = h + J? 
Note that X,t and Xd are invariant under the action of 

p 

the Weyl group/·3 which permutes the angles ¢>i' Using this 
invariance for X d .. ,t, we find 

p 

I J Ii, I,p I., 
f"-I, ••• ,E , ... ,E , ••• ,E 

so that 

Xdp",t = .. 2: .Xu ...... ./i.+I ..... ./ip+I .... ./.)· 
't <12<"'<lp 

(2.3) 

(2.4a) 

In (2.4a), a character corresponding to a signature 
which is not dominant must be omitted. Expression (2.4a), 
together with the one-to-one correspondence between domi
nant characters and irreducible representations, implies the 
following formula for the representations: 

dp ®A = 2: (fl'· .. ./;. + 1,· .. ,h
p 
+ 1, .. ·Jn)·(2.4b) 

i.<i2 <···<ip 

Here again, nondominant signatures are deleted. 

The decomposition formula for the symmetric 
representations 

Before attacking the full problem, we shall first prove a 
decomposition formula for the symmetric representation d k 

ofSU(n) [defined in (1.5)]. 
Theorem 1. Let M k be the following determinant6 

d l 0 0 ® 

d2 d l 1 0 
Mk= d3 d2 d l 0 (2.5) . . . 

dk dk _ 1 d l 

Then we have M k = d k. 

In formula (2.5) it is understood that d k = 0 if k > nor 
k<O. 

Proof Upon multiplication by the determinant 

0 0 0 ® 
-d l 1 0 0 

1= d 2 -d l 0 , (2.6) 
. . . 

(-!t-Id k - I 

E.O'Hoker 2 



                                                                                                                                    

making use of the well-known3 duality relation 

n-I {I ifk=O 
~ (-l)"d ®d k

-
p = 

£.. p 0 otherwise p=o ' 
(2.7) 

it is clear that M k = d k, as announced. 
We now give also a different proof, the method of which 

will generalize to the case of an arbitrary representation of 
SU(n) as well as to the other classical groups. The expansion 
of the determinant in (2.5) along the first column yields a sum 
of products of a basis representation dj with a minor ~ j' The 
crucial remark is that this minor ~ j is of the same form as the 
original determinant: ~ j = M k - j. Thus we have 

k 

Mk = L da ®M k- a( - W- I. (2.8) 
a=1 

We can prove (2.5) by induction. Suppose that M k = d k for 
all k<p - 1 and clearly M I = d I; then we wish to prove that 
MP = d P• The induction hypothesis together with (2.8) 
yields 

k 

Mk = L da ®d k- a( - It- I. 
a=1 

Using (2Ab), we see that 

da®dk-a=Ba +Ba+l' 

where 

o 

or 

p = ®det(g) with gij = d j _ j +k 

and let k be defined by r l + r 2 + ... + rk_ I 

<i<rl + r2 + .. , + rk • Then we havep =A. 

(2.9) 

(2.10) 

d"_l 

o 

(2.15) 

Observe that in formula (2.14) we have rj times the re
presentation d; on the diagonal. The off-diagonal elements of 
the determinant are obtained by incrementing (resp. decre
menting) the index i by one unit when moving to the left 
(resp. to the right). 

Proof In analogy with Theorem 1, the expansion of the 
determinant (2.14) along the first column yields a sum of 
products of a basis representation and a minor, which is of 
the same form as the original determinant p. We proceed 
with a proof by induction on the first coordinate of the signa
ture fi. Suppose '" = A for all Ii. <p - 1; then we want to 
prove that p = A for 0/1 representations such thatfl = p. 
Clearly, we have p = A for Ii. = 1. As a consequence of the 
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Ba = (~ - a t hl,: ... , ~O, ... ,O) (2.11) 
a 

and B k + I = 0 since it corresponds to a nondominant signa-
ture. Hence we have 

k 

Mk= L( -It-I(Ba +Ba+d (2.12) 
a 

so that M k = B I = (k, 0, ... , 0) = d k as announced. Upon 
replacing M j by d j in (2.8) we get precisely (2.7). This finishes 
the proof of Theorem 1. 

Combination of(2.5) and (1.5) shows that every repre
sentation can be written as a function of basis representa
tions dp alone. We shall now prove a much more convenient 
formula for the decomposition in terms of basis representa
tions. 

The general decomposition formula 

Let Ii be a representation with dominant signature (fl' 
f2' ... J" ); the nonnegative projection numbers r; are obtained 
from the projection of the highest weight vector onto the 
roots3

: 

ri =/; -/;+1> i= 1, ... ,n -1. (2.13) 

We shall now prove the following general decomposition 
formula for the unitary groupS6.7: 

Theorem 2: Let 

® 

(2.14) 

I 
induction hypothesis, we see that every minor corresponds 
to one and only one irreducible representation. Indeed, the 
minor associated with d l has signature (fi - I,/;, ... ,f,,), the 
minor associated with d2 has signature (fl - 2,/;, ... J,,); this 
pattern continues until one encounters the element d" in the 
first column which has minor (/;,/;,h, ... ,/,,). Ifr2=F0, then 
at least one d2 is present on the diagonal, and the next ele
mentin thefirstcolumnisd" +2 with minor(/; - I,/; - I, 
h, .. ·,f,,)· Upon increasing the index of the element in the 
first column by 1, the second entry in the signature of the 
minor decreases by I. It is remarkable that each minor in the 
expansion of determinant (2.14) is again an irreducible repre
sentation with a signature such that its first entry is always 
smaller than fl' Thus we must prove that the expansion of 
the determinant, for a representation with dominant signa
ture (fi,/;, ... ,J,,), with all minors replaced by their actual 
value precisely yields p = A. 

Using the signature notation, the above described ex
pansion becomes 
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Jl = ED i da ® (fl - a,j2,. .. ,jn)( - W - I 
a=1 

ED i dr, + I + a ® (/2 - 1,j2 - a,J;,···,jn) 
a=1 

X( -It+r,-I ED ••• 

",,-1 
ED L dr,+ ... +rn_2+a+n-2 

a=1 

® (/; - 1,j3 - 1,···,jn _I - l,jn - a) 
X( _1)"+···+rn- 2+a-2. (2.16) 

All signatures appearing in (2.16) are dominant by construc
tion. 

Formula (2.16) may, however, be simplified through the 
use of nondominant signatures-henceforth called signa
tures as opposed to dominant signatures. We shall generalize 
(1.4a) to signatures (f1,j2' ... ,jn), which need not be domi
nant, by defining their character as 

I ','2 '"I - E,E , ... ,E 
XII,.!, .... .!") - ,0 ,0 ,0 

IE ',E Z, ... ,E "I 
(2.17) 

even when I is not dominant. Of course, every signature is 
either related to a dominant signature by permutation of 
columns in (2.16) or must vanish.8 Thus we have, e.g., XIZ,4.I) 

= - XI3.3.1) but XIZ.3.1) = O. Using the definition of (non 
dominant) signatures, (2.16) may be rewritten 

Jl = Ell i du ® (fl - a,jz, ... ,jnH - I)U-I 
a=l 

r, 

Ell !dr,+I+u®(f2-a-1,j2, ... ,jnH-l)"+u 
a=l 

r, 

Ell L dr, + r, + 2 + u ® (f3 - a - 2,j2,j3,· .. ,jn) 
a=l 

X ( - 1),' + r, + u + I 

Ell···. (2.18) 

A shift in the summation variable produces 

Jl = Gl i du ® (fl - a,j2, .. ·,jnH - W- I 
a=l 

'I + "2+ I 

Gl L du ® (fl - a,j2,· .. ,jn H - I)U - I 

a = r t + 2 

'I +'2 + r~ + 2 

Gl L du ® (fl - a,j2, .. ·,jn H - l)u - I Gl ••• 
a = r l + r2 + 3 

'. + r2 + ... + ",,_1 + n - 2 

Ell L da ® (fl - a,j2,j3, .. ·,jn) 
a = '1 + r2 + ... + rn _ 2 + n - 1 

(2.19) 

The signature vanishes at values of a which are missing from 
the summation, through the use of (2.17). Hence we have, 
e. g., 

(II - r l - 1,j2,j3, .. ·,jn) = (f2 - 1,j2,j3, .. ·,jn) = O. 
(2.20) 

Using the above property, we obtain our final formula: 
f,+n-2 

Jl=® L da ®(fI-a,j2,···,jnH- l t- l
• (2.21) 

a=l 

We shall now prove that Jl = A, by explicit calculation of Jl. 
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First we need the generalization (2.4) to nondominant signa
tures: 

dp ® (fl,/z, .. ·,jn) 

= Gl.L . (fl'''''/;, + 1, ... ,/;p + 1, ... ,jn). (2.22) 
ll<l~<"'<lp 

In (2.21), all terms may be kept since the nondominant signa
tures automatically vanish when (f1,j2, ... ,jn) is dominant. 
By permutation of columns in (2.2) and (2.17), it is also clear 
that formula (2.22) holds even whenlis not dominant. 

The explicit calculation of all terms in the tensor pro
ducts in (2.21) is unnecessary, and we shall introduce the 
following convenient shorthand 

(fl' I Iz,· .. ,jn JP+ ) 

with 

= Gl ~ (fl""'/; + I, ... ,/; + 1, ... ,jn) (2.23) ~ , p 

1 <il <f2,·· < ip 

(2.24a) 

(f1,1 Iz, .. ·,jn JP+ ) = 0 when p <0 or p> n - 1. 
(2.24b) 

Then the tensor products in (2.21) can be computed using 
(2.23) and (2.24): 

da ® (fl - a,j2, .. ·,jn) = (fl - a + 1,1 Iz, ... ,jn la+- I) 

+ (fl - a,1 Iz, .. ·,jn la+ ) 

(2.25) 
so that 

f,+n-2 
Jl=Gl L (-W- I(fI-a+l,!f2, .. ·,jnl a+- I) 

a=l 
f,+n-Z 

Gl L (- W-I(fl - a,!fz, .. ·,jn la+ ). (2.26) 
a=l 

A shift in the summation variable of the second sum yields 

Jl = (f1,jZ,j3,· .. ,jn) 

Gl ( - 1 y, + n - I( _ n + 2, !f2, ... ,jn V~+ n - 2). (2.27) 

Since II;;;' 1, the second bracket vanishes with the use of 
(2.24b) and since (f1,jZ, ... ,jn) is dominant, we have proven 
thatJl = A. 

Example: The representation A with signature 
(4,2,1,0,0) ofSU(5) is decomposed as follows: 

d l 0 0 

(4,2,1,0,0) = 
d2 dl 0 

d4 d3 d2 dl 

0 1 d4 d3 

One can, e. g., check the dimensions by taking the character 
of both sides of (2.27) and computing the determinant at the 
identity element. With the use of tables of dimensions,9 we 
find 

5 

10 
700= 

5 

o 

5 

10 

o 

10 

o 
o 
5 

5 10 

E.O'Hoker 4 



                                                                                                                                    

III. THE ORTHOGONAL GROUPS SO(2n + 1) 

The decomposition formulae for the spinor representa
tion are different and will be treated separately from the for
mulae for single valued representations. Furthermore, it will 
appear natural to express the decomposition formulae in 
terms of the basis representations of(1.6b)plus the represen
tation dn = (1,1, ... ,1). Later we shall prove that the latter 
representation is simply expressed in terms of the former 
ones. 

Multiplication of a basis representation with an 
arbitrary representation 

The weight diagram of the representations dp is de
duced from Weyl's first formula (l.4b): 

I I -I, I -II €' _ € , ••• ,€ n _ € n 

Xdp = I~ -/~ 1~ -/~' 
I€ -€ , ... ,€ -€ I 

(3.1) 

where I? = n - i +~, Ii = I? ifi>p and Ii = I? + 1 ifi<p. 
We shall obtain a more convenient expression for this weight 
diagram by introducing the function 

.Ifp = l€n+€-n, ... ,€n-p+I +€-n+p-I,€n-p-I 

+ -n+p+1 +-111 € , ... ,€ € , . (3.2) 

After division of numerator and denominator in (3.1) by the 
common factor "7 ~ I (€f!2 - €i- 112), X d can be rewritten as 

p 

follows. 

(3.3) 

The function .Ifp can be easily evaluated using the binomial 
coefficients C ~ : 

[pl2l 
.Ifp = L C~_p+2aR (p - 2a).Ifo, (3.4) 

a~O 

with 

(3.5) 

The function R (q) may be thought of as the character of the 
representation dq of a unitary group with €i replaced with €i 

+ €i- I. Combination offormulae (3.3)-(3.5) gives us the 
weight diagram of dp : 

[p12l 

Xd
p 

= L C~_p+2aR (p - 2a) 
a=O 

[(p-I)/2l 

+ L C~_p+I+2aR(p-I-2a). (3.6) 
a~O 

For the spinor representation, the weight diagram is com
puted directly from (l.4b) 

X - " "u,12"u,12 c an12 
s - £- e. «=2 ···~n • 

u j = ±1 
(3.7) 

The functions R (q), X d and X s are invariant under the action 
p 

of the Weyl group which permutes the tPi and changes their 
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sign. Again we generalize the dominant signatures in (l.4b) 
to (nondominant) or generalized signatures, defined through 
the same formula (l.4b) but where the signature (fl' ... In) 
need not be dominant. Every generalized signature is again 
either related to a dominant signature or must vanish. An 
important special case is 

XU"f"OO'.[n _ " - I) = - XU'.[""'.[n _ ,,0) (3.8) 

for (/IJ2' .. ·In _ 1,0) dominant. 
With the help of the weight diagram computed pre

viously, we can evaluate the tensor product of dp and s with a 
representation A. = (/IJ2, ... In)' First we need the product 
of R (q) with X A' obtained using the invariance under the ac
tion of the Weyl group: 

R (q)x A = L L Xu" "h, + a",oo"h
q 

+ ai .. · . .[.)' 
i,<i-:!< ... <iq U'j= ± 1 

(3.9) 

Formula (3.9) also holds for (/1,J2' ... ,In) not dominant. The 
product of dp and A. is gotten by combining (3.6) and (3.9). 
The tensor product of the spin or representation with A. is 
deduced from (3,7) in an analogous fashion. 

XsX A = L Xu, + a,/2.[, + a,/2,00·.[n + a n12)' 
0',= ± 1 

(3,10) 

As an example of these multiplication rules, we com
pute the following product for SO(9): 

(1,1,0,0) ® (3,1,0,0) 

= (4,{ 1,0,01 I) + (3,{ 1,0,01 2) + (2,{ 1,0,01 I) + ... 
= (4,2,0,0) + (4,1,1,0) + (4,0,0,0) + (3,2,1,0) 

+ (3,1,1,1) + (2,2,0,0) + 2(3,1,0,0) 

+ (2,1,1,0) + (2,0,0,0). 

The decomposition formula for nonsplnor 
representations 

It is not hard to generalize formula (2.14) to the case of 
the group SO(2n + I). The explicit form of the weight dia
gram in (3.6) suggests that we should take the linear combi
nations 

as elementary building blocks in a determinantal expression 
like (2.14). Examination of a few simple special cases shows 
that this is basically correct, provided one modifies (2.14) in a 
way which we shall now specify. Let A. be a representation 
with dominant signature (/1' ... In) and define the integers 

r, =h - h+ 1> i = 1,2, ... ,n - I, rn =/", (3.12) 

as well as the sequence of direct sums and differences of basis 
representations 

n<k<2n, Dk =D2n _ k , 

k> 2n or k < 0, Dk = 0. (3.13) 
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Theorem 3: Let 

Il= 

or in components 

Il = ® det(.@), 

.@;j = D;_j+k ffiDi+j+k-1_2/,' 

D" ffiD,,_3 
D,,+lffiD,,_2 

r l + r2 + ... + rk _ l <i<,rl + r2 + ... + rk • (3.15) 

Thenll =,1.. 
Proof The proof again proceeds by induction offl' Sup

pose Il = A. for all A. such thatfl tqJ - 1; then we wish to 
prove that Il = A. for all A. such thatfl = p. The expansion of 
the determinant along the first column yields tensor pro
ducts of representations D; _ I + k ffi D; + k _ 2f, with minors. 
These minors are of the same form as the original determi
nant, and by the recurrence hypothesis equal to irreducible 
representation of which the first entry in the signature never 
exceedsfl - 1. The resulting formula for Il is the same as 
(2.16) but withda replacedwithDa ffiDa+I_2/,' Thedefini
tion of (generalized) signatures for the SO(2n + 1) again 
leads to a drastic simplification, analogous to the one that 
leads to (2.21) and we finally get 

f,+,,-I 
Il = L (D a ffi D a + I - 2/, ) 

a=l 

® (/1 - a./2""'/n)( - W - I. (3.16) 

We prove that Il = A. by explicit calculation of Il· As for the 
unitaries, the tensor products in (3.16) need not be worked 
out explicitly and we introduce the following shorthand: 

(/1' [f2""'/" jP± ) 

=ffi 

(/1' [f2""'/" 1 o± ) = (/1'/;""'/,,), 

(/1,1 f2'···./" JP± ) = 0 if P <0 or p>n - 1. 

(3.17a) 

(3.17b) 

(3.17c) 

We first evaluate the product of the functions R (p) with an 
arbitrary character using (3.9): 

R (P)XII,./, .... ./n) = XII, + 1,1 1, .... ./nIP±-I) 

+ XU;.I f,.···./ni'±) 

+ XII, - 1.( .t; •... ./nJP±- I). (3.18) 

The weight diagram of Dp is computed using (3.5) and is 
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I 

o 
o 

o 

D,,_I ffiD,,_2 
D" ffiD,,_1 

given by 

(3.14) 

(3.19) 

for allp;;;.O. Next, we compute the tensor products occurring 
in (3.16) and make use of the shorthand introduced in (3.17)
(3.18) 

Da ® (/1 - a,f2, .. ·,f,,) 

with 

[a/2J 

= L C~_a+2f3(B~_lffiB~ ffiB~!\), 
f3=0 

= 

B~ =(/I-a,[f2, ... ,/"Ja±-2
f3

), 

C'['/f3-(f 'f f.Ja-2 f3 -2/ ,+I) 
Jl a-I - a, l 2'··" n ± . 

We compute Il in two steps: 
I, +,,-1 

III = L Da ®(/I-a'/2''''./'')( _l)a-1 
a=l 

I, + " - I [a/2) 

L L C~-a+2f3 
a= I f3=0 

(3.20a) 

(3.20b) 

(3.21a) 

(3.21b) 

(3.22) 

Upon performing the appropriate shifts in the summation 
variables, we find 

j, +" - 2 [(a + 1)/2) 

III = L L C~_a_1 +2f3B~( - W 
a=O f3=0 

f, + " - I [a12) 

eLL C~_a+2f3B~( - W 
a= I fJ=O 

I, +" [(a + 1)/2) 
ffi L L C~=~_I+2f3B~( - W· (3.23) 

a=2 fJ= I 

For a odd we have 

B ~a + 1)12) = (/1 - a, {f2""./" I ± I) = 0 (3.24) 

so that the summation over f3 in the second term may be 
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extended from [a12] to [(a + I )12]. Then we rearrange 
expression (3.23) as follows: 

PI =BgeB?enB: ~B? ~(n + I}B: 
[If, + n)/2J 

~ L eLI, + 2IJB 1. + n _ II - 1)" + n 
!J=O 

[If, + n)/2J 

~ L c!J_t ,\ 2IJB1. + n-I ( - I)" +n- I 

!J=I 
[If, + n + 1)/2J 

~ L C!J_t,l_ 1+ 2!JB 1. + n ( - 1)" + n 

!J=I 
1,+n-2 [(a+I)/2J 

~ L L (C~-a-I+2IJ-C~-a+2IJ 
a=2 !J=O 

+ C~=~+2IJ}B~( - It· (3.25) 

The double sum in (3.25) vanishes due to Pascal's equality on 
binomial coefficients. Using (3.24) again for the term B: and 
Pascal's equality, 

[(f, + n)/21 

PI =Bg ~ L C{3_/, +2{3B7, + n-I (- IV' +n 

{3=O 

[(f, + n + 1)/2J 
" C{3-1 B{3 ( IV,+n ~ L -/,-1+2{3 /,+n - . 

{3=1 

(3.26) 

The same sequence of manipulations may be applied to the 
expression for P2, 

I, +n-I 
P2 = L Da + I - 2/, ® (II - a,/2,· .. ,ln)( - It - 1, 

a=1 

(3.27a) 

and it yields 
[(n +1, + 1)/2J 

P2 = L ( - IV' + nC{3_J;'~ 2{3-1 %f=;.~ - 1 
!J=/, 

[In +/.I/2J 

~ L (- 1)" + nC{3_J;'~ 2ti%f=;.~ + I (3.27b) 
ti=/, 

Using the properties of the binomial coefficients, we see that 
the sums in (3.26) actually only start at f3 = II instead of at 
f3 = 0 or f3 = 1. Taking this remark into account, we obtain 
the following result for p: 

DI Do 0 
D2 DI Do 

DI Do 0 

D3 D2 DI 

P =PI ~P2 
[(f, + n)/2J 

=Bg~ L C ti
_ I ,+2IJ(B1.+n_1 

fJ=l, 

~%1.~~+I)( _1)',+n 
[if, + n + 1)/2J 

~ L C fJ_t ,I+ 2IJ _I(B1.+n 
fJ=l, 

~ %1.~~ - Il( - 1)" + n. (3.28) 

From the definition of Band % in (3.20) and making use of 
the properties of generalized signatures we see that 
%fJ-I, + I 

I, + n 

= (- n,1/2, ... ,/n J'±+n- 2IJ -I) 
=(_l)n-I({/2- I ,h-1,"''/n _lj/±+n-2fJ- 1,_I). 

With the help of (3.8) this reduces to 
%{3-/, + 1 

f, + n 

= (- lrO/2 - 1'/3 - l, ... ,/n - 1 j/±+n-2fJ- 1,0) 

= - (I - n, ( 12"",/n l'± + n - 2fJ + I). (3.29a) 

Comparison with the definition of B yields 
%fJ-/, + 1_ BfJ 

f,+n - - f.+n-l' 

and similarly we have 

%ti-f, - BfJ /,+n-I - - /,+n' (3.29b) 
As a consequence, the two sums in (3.28) cancel exactly, and 
we get 

P = Bg = (/1'/2'''''/n)' 
as announced in Theorem 3. 

(3.30) 

The decomposition formula for spinor representations 

Examination of some simple examples again suggests 
that the correct building blocks for the decomposition for
mula are the Dk introduced in (3.13). The correct modifica
tion of(3.14) is then easily found, and will now be given. Let 
A be a spinor representation of SO(2n + 1), with signature 
(11'/2' .. ·'/n), and define the integers 

r;=/;-/;+I' i=I, ... ,n-l, rn=ln-~' (3.31) 

Theorem 4: Let 

(3.32) 

Dn+ 1eDn_ 3 DneDn_ 2 

or in components 

P =s®det~, 
(3.33) 
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I 
and kis defined bY'1 +'2 + ... + 'k-l <i<,rl +'2 + ... 
+ r k' Then P = A. Please note the difference in sign between 
(3.15) and (3.33) as well as the difference in index in the sec
ond term. 
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Outline olthe proof The proof proceeds by induction on 
II as before. The definitions of generalized signatures and 
braces { I of (3.17) are extended to spinor representations 
and I" is again computed directly using the expansion of de
terminant (3.32) along the first column. Proceeding along 
the lines of the proof of Theorem 3, we find that we must 
calculate 

I. +n-I 

I" = L (Da eD -2/. +a) ® (/1 - a,/2,···,/nH - It-I. 
a=1 

(3.34) 

The tensor products are evaluated with the help of the 
weight diagram of dp in (3.5) and collected with the brace 
notation (3.17). After simplifications analogous to those 
made in the proof of Theorem 3, we find 

(3.35) 

as announced. 
In both Theorems 3 and 4, we have decomposed all 

representations ofSO(2n + 1) in terms of d l , d2, ••• , dn ands, 
even though d n is not on the list of basis representations in 
(1.6b). We have done so becaused l , d 2 , ••• , dn andsform the 
natural set in terms of which the decomposition formulae are 
simplest. In addition, this presents no loss of generality since 
d n itself is expressed in terms ofthe set of basis representa
tions (1.6b) by a simple formula, which we shall now derive. 
From (3.10), we deduce 

s®s= E!) L (17I ,172,···,17n )· (3.36) 
Uj= 0,1 

Cancelling nondominant signatures leaves us with 

(3.37) 

so that 
n-I 

dn = s®s6 L dp • (3.38) 
p=O 

IV. THE SYMPLECTIC GROUP Sp(n) 

The representation theory for the symplectic group is 
much simpler than that for SO(2n + 1), since there are no 
spinor representations. Moreover, the decomposition for
muale as well as their proof are very similar to the case of 
SO(2n + 1). For this reason, we just quote the results for the 
decomposition formula; the reader should have no problem 
reconstructing the proof. 

Multiplication of a basis representation with an 
arbitrary representation 

The weight diagram ofthe representation dp with signa
ture (1,1, ... ,1,0, ... ,0) (forp = 1, ... , n) is deduced from (l.4c) -----p 

and can be conveniently expressed as 

Xd
p 

= (dp - d p _ 2 )1do' (4.1) 

The function d p has been defined in (3.2), and the resulting 
weight diagram of dp is found with the help of (3.4) 
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[pI2] 

Xd
p 

= L C~_p+2aR (p - 2a) 
a=O 

[lp-2)/2] 

L C~_p+ 1 +2a R (p - 2 - 2a). (4.2) 
a=O 

Here R is the function defined in (3.4b), and the product of R 
with the character of a representation with signature 
(/1'/2""'/n) is given by 

(4.3) 

The tensor product of dp with the representation A is then 
simply obtained combining (4.2) and (4.3). 

The decomposition formula 

Let A be a representation with signature (/1'/2' ... ,J,,). 
Define the integers ri by 

ri=J:-J:+I' i=1, ... ,n-1, rn=ln (4.4) 

as well as the sequence of reducible representations 

O<k<n, 

n<k<2n, 
k>2n or 
k<O, 

Theorem 5: Define 

1"= 

or in components 

I" = ® det fiJ 

DneDn_ 4 

Dn+ leDn_ 1 

fiJ ij =Di-i+keDi-i+k-2-2f, 

if k odd, 

if keven, 

Dn_ 1 eDn_ 3 

DneDn_ 2 

(4.5) 

(4.6) 

(4.7) 

and k is defined by r l + r2 + ... + rk_1 <i<rl + r2 + ... 
+ rl • Then I" =,1. 

V. THE ORTHOGONAL GROUP SO(2n) 

According to whether!n = ° or #0, the characters of 
the group SO(2n) defined in (l.4d) correspond to irreducible 
or reducible representations. When!n = 0, the representa
tions is non-self-associate, and the character is simple. When 
!n #0, the representation is self-associate, reducible into two 
associate irreducible representations of the same dimension, 
and the character is said to be a double character. We shall 
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show how to construct the tensor product of an arbitrary 
representation Ii with a basis representation (whether self
associate or not) and if the basis representation is reducible, 
we shall also show how to find the product of its irreducible 
associate components with Ii. A decomposition formula will 
be proven for both self-associate and non-self-associate re
presentations. We have not found a decomposition formula 
for the irreducible components of a self-associate representa
tion. 

Multiplication of a generating representation with an 
arbitrary representation 

We shall need the following generating representations 

dp = (1,1, ... ,1,0, ... ,0), 
-..

p 

p = 1, ... ,n - 1, 

dn=d,;f!Jd n-, s=s+f!JS-. 

The representations ± are associate to each other, whereas 
sand dn are self-associate. When n is odd, ± are actually 
complex conjugates, whereas, for n even, both + and -
are real. We first determine the weight diagrams of dp and S 

and then indicate how those of S ± and d n± may be gotten. 
From Weyl'sftrst formula (l.4d) and using the defini

tion of the function d p in (3.2), we see that 

Xd
p 

= dp/do. (5.2) 

With the help of (3.4b), Xd may be expressed in terms of R: 
p 

[p/2J 

Xd
p 

= .2 C~_p+2aR (p - la). (5.3) 
a=O 

The double character of the spinor representation is given by 

Xs = .2 €f,/2~2/2"'E~n/2. (5.4) 
Ui= ± 1 

The quantity u defined as 
n 

U = II U i (5.5) 
i=l 

may take the values ± 1 in (5.4). The characters of s+ (resp. 
s-) are also defined by (5.4), but now U must be restricted to 
be 1 (resp. - 1). The expression for the character of d n± is 
more complicated, and we shall not give it here. It may be 
deduced from the relation 

(5.6) 

For representations within = 0 and self-associate re
presentations, a generalized signature may be defined: 

_ lEI, + E -/', ... ,Eln + E -/nl 
X(f"t,···,fn) - 10 10 (5.7) 

IE' + E- ',. .• ,11 
even if(!J,h, ... ,/,,) is not dominant. For the two irreducible 
associate representations into which a self-associate repre
sentation decomposes, similar generalized signatures may be 
defined, but we shall not need these here. 

Tensor multiplication is effected using formulae (5.3)
(5.4); the product of R with the character of an arbitrary 
representation Ii with signature (!J'/2, .. .fn) is given by 

R(q)X" 

and the product ofXs andx" is 

XsX" = .2 F(u)X([,+u,/2, ... ,fn+ u/ 2)· (5.9) 
a j = ± I 

The integers G (u) and F (u) are present to obtain the correct 
counting of self-associate and non-self-associate representa
tions. They are determined from (3.4b) and (5.7) using the 
invariance under the action of the Weyl group: first we make 
(/1'/2'''''/n) dominant. For the integer G we have 

G(u) = 1 ifiq =l=n or Un =1= - 1, 

G(u) = 1 if Un = - 1 and/,. > 1, 

G(u) = 2 if Un = - 1 and!n = 1, 

G(u) = 0 if Un = - 1 and!n = O. 

For the integer F(u) we have 

F(u) = 1 if Un = 1, 

F(u) = 1 if Un = - 1 and!n =I=~, 

F(u) = 2 if Un = - 1 and/,. =~. 

(5.10) 

(5.11) 

Products with the representationss+ or s- are obtained 
by making the appropriate restrictions on u given in (5.9). 

As an example of these multiplication rules, one may 
compute the following product for SO(lO).1O [We use the 
definition R (q) = tr p(q).] 

(1,1,1,1,0) ® (3,2,2,2,1) = 1P(4) + 3p(2) + IOp(O)] ® (3,2,2,2,1), 

9 

p(4) ® (3,2,2,2,1) = (4, {2,2,2,1 }3± ) f!J (3,{2,2,2,1}~ ) f!J (2, [2,2,2,1} 3± ) 

= (4,3,3,3,1) + (4,3,3,2,2) + 2(4,3,3,2,0) + 2(4,3,2,1,0) 

+ (4,3,3,1,1) - (4,3,2,2,1) + (4,3,1,1,1) - 2(4,2,2,2,2) - 4(4,2,2,2,0) + 2(4,2,1,1,0) 

- (4,2,2,1,1) + (4,1,1,1,1) + (3,3,3,3,2) + 2(3,3,3,3,0) + 2(3,3,3,1,0) - (3,3,2,2,2) 

- 2(3,3,2,2,0) + 2(3,3,1,1,0) - 2(3,2,2,1,0) + 2(3,1,1,1,0) - 2(2,2,2,2,2) - 4(2,2,2,2,0) 

- (2,2,2,1,1) + (2,1,1,1,1) + 2(2,2,1,1,0), 

p(2) ® (3,2,2,2,1) = (4,[2,2,2,1} 1) + (3,[2,2,2,1 }2) + (2,[2,2,2,1} 1) 

= (4,3,2,2,1) + (4,2,2,1,1) + (4,2,2,2,2) + 2(4,2,2,2,0) 

+ (3,3,3,2,1) + (3,3,2,1,1) + (3,3,2,2,2) + 2(3,3,2,2,0) + 2(3,2,2,1,0) 

- (3,2,2,2,1) + (2,2,2,2,2) + (2,2,2,1,1) + 2(2,2,2,2,0) - (3,2,2,2,1) + (3,2,1,1,1). 
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Putting all together, we obtain 

(1,1,1,1,0) ® (3,2,2,2,1) = (4,3,3,3,1) + (4,3,3,2,2) + 2(4,3,3,2,0) + 2(4,3,2,1,0) 

+ (4,3,3,1,1) + 2(4,3,2,2,1) + (4,3,1,1,1) + (4,2,2,2,2) + 2(4,2,2,2,0) + 2(4,2,1,1,0) 

+ 2(4,2,2,1,1) + (4,1,1,1,1) + (3,3,3,3,2) + 2(3,3,3,3,0) + 2(3,3,3,1,0) + 2(3,3,2,2,2) 

+ 4(3,3,2,2,0) + 2(3,3,1,1,0) + 4(3,2,2,1,0) + 2(3,1,1,1,0) + (2,2,2,2,2) + 2(2,2,2,2,0) 

+ 2(2,2,2,1,1) + (2,1,1,1,1) + 3(3,3,2,1,1) + 4(3,2,2,2,1) + 3(3,3,3,2,1) + 2(2,2,1,1,0) 

+ 3(3,2,1,1,1). (5.12) 

With the help of the tables of dimensions of representations,9 we may check that dimensions work out correctly: 

210X 50688 = 945 945 + 660 660 + 1698840 + 1048576 

+ 882 882 + 2X 848925 + 242 550 + 90090 + 274 560 + 143000 

+ 2X 199 017 + 17325 + 84942 + 165 165 + 210 210 + 128700 

+ 2X 189189 + 73 710 + 2X72 765 + 8085 + 2772 + 8910 

+ 2X6930 + 1050 + 3X 128700 + 4X50 688 + 3X219 648 + 5940 

+ 3X23 040. 

The decomposition formula for nonspinor 
representations simple and double characters 

Let A be a representation with (dominant) signature 
(f1'/2""'/n)1O and define the sequence of representations 

O<.k<.n, 

n<.k<.2n, 

Ok =dk 

Ok =d2n - k, 

k>2n or k <0, Ok = O. 

(5.13) 

Note that all nonzero representations in this sequence are 
irreducible and that dn is self-associate. We shall now prove 
the following decomposition theorem in the case of non
spinor representations. 

Theorem 6: Let 

fL = ® det.,@' , 
(5.14) 

!iJ jj = (OJ _ j+ k Ell OJ + j+ k _ 2f,)I( 1 + OJ,f, ) 

and let k be defined by II - Ik < i<JI - Ik + I' Then fL = A. 
Proof As for the other three classical groups, the proof 

proceeds by induction on/l . Expansion of determinant (5.14) 
along the first column and the use of generalized signatures 
reduce the calculation of fL to the evaluation of the following 
expression: 

I, + n-I 

fL= I (Oa EllOa_2/,+2) 
a=l 

® (fl - a'/2""'/n)( - l)a - I. (5.15) 

To work out the products in (5.15), we use (5.8) and rearrange 
different contributions to the product of R (q) and X.Ie with the 
help of the brace notation introduced in (3.17). 

p(q) ® (fl - a,/l,···,/n) 

= (fl - a + 1,[ 12""'/n jq±- I) 

Ell (fl - a, [/2""'/n j q± ) 

Ell G(fl - a - 1,[ 12""'/n jq±-I), 

where G is determined by the rules of (5.10): 

10 

G = 0 if a = II + n - 1, 

G = 2 if a = II + n - 2, 

G = 1 if otherwise. 
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(5.16a) 

(5.16b) 

I 
Then we make use of (5.3) and obtain 

oa ® (fl - a,/2,···,/n) 
[aI2] 

= I C~_a+2fJ(B~_1 EIlB~ EIlGB~tl), (5.17a) 
p=o 

where G is defined in (5.16b): 

oa - 2/, + 2 ® (fl - a,/2,···,/n) 
[a12] -I, + I 

I c ~ - a + 21, - 2 + 2P 
p=o 

X(B~:~' -I EIlB~+I, -I Ell GB~t1). (5.17b) 

Here we have made use of the quantity 

B~ = (fl -a,[/l'/3""'/n ja±-2fJ). (5.18) 

Shifts in summation variables, the use of Pascal's equality, 
and the explicit definition of G lead to 

fL =fLI EIlfLl' 
[If, + n)12] 

fL I = B g Ell I c P_ I, + 2pB ~ + n _ I ( - tV, + n 
p=o 

[If, + n)/2] 
e I CP_f,I+2fJB~+n_I(_tV,+n, (5.19a) 

p=o 
[I -I, + n)12] + I 

fL2 = I C~_2+2pB~~~=U _ly,+n 
p=o 

II -I, + n)/2] + I 
e " c P - I BP+I,-I(_pf,+n L 1,-2+2P I,+n-I r· 

p=o 
(5.19b) 

Making the substitution P-P - 11 + 1 in (5.19a) and using 
the properties of the binomial coefficients, it can be shown 
that the four P summations in (5.19) precisely cancel, leaving 
only fL = B g = (fl""'/n) = A as announced. 

The decomposition formula for splnor representations 

Finally we shall exhibit a decomposition formula in the 
case of the (always self-associate) spinor representations. The 
proof is completely analogous to the proofs of Theorems 4 
and 6 and will not be given here. We define the same se
quence of representations Ok in (5.13), let A be a representa
tion with signature (fl""'/n)' 
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Theorem 7: Let 

p, = 8 det ~ 8 S, 

~iJ =8t-J+ke6i+J+k-2f.-iO 15.20) 

and let k be defined by 11 - Ik <i<J"1 - Ik+ l' Then p, = A.. 
Please note the difference in sign and the difference in indices 
between 15.20) and 15.14). 

Weyl's second formula, respectively for the unitary and or
thogonal groups. The knowledge of the product of a sym
metric representation with an arbitrary representation then 
suffices to perform the product of two arbitrary representa
tions. This method is very attractive for the unitary groups, 3 

but appears quite involved for the orthogonal groups. 5 

With the Theorems 2-7, we dispose of decomposition 
formulae in terms of the basis representations. In proving 
these relations, we have also shown how to perform the ten
sor product of any of these basis representations with an 
arbitrary representation. Thus, we dispose of an algorithm 
that allows us to compute the tensor product of two arbitrary 
representations, and the rules of this algorithm seem rather 
convenient, even though the calculations remain lengthy. 

VI. APPLICATIONS 

A. Multiplication of arbitrary representations 

Several algorithms exist in the literature for the decom
position into irreducible representations of the tensor pro
duct of two irreducible representations.2

,3,5 If the weight dia
gram of one of the representations is known, Weyl's first 
formula can be used to obtain the irreducible components.2

•
3 

However, the determination of the weight diagram is a noto
riously difficult problem. Zelobenk0 3 and Murnaghan5 use 

To demonstrate the practicality of these rules, we shall 
work out an example of intermediate difficulty: the tensor 
product in Sp(4) of the representations a and fJ with signa
tures 12,1,1,0) and 13,2,2,1). To do so, we use Theorem 5 for 
a: 

I 

IDI Do I" 12,1,1,0)813,2,2,1)= D -D D -D 813,2,2,1) 
,..4 #1,0 #\,3 1 A A. 

= Dl 81D3 - D1) 8 13,2,2,1) -ID4 - Do) 8 13,2,2,1), 

ID3 -Dtl813,2,2,1) = 14,3,3,1) + 14,3,1,1) + 14,3,2,2) + 14,3,2,0) 

+ 14,2,1,0) + 14,2,2,1) + 14,1,1,1) + 13,3,3,2) + 13,3,3,0) + 13,3,1,0) 

+ 13,2,2,2) + 13,2,2,0) + 13,1,1,0) + 12,2,1,0) + 12,2,2,1) + 12,1,1,1) 

+ 213,3,2,1) + 213,2,1,1), 

ID4 - Do) 8 13,2,2,1) = 14,3,3,2) + 14,3,3,0) + 14,3,1,0) + 14,2,2,2) 

+ 14,2,2,0) + 14,1,1,0) + 12,2,2,2) + 12,2,2,0) + 12,1,1,0) + 214,3,2,1) 

+ 214,2,1,1) + 213,3,3,1) + 213,3,1,1) + 213,3,2,2) + 213,3,2,0) + 213,2,1,0) 

+ 213,1,1,1) + 313,2,2,1) + 212,2,1,1). 

Putting all together, we obtain 

12,1,1,0)813,2,2,1) = 15,3,3,1) + 14,4,3,1) + 15,3,1,1) + 14,4,1,1) 

+ 514,3,2,1) + 15,3,2,2) + 14,4,2,2) + 214,3,3,2) + 15,3,2,0) 

+ 14,4,2,0) + 214,3,3,0) + 314,3,1,0) + 15,2,1,0) + 3(4,2,2,0) 

+ (4,2,0,0) + (5,2,2,1) + 4(4,2,1,1) + 2(4,2,2,2) + (5,1,1,1) 

+ 2(4,1,1,0) + 13,3,3,3) + 3(3,3,3,1) + 4(3,3,2,0) + (3,3,0,0) 

+ (2,2,2,2) + 3(3,3,2,2) + 2(2,2,2,0) + 5(3,2,1,0) + 5(3,2,2,1) 

+ 2(2,1,1,0) + (3,1,0,0) + 313,1,1,1) + (2,2,0,0) + (1,1,1,1) 

+ 4(3,3,1,1) + 3(2,2,1,1). 

It is also useful to check the dimensions using the tables9
: 

315X6237 = 213 444 + 122850 + 96 228 + 41250 + 5X65 536 

+ 142 155 + 67 760 + 2X56 628 + 146250 + 66 528 + 2X42 042 

+ 3X29 106 + 36 864 + 3X 16 848 + 4914 + 63 063 + 4X 14 300 

+ 2X 13728 + 9009 + 2X3696 + 4719 + 3X 12 012 + 4X 10010 

+ 2184 + 594 + 3 X 9009 + 2X825 + 5 X 4096 + 5X6237 

+ 2X315 + 594 + 3X 1155 + 308 + 42 + 4X7020 + 3X792. 

I A 

B. A relation between the dimensions of the 
repre .. ntatlons of Sp(n) and splnor representations of 
SO{2n+ 1) 

(3.32) and the difference in definition for Dk andDk. In parti-
cular, the value of the characters ofDk andDk attheidentity 
of the group can be shown to be equal. Indeed, upon using 
formulae (3.4H3.6) and (3.13) on one hand and formulae 
(4.2) and (4.5) on the other, we find that 

Formulae (3.32) and (4.6) have the same formal struc
ture except for the overall tensor product with the spinors in 
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[kl2l 

X (e) =1" (e) = ~ C a 2k-2ack-2a 
Dk Dk L.t n - k + 2a n (6.1) 

a=O 

Substitution of(6.1) into (3.32) and (4.6) yields the following 
result. Let A be an arbitrary representation of Sp(n) with 
dominant signature (l1,/z, ... ,jn)' let A be the representation 
ofSO(2n + 1) with signature (II + ~,f2 + !, ... ,fn + !), and 
let s be the fundamental spinor of SO(2n + 1) with signature 
(~,!, ... ,!). Then we have 

dim A = dims dimA. (6.2) 

In fact, it is also clear from (3.5) and (3.13) that, in thecanoni
cal basis, a more general relation holds 

1'A (h) = 1's(h )1'.«h), (6.3) 

where h is an element of the Cartan subgroup, parametrized 
by the angles r/ll' ... , r/ln . 

C. Restriction of a representation to a subgroup 

Let G be any of the four classical groups, and let Go be 
any of its classical nontrivial subgroups. We wish to deter
mine the irreducible components of the restriction of the 
representation A of G to Go. If, by classical methods, we can 
derive the restriction of the basis representations of G to the 
subgroup Go, then we can calculate the restriction of any 
representation by Theorems 2-7. 

We shall treat the following simple example: 

G = SU(2n), Go = SO(2n). 

The restriction of the basis representations ofSU(2n) to 
SO(2n) are irreducible and given byll 

dtlsol2n) = c5f, k = 1, ... ,2n, (6.4) 

wherec5k is defined by (5.13). The restriction ofa representa
tion ofSU(2n) is then given by determinant (2.14) in which 
d t is replaced by c5f. It is usually not necessary to fully work 
out the products in this new determinant, as often irreduci
ble representations ofSO(2n) may be recognized in it. Con
sider, e. g., the restriction of the representation (2,2,2,1,1,0,0) 
of SU(8) to SO(8), 

I
dA d11 Ic5

D 

c5
D

I 
(2,2,2,1,1,0,0,0)A I SOI8) = d:

6 
c5 ~2 c5 ~3 ' dt SOI8) 

c5 f ® c5 f = (2,2,2,0) + (2,2,1,1) + (2,2,0,0) + 2(2,1,1,0) 

+ (2,0,0,0) + (1,1,1,1) + 2(1,1,0,0) + (0,0,0,0), 

c5 f ® c5 f = (2,2,0,0) + (2,1,1,0) + (2,0,0,0) + (1,1,1,1) 

+ (0,0,0,0) + (1,1,0,0), 

(2,2,2,1,1,0,0,0)A I SOI8) = (2,2,2,0)D + (2,2,1,I)D 
+ (2,I,I,0)D + (I,I,O,O)D' (6.5) 

Using the tables,9 we can easily check that the dimensions 
work out: 

2352A = 840D + 567D + 567D + 350D + 28D. (6.6) 

In a completely analogous fashion, the restrictions of 
the basis representation ofSU(2n + 1) to SO(2n + 1) are also 
irreducible, and can be used to calculate the restrictions of 
arbitrary representations to SO(2n + 1). 

The restrictions of the basis representations ofSU(2n )to 
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SpIn) are reducible and can be easily derived using conven
tional methods: 

d t ISPln) = D f, (6.7) 

where Dk has been defined in (4.5). We shall illustrate this 
restriction with an extremely simple example, the decompo
sition of the representation a ofSU(6) with signature 
(2,2,1, I ,0) to Sp(3): 

aI SP(3 ) = I~~ ~~ I" = I~~ ~!I" 
5 4 Sp13) 1 2 

Working out these products, one finds 

(2,2, 1, 1,0,0)A I Sp(3) = (2,2,0)e ~ (2,1,I)e ~ 2( 1,1 ,Ole ® (O,O,O)e 
(6.8) 

with dimensions 

189A = 90e + 70e + 2X 14e + Ie· 

The peculiar property of this algorithm is that we only need 
to know the restrictions of afinite number of representations 
to compute that of all representations. The procedure can be 
easily generalized to arbitrary classical groups G and Go. 

Note added in manuscript: The problem of decompos
ing a given representation into a finite set of basis representa
tions has also been discussed by A. J. Feingold, Proc. Am. 
Math. Soc. 70, 109 (1978). I thank Professor J. Patera for 
drawing my attention to this work. 
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The Caudrey-Dodd-Gibbon equation is found to possess the Painleve property. Investigation of 
the Backlund transformations for this equation obtains the Kuperschmidt equation. A certain 
transformation between the Kuperschmidt and Caudrey-Dodd-Gibbon equation is obtained. 
This transformation is employed to define a class of p.d.e. 's that identically possesses the Painleve 
property. For equations within this class Backlund transformations and rational solutions are 
investigated. In particular, the sequences of higher order KdV, Caudrey-Dobb-Gibbon, and 
Kuperschmidt equations are shown to possess the Painleve property. 

PACS numbers: 02.30. + g 

1. INTRODUCTION 

In Ref. 1 the Painleve property for partial differential 
equations was defined. Briefly, we say that a partial differen
tial equation has the Painleve property when the solutions of 
the p.d.e. are "single-valued" about the movable, singularity 
manifold and the singularity manifold is "noncharacteris
tic." To be precise, if the singularity manifold is determined 
by 

(Ll) 
and u = u(Zt, ... ,zn) is a solution of the p.d.e., then we require 
that 

'" u = rpa L uj rpi, (1.2) 
j=O 

where uo#O, rp = rp (Zt, ... ,zn)' uj = uj(Zt,. .. ,zn) are analytic 
functions of (Zj) in a neighborhood of the manifold (1.1), and 
a is an integer. The requirement that the manifold (1.1) be 
noncharacteristic insures that the expansion (1.2) will be well 
defined, in the sense of the Cauchy-Kowalevsky theorem. 
Substitution of(1.2) into the p.d.e. determines the value(s) of 
a, and defines the recursion relations for uj , j = 0,1,2, .... 
When the anzatz (1.2) is correct, the p.d.e. is said to possess 
the Painleve property and is conjectured to be integrable. 
The "Painleve conjecture," as originally formulated by 
Ablowitz et al., 2 states that when all the ordinary differential 
equations obtained by exact similarity transforms from a 
given partial differential equation have the Painleve proper
ty, then the partial differential equation is "integrable." The 
above definition of the "Painleve property" allows this con
jecture to be stated directly for the partial differential equa
tion. 

In Ref. 3 Backlund transformations were obtained by 
truncating the expansion (1.2) at the "constant" level term. 
That is, we set 

U = Uo rp - N + U t rp - N + t + ... + UN (1.3) 

and find, from the recursion relations for uj ' an overdeter-

aj This work supported by Department of Energy Contract DOE DE-AC03-
81ERI0923 and AFOSR Grant No. AFOSR 83-0095. 

mined system of equations for (rp,uj,j = O,I, ... ,N), where UN 
will satisfy the (original) p.d.e. Upon solving the overdeter
mined system, it was found, for those equations considered, 
that rp satisfied an equation formulated in terms of the 
Schwarzian derivative: 

[rp;xJ = ~ (rpxx) _ ~ (rpxx)2. 
ax rpx 2 rpx 

The invariance of (1.4) under the Moebius group 

a¢+b 
rp = c¢+d' [ rp;x J = [¢;x J 

motivates the substitution 

(1.4) 

(1.5) 

rp = Vt /V2, (1.6) 

by which the Lax pairs may be found.3 

Investigation of a certain class of equations formulated 
in terms of the Schwarzian derivatives revealed that these 
equations have the Painleve property about movable, singu
larity manifolds of order - 1. However, the occurrence of 
an additional type of movable singularity prevents this class 
of equations from identically possessing the Painleve proper
ty. Hence, nonintegrable behavior can arise.2 

In this paper a restriction (symmetry) is imposed that 
allows one to conclude that, when an equation is formulated 
in terms of the Schwarzian derivative and has this "symme
try," the equation identically possesses the Painleve proper
ty. Within this class of equations are found the KdV, Cau
drey-Dodd-Gibbon and Kuperschmidt equations. Further
more, the "symmetry" property and invariance under the 
Moebius group allow effective Backlund transforms to be 
defined for these equations. In particular, rational or alge
braic [in (x,t)] solutions can be generated iteratively. 

In the next section, the Painleve property and Backlund 
transformation for the KdV equation are reviewed for later 
reference. 

In Sec. 3 the Painleve property and Backlund trans
forms for the Caudrey-Dodd-Gibbon equation are present
ed. From these considerations the Kuperschmidt equation is 
found. The transformation between the Caudrey-Dodd
Gibbon and Kuperschmidt equations can be regarded as a 
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certain "symmetry" under which these equations are 
"dual." 

In Sec. 4, the "symmetry" discovered in Sec. 3 is em
ployed to define a class of p.d.e.'s that possess the Painleve 
property. The KdV equation is shown to be contained in this 
class of equations and self-dual w.r.t. this symmetry. Then, 
the sequences of higher order KdV, Caudrey-Dodd-Gib
bon, and Kuperschmidt equations are found to be within this 
identically Painleve class of equations and Backlund trans
formations are obtained for these sequences of equations. 

In Sec. 5 rational [in (x,t )] solutions are constructed for 
several equations. In Appendix A the Lax pair for the Cau
drey-Dodd-Gibbon equation is derived. In Appendix B 
further considerations relating to the seventh-order equa
tions are presented. 

2. THE KORTEWEG-DE VRIES EQUATION 

The KdV equation 

Ut + UUx + Uxxx = 0 (2.1) 

possesses the Painleve property. I The expansion about the 
singularity manifold has the form 

00 

-2 ~ j U = ffJ ~ uj ffJ . (2.2) 
j=O 

The "resonances" occur at 

j = - 1,4,6, (2.3) 

and (ffJ,U4,U6) are arbitrary functions of (x,t ) in the expansion 
(2.2). We now assume the following "Backlund" transforma
tion: 

(2.4) 

and find the following overdetermined system of equations, 

(i) Uo = - 12ffJ;, 
(ii) u1 =I2ffJxx' 
(iii) ffJx ffJt + ffJ ; U2 + 4ffJx ffJxxx - 3ffJ!x = 0, (2.5) 

(iv) ffJxt + ffJxx U2 + ffJxxxx = 0, 

(v) u2t + U2U2x + U2xxx = 0, 

iP 
U = 12 -2 In ffJ + u2 ax 

and, by eliminating U2 in (2.5 iii,iv), 

ffJ,IffJx + { ffJ;X I = A, 
where 

(2.6) 

(2.7) 

(2.8) 

is the Schwarzian derivative of ffJ. Equation (2.7) is invariant 
under the Moebius group: 

at/J + b 
ffJ = et/J + d' 

{ ffJ;X J = {r/r,x J • 

The substitution2 

14 

ffJ = V1/V2' where (Vl,V2)satisfy 

Vxx = av, Vt = bvx + cv, 

J. Math. Phys., Vol. 25, No.1, January 1984 

(2.9) 

(2.10) 

(2.11) 

readily obtains the Lax pair: 

a= -i(u2 +A), 

b = - u2/3 + j A, 

c = ux /6. 

As noted in Ref. 2, Eq. (2.7) has an expansion 
00 

ffJ = ",-I L ffJdl 
j=O 

about a singularity manifold 

f/;(x,t) =0. 

The resonances occur at 

(2.12) 

(2.13) 

(2.14) 

j = - 1,0,1 (2.15) 

and the compatability conditions atj = 0 and 1 are satisfied 
identically. Thus, Eq. (2.7) has the Painleve property about 
singularities of the form (2.13). However, we note that the 
vanishing of ffJx in (2.7) introduces the possibility of new, 
movable, singularities. This point will be resolved in Sec. 4. 

The most general form of the Backlund transform de
fined by the expression 

ffJ = ffJoit/J + ffJl (2.16) 

can be shown to be equivalent to the Moebius transforma
tion (2.9). Again, an "effective" Backlund transformation for 
equation (2.7) will be defined in Sec. 4. 

3. THE CAUDREY-DODD-GIBBON EQUATION 

The Caudrey-Dodd-Gibbon equation4,s 

u, + ~ (uxxxx + 30uuxx + 6Ou3
) = 0 ax (3.1) 

possesses the Painleve property. The expansion about the 
singularity manifold is of the form 

00 

U = ffJ -2 L Uj ffJj. 
j=O 

There are found to be two solution branches. 
Branch i: Uo = - ffJ ;: The resonances occur at 

j = - 1,2,3,6,10. 

Branch ii: Uo = - 2ffJ ;: The resonances occur at 

(3.2) 

(3.3) 

j = - 2, - 1,5,6,12. (3.4) 

Both branches of the solution possess the Painleve property. 
The Backlund transformation defined for the "branch 

i" form of the solution is 

(3.5) 

The resulting overdetermined system of equations for 
(ffJ,uO'U 1,U2) is found to be 

(i) Uo = - ffJ ;, 

(ii) U 1 = ffJxx' 

(iii) ~ + 6 ffJxxxxx _ 15 ffJxxffJ;= 
ffJ x ffJ z ffJ x 

+ 30 {U2xx + 4 (ffJ: - 3 :~ ) U2 + 6ui} 

John Weiss 
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=0, 

(3.7) 
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=0, 

(v) U2t + ~ (U2xxxx + 30U2U2xx + 6Ou~ ) = o. 
ax 

Using (3.6), Eq. (3.5) is 

a2 

U = -2 In rp + U 2• 
ax 

We note that if 

then 

and 

rp = lit/!, 

~ 
U2 = - In t/! + U 

ax2 

1 rp~ 1 ~xx 
W=u2+ --- =u+ --. 

4 rp; 4 ¢; 

To employ this invariance, we let 

1 rp~ 
u2 = W- ---

4 rp; 

and find 

(i) .!f.!..- + 6~ {rp;.xJ + 19{rp;xJ2 
rpx ax2 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

+30[Wxx +6W2+4{rp;xJW] =0, (3.14) 

(ii) ~(.!f.!..- + ~2 {rp;xJ + ~ (rp;.xJ 2
) 

ax rpx ax 2 

+30W~{rp;xJ=0, (3.15) 
ax 

where {rp;x J is the Schwarzian derivative. To simplify these 
expressions, we let 

{} = {rp;xJ + 6W 

and find 

(i) .!f.!..- + a
2
2 {rp;xJ + 4{rp;.xJ2 

rpx ax 

+ 5({}xx + {}2 + 2{rp;xJ{}) = 0, 

(ii) ~ (~ + ~ {rp;.x} + 4{rp;.x} 2) 
ax rpx ax2 

+ 5{}~ {rp;.x J = O. 
ax 

From the consistency of (3.17) and (3.18) 

{}2 2 
{}{}xx - _x + _{}3 + {rp;.x}{} 2 = c. 

2 3 

Herein, we shall consider only the trivial solution 

{}= C= 0, 

.!f.!..- + ~2 (rp;xj + 4{rp;xJ2 = 0, 
rpx ax 
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(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

U
2 

= - 1. rpxxx. (3.22) 
6 rpx 

It can be shown that Eqs. (3.21) and (3.22) imply that U2 

satisfies the Caudrey-Dodd-Gibbon equation. Actually, as 
is explained in Appendix A, (3.21) and (3.22) constitute a Lax 
pair for the Caudrey-Dodd-Gibbon equation. 

We now let 

rp = vllv2, where (V I,V2) satisfy (3.23) 

Vxx = - ~av, Vt = bvx + cv. (3.24) 

Equations (3.21), (3.23), and (3.24) imply that 

at + ~ (axxxx + ~ a; + 30aaxx + 6003
) = o. 

ax 2 
(3.25) 

Equation (3.25) is known as the Kuperschmidt equa
tion.6 Analysis reveals that it possesses the Painleve proper
ty. The expansion about the singularity manifold is ofthe 
form 

00 

a = t/!-2 r aj t/!j. (3.26) 
j=O 

Again, there are two branches. 
Branch i: aD = - ¢;/2: The resonances occur at 

j = - 1,3,5,6,7. (3.27) 

Branch ii: aD = - 4¢;: The resonances occur at 

j= -7, - 1,6,10,12. (3.28) 

We define the Backlund transformation about branch i: 

a = aol~ + alit/! + a2 

and find that 

a2 = - ! {t/!;.x I - + ~, 
A + ~2 {t/!;.xl + 1. {t/!;.x12 = o. 
t/!x ax 4 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

We note that on account of the resonance structure, 
(3.27), (3.29)-(3.32) is not an overdetermined system. 

Letting 

t/! = WIIW2, where (WI' W2) satisfy (3.33) 

Wxx = - 6uW, Wt = bWx + cW, (3.34) 

it is found that u satisfies Eq. (3.1). 
Furthermore, if 

v = rpxxl{{Jx = - !t/!xxlt/!x, (3.35) 

where rp satisfies Eq. (3.21) and t/! satisfies Eq. (3.32), then 

Vt + ~ (vxxxx + 5vxvxx - 5v2vxx - 5vv; + VS
) = O. (3.36) 

ax 
The above implies the nonlinear transformation found 

in Ref. 6. For our purposes we note that (3.35) provides the 
transformation: 

(3.37) 

Equation (3.37) indicates that Eqs. (3.21) and (3.32) 
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identically possess the Painleve property. Each equation has 
the Painleve property about "poles" or order - V and, 
aboutthe possible movable singularities (where tP x = 0 or tp x 

= 0), the transformation (3.37) provides the appropriate re-
presentation ofthe solution. For instance, (3.37) refers the 
behavior of tp at points where tp x = 0 to the expansion of tP at 
points where tP x -- 00 (the poles of tP). And, as is explained in 
the next section, this allows us to conclude that tp is single
valued at these points. 

4. AN INTEGRABLE CLASS OF PARTIAL 
DIFFERENTIAL EQUATIONS 

An equation 

tpJtpx + B ({ tp;x j) = 0, (4.1) 

where B ({ tp;x ) ) is a constant coefficient multinomial in 
(a i 1 a~) {tp;x}, will identically possess the Painleve property 
when there exists a transformation 

(4.2) 

where m is rational and negative and tP satisfies an equation 
of the form (4.1). The form ofEq. (4.1) is sufficient to guaran
tee the existence of "meromorphic" expansions about the 
"poles" of order - 1. That is, 

00 

tp = {} -I L tpi{}i, (4.3) 
j=O 

where the resonances occur at} = - 1,0,1, ... ,n + 1 and n is 
the order ofthe highest derivative (of the Schwarzian) ap
pearing in B. The transformation (4.2) provides a representa
tion of the solution in a neighborhood ofthe points where 
tpx = 0 (tPx = 0) by associating these points with the behav
ior of solutions of the "dual" equation in a neighborhood of 
their singularities. 

To see the validity of the expansion (4.3), we observe 
that for singularities of the form (4.3) the expansion for the 
Schwarzian derivative begins at the constant level (is nonsin
gular). And, consequently, the (n) derivatives of the Schwar
zian merely "shift" the recursion relations to the appropriate 
higher coefficient, tp n + 2' adding one resonance for each der
ivative. For particular equations ofthe form (4.1) higher or
der poles (tp - m ) can occur. We shall find that these singular
ities can be "reduced" to (4.3) through the invariance of(4.1) 
under the "symmetry" (4.2) and the Moebius group. 

Consider forms of B ({ tp;x ) ) that are linear in the highest 
order derivative of the Schwarzian and order the terms de
fining B ({ tp;x}) into expressions that are homogeneous of the 
same degree under the change of variable 

X~-IX, (4.4) 

{tp;X} = .i... (tpxx) _ ..!.. (tp:x ) ~2{ tp;x}. (4.5) 
ax tpx 2 tp x 

These are 

16 

(i) [tp;x j, 

(ii) a [ j ax tp;X, 

(1'1'1') ~ [ j 1 [ }2 -2 tp;x + /I. tp;x , 
ax 
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(4.6) 

a3 a 
(iv) -3 {tp;xj +A {tp;xj- {tp;x}, ax ax 

a4 ~ 
(v) ax4 {tp;x} +a{tp;x} ax2 {tp;xj 

+p(! {tp;x}Y +A {tp;XJ3, 

etc. 
We consider equations (4.6i,ii,iii,v). Therefore, let 

(4.7) 

and 

tpx = 1/1:. (4.8) 

Then 

{ j tPxxx (m2 ) rfxx tp;x =m-- - - +m -
tPx 2 rfx 

(4.9) 

and 

m_l.m -I_I. +.i... _I.m (m tPxxx _ (m2 + m) rfxx) = O. 
'f'x 'f'xt ax 'f'x tPx 2 rfx 

Direct calculation obtains 

m ! (tPt + tPxxx - ~~: - AtPx) 

+ (2m _ m
3 

_ 3m) tP!x =0. 
2 2 rfx 

For Eq. (4.11) to be of the form (4.1), 

2m - m3/2 - 3ml2 = 0 

or 

m =0, ± 1. 

Then, if 

tpx = tPx- l
, 

tP will satisfy 

tPt1tPx + (tP;xj =A, 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

assuming the constant of integration introduced in expres
sion (4.11) is to vanish. For instance, we can assume that all 
solutions approach time-independent constants when x ap
proaches - 00. 

Thus, Eqs. (4.11), (4.14), and (4.15) define a Biicklund 
transformation that will be employed, with the invariance 
under the Moebius group, in Sec. 5 to generate rational solu
tions. Equation (4.7) is directly related to the KdV equation 
(Sec. 2). 

Next, it can be readily shown that the equation 

!I!.!...- + ~ (tp;X j = 0 
tpx ax 

(4.16) 

does not have a transformation 

tpx = 1/1: 
that remains within the class (4.1). This equation, studied in 
Ref. 3, is transformable to an equation with complex reson-
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ances (self-similar natural boundary)7 and is thought to be 
nonintegrable. 

It is useful to observe that, by Eq. (4.9), a transformation 
of type (4.2) does not change the degree of homogeneity (4.4) 
of the expressions in (4.6). Thus, if a transformation exists, it 
can only effect the value of the coefficients in (4.6). 

Equations of the form 

!fr. + ~ I~;xl +A 1~;x12 = 0 (4.17) 
~x ax2 

have a transformation 

~x = 1/1: 
that preserves the formulation (4.1) when 

(i) m = - 1, A = ~, 
(ii) m = - 2, A = i, 
(iii) m = -~, A = 4. 

(4.18) 

(4.19) 

Equation (4. 19i) is (essentially) the first higher-order 
(fifth degree) KdV equation.2 Equation (4. 19i,ii) are (ob
tained from) the Kuperschmidt and Caudrey-Dodd-Gib
bon equations, respectively (see Sec. 3). Then, the Kupersch
midt equation and Caudrey-Dodd-Gibbon equation are, in 
a sense, "dual" under the transformation 

rPx = ~ x- 2. (4.20) 

The KdV equation (4.7) and fifth-degree higher-order KdV 
equation (4. 19i) are then "self-dual." 

We note that the property of possessing a transforma
tion within the class (4.1) is additive (by construction) for 
expressions with the same value of exponent m. 

Thus, by (4. 19i) and (4.14) the equation 

!fr. + ?2 I~;xl + 2
3 1~;x12 + A I~;xl = 0 (4.21) 

~x cJx 

has, for any A, an (auto) Backlund transform 
.1,- I 

~x = 'f'x • (4.22) 

Finally, the equation 

!fr. + ~ I~;xl + al~;xl ~ I~;xl 
~x ax4 ax2 

+p(! {~;xlr +A 1~;x13 (4.23) 

has a transformation 

~=I/I: ~~ 
preserving the form ofEq. (4.23) when 

(i) m = - 1, a = 5, P =~, A =~, 

(ii) m = - 2, a =~, P =~, A = i, (4.25) 

(iii) m = -!, a = 12, P = 6, A = ¥. 
These are higher order KdV, Kuperschmidt, and Caudrey
Dodd-Gibbon equations, respectively. Further information 
concerning Eq. (4.23) is contained in Appendix B. 

We now consider the sequence of higher-order KdV 
equations determined by the "Lenard recursion relation"g 

17 

a _ b n + I = b n + 2ub n + u b n ax xxx x x' 
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(4.26) 

where 

U t + ~bn+l(u)=O 
ax (4.27) 

for n = 1,2,3, ... are the sequence of higher-order KdVequa
tions and 

bO = 1, 

b l =U, 

b 2 = Uxx + ~U2, 
b 3 = Uxxx" + 5uuxx + ~u; + ~U3. (4.28) 

Now inspection ofEqs. (4.7), (4.17), and (4.23) leads us 
to formulate the following. 

Theorem 1: The sequence of higher-order KdV equa
tions 

(4.29) 

for n = 0,1,2, ... has the following Backlund transformation: 

~ 
u = 4 -2 In ~ + U2, (4.30) ax 
U2 = _ ~ (~xx) _ ~ (~;u;)2, (4.31) 

ax ~x 2 ~x 

~ + b n+ 1!I~;x}) = O. (4.32) 
~" 

Furthermore, 

W = I~;xl (4.33) 

(and u2 ) satisfies Eqs. (4.29) and (4.32) is invariant under the 
transformation 

~" = rP,,- I. (4.34) 

Note: To simplify the statement of the above results, we 
require the sequence of bn to be defined by precisely Eq. 
(4.26). "Scalings" in the argument "u" ofEq. (4.26) is essen
tial for the definition of Eq. (4.32), but not for Eq. (4.29). 

Proof: We prove the above by the following observa
tions: For each n, let 

V= ~x"/~,,. (4.35) 

Then Eq. (4.32) obtains the "higher-order modified KdV 
equation" 

Vt + ! (! + V) b n+ I(V" - ! V2) = 0, (4.36) 

where 

W = I~;xl = V" - !V2
• 

From Eqs. (4.36) and (4.37) we find that 

( a3 a ) Wt + -3 +2w- +Wx bn+l(w) =0, ax ax 
or, using Eq. (4.26), 

Wt + ~bn+2(W)=0. ax 

(4.37) 

(4.38) 

(4.39) 

This equation (4.32) implies that w is a solution of Eq. 
(4.29). From Eqs. (4.31) and (4.35) 

(4.40) 
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Now, if 

then 

(4.41) 

(4.42) 

(4.43) 

Hence, both U2 and liJ will be solutions of Eq. (4.29) if Eq. 
(4.32) is invariant under (4.41), or equivalently, ifEq. (4.36) is 
invariant under (4.42). 

To see this, we let 

a 
D= -, (4.44) ax 
Mv = D(D + V), (4.45) 

Lv =D-I(D- V)Mv, (4.46) 

and find that the Lenard relationship (4.26) becomes 

b n+2(Vx -!V2)=Lv bn + l (Vx _!V2
) (4.47) 

while Eq. (4.36) is 

V, + Mv b n + I( VX - ! V2) = 0. (4.48) 

The condition of in variance of (4.48) under (4.42) reads 

Mv b n + I( VX - ! V2) + M _ vb n + I( - Vx - ! V2) = 0. 
(4.49) 

We verify (4.49) by induction. Previous calculations 
demonstrate (4.49) for n = 0,1. We assume (4.49) with 
n = 0,1,2, ... ,m - 1. Then with n = m and, using (4.47), Eq. 
(4.49) is 

MvLvbm(Vx -!V2)+M_vL_vbm(- Vx _!V2)=0. 
(4.50) 

However, from (4.46), 

MvLv = IvMv, 

where 

Iv =D(D+ V)D-I(D- V). 

Using the identity for constants a,b, 

(4.51) 

(4.52) 

(D + aVlD -ltD + bV) = (D + bVlD -I(D + aV), 
(4.53) 

it is found that 

(4.54) 

and, with (4.51), Eq. (4.50) is 

Iv IMvbm(Vx - !V2) +M _vL_vbm( - Vx - ;V2)J = 0. 
(4.55) 

Since the term in brackets vanishes by assumption, (4.49) is 
verified for n = m. We note that (4.52) is a recursion opera
tor for the higher-order modified KdV equations. 

Equation (4.32) and the invariance (4.34) obtain that 
(liJ,u2 ) are solutions ofEq. (4.29). We now show that Eqs. 
(4.32), (4.31), and (4.30) imply that u [defined in Eq. (4.30)] 
will be a solution of Eq. (4.29), completing the proof of the 
existence of the Backlund transform. 

To begin, we note that Eq. (4.32) is invariant under the 
Moebius group. 

Letting 

<P = 11"" (4.56) 
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we find that'" satisfies Eq. (4.32) and that 

az 
U2 = 4 -In", + u, (4.57) ax2 

a ("'xx) 1 ("'xx)2 a2 

u2 = - - - - - - +4-
2 

In"', (4.58) 
ax "'x 2 "'x ax 

or 

(4.59) 

By the previous calculation Eq. (4.59) implies u satisfies 
Eq. (4.29), completing the proof. 

Remark 1: Equation (4.32) effectively defines three dis
tinct solutions ofEq. (4.29). That is, 

U2,liJ = 1 <p;x 1 
and 

(4.60) 

Remark 2: If we consider the stationary solutions of a 
higher-order KdV equationS Theorem 1 defines Backlund 
transformations for the associated ordinary differential 
equations. Furthermore, to construct solutions of the (n + 2) 
equation 

~bn+2(U) =0, 
ax 

we integrate the (n + 1) equation 

b n+ l(liJ) = ° 
and set 

liJ = 1 <p;x l. 
Then 

<P = V I IV2, 

where VI and V2 satisfy 

(4.61) 

(4.62) 

(4.63) 

(4.64) 

Vxx = - !wV, (4.65) 

defines the solutions (u,u 2 ) of (4.61). 
Thus the solution of the (n + 1) equation is the "poten

tial" in a associated linear, Schrodinger equation, that de
fines the solutions and Backlund transforms for the (n + 2) 
equation. Further consideration of these Backlund trans
forms for (Painleve) ODE's and the iterative construction of 
solutions seems warranted. 

We now generalize Theorem I to allow for the inclusion 
of a spectral parameter, A. 

Theorem 2: The sequence of higher-order KdV equa
tions 

u, + ~bn+2(u) = ° ax 
for n = 0,1,2, ... has the Backlund transformation 

az 
u = 4 ax2 In <P + u2, 

U2 = _ ~ (<Pxx) _ ~ (<Pxx)2 + A, 
ax <Px 2 <Px 

<p, ·1 1 - + a n + I.j b1
( <p;x ) = 0, 

<Px 

John Weiss 

(4.66) 

(4.67) 

(4.68) 

(4.69) 
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where an + I,j = an + l,j(A ), with a summation convention 
overj = O,l, ... ,n + 1. 

Furthennore, 

w = {<P;X} +A (4.70) 

satisfies equation (4.66) and equation (4.69) is invariant un-

fined, completing the proof. 
For reference, we present the following tables: 

j/k 0 2 3 4 

der the transfonn 0 1 

<Px = t/lx- I. (4.71) -A 

Proof: By a previous remark invariance (4.71) follows 2 0 2 -3A 1 

immediately from (4.34). Now, let 3 -1A 3 15A 2 
2" - 5A 

V = <Pxj<px' (4.72) 4 J(A 4 ~A3 ¥A 2 -7A 
Then 

aj.k 

Vt + ...f.. (...f.. + V) an + I,jb j (Vx - J.. V2
) (4.73) j/k ax ax 2 ----+---------------------------

0 2 3 

and 

aJt + 

By (4.26) 

(
OJ a) . b~+ l(aJ - A) = -- + 2(aJ - A) -- + aJx b1(aJ - A). ax3 ax 

Lemma 1: 

where 

and 

ajj = 1, 

af.) = - A ((2j - l)1j)aj-I,O 

aj,k = aj _ I,k _ I - Uaj _ I,k' where k <j. 

Proof: By induction, using (4.26). 

(4.75) 

Now using Eqs. (4.70), (4.71), Lemma 1, and requiring 
that aJ satisfy Eq. (4.66) determines, for each n, the an + I,j' 
j = O,l, ... ,n + 1. 

We find the following triangular system of linear equa
tions for 

a n + I,n+ I 

a n + I.n 

an+l= a n + l .n_ l , 

an + 2•m + I 

an + 2,m am + I,m 

am + 2,k am + I,k 

a m + 2•1 an+I,1 

o o 

1 

o 
1 

(4.76) 

(4.77) 

Since the system (4.77) is always solvable, an + I exists 
for each n, and the Backlund transfonnations are well de-
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3A 

2 lfA 2 5A 

3 ¥A 3 ¥A 2 7A 

We next consider the sequence of higher-order Cau
drey-Dodd-Gibbon and Kuperschmidt equations. Again, 
to avoid unnecessary complexity, we consider these equa
tions with a specific scaling. With reference to Sec. 3, we let 

u--+u/12, 
(4.78) 

a--o/3, 

and find the Caudrey-Dodd-Gibbon equation 

a( 5 53) 0 Ut + - Uxxxx + -UUxx + -U = ax 2 12 
(4.79) 

and the Kuperschmidt equation 

a ( 15 2 20 3) 0 at + - axxxx + 10aaxx + --ax + -a =. ax 2 3 
(4.80) 

From Ref, 9 the sequences of conserved covariants 
(functional gradients of conserved densities) are given by 

Gn+2 = J I(U)6)I(U)Gn , (4.81) 

(4.82) 

for the Caudrey-Dodd-Gibbon and Kuperschmidt equa
tions, respectively, where 

and 

6)1 =D 3 + 2uD + ux ' 

J 1 = D3 + y> 2uD -I + y> -luD2 

+Mu2D- 1 +D- I
U

2), 

(4.83) 

(4.84) 

J2 = D3 + 3(uD + Du) + 2(D 2uD -I +D -luD2) 

+ 8(u2D -I + D -IU2). 

With the nonnalization that we employ, 

Go = 1, Ho = 1, 

John Weiss 
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and Eqs. (4.79) and (4.80) are 

Ut + 61,G,(u) = 0, 

at + 612H,(a) = 0. 
(4.86) 

Furthermore, the respective sequences of higher-order 
equations are given by 

Ut + 61,Gn(u) = 0, 
(4.87) 

at + 612Hn(a) = 0. 

For what follows it is convenient, as was the case for the 
KdV equations, to "factorize" the recursion operators. That 
is, 

and 

61, = (D - W)D(D + WI, 

J, = D -'!(D - W 12)(D + W 12) 
XD(D - W /2)(D + W /2)}D -I, 

612 = (D - V)D(D + V), 

J2 =D-'[(D-2V)(D- V) 

XD(D+ V)(D + 2VllD -I, 

a=Vx -!V2
• 

We now formulate the following. 

(4.88) 

(4.89) 

(4.90) 

Theorem 3: The sequences of higher-order Caudrey
Dodd-Gibbon and Kuperschmidt equations 

Ut + 61,Gn(u) = 0, 
(4.91) 

at + 612Hn (a) = 0, 

for n = 1,2,3,.··, have the following Backlund transforma
tions: 

az 
u = 12-2 Inq; + U2 ' ax 

where 

and 

2 
q;xxx 

U2= - --, 
q;x 

~ + Hn(!q;;x}j =0, 
q;x 

il- + Gn(!tP;x}j =0. 
t/tx 
Furthermore, Eqs. (4.94) possess the symmetry 

(4.92) 

(4.93) 

(4.94) 

tPx = q;x- 2, (4.95) 
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and 

u3 = [tP;x}, 

a3 = [t,6;xJ 

are solutions ofEq. (4.91), respectively. 

(4.96) 

Proof (i) The sequences of higher-order modified Cau
drey-Dodd-Gibbon and Kuperschmidt equations are given 
by 

Vt + MvHnWx -!V2 )=0, 

respectively, where 

W = tPxxltPx' 

and 

Mv =D(D+ V). 

Since 

U3= Wx _!W2
, 

a3 = Vx - ~V2, 

the factorizations (4.88) and (4.89) show 

U3t + 61,Gn (u3) = 0, 

a3, + (3)2Hn(a3) = 0. 

(4.97) 

(4.98) 

(4.99) 

(4.100) 

(4.101) 

(ii) Now if (4.95) is valid, then, as is readily verified, 

U2 = [tP;x}, 
(4.102) 

a2 = {q;;xJ, 

and by the above (u 2,a2 ) solve Eqs. (4.91). Now, the invar
iance of Eqs. (4.94) under the Moebius group, (4.92) and 
(4.93) imply 

(4.103) 

a = - !(iixxxliix - i~xx/~), 
where 

q; = 1Iq;, ii = 1ItP (4.104) 

and (q;,ii) are solutions of (4.94). By the above, (u,a) are solu
tions of(4.91), and (4.92) is well defined if (4.95) is verified. 

(iii) By (4.98), (4.95) is equivalent to the condition 

W= - 2V, (4.105) 

or, using (4.97), to 

2MvHnWx - !V2) + M -2v Gn( - 2Vx - 2V2) = O. 
(4.106) 

We verify (4.106) by induction. Previous calculations dem
onstrate (4.106) for n = 1,2. We assume (4.106) valid for 
n = 1,2, ... ,m; then, by (4.81) and (4.82), 

2MvHm+ I Wx - !V2) + M -2vGm+ d - 2Vx - 2V2) 

= 2MJ2(a)@2(a)Hm-IWx - !V2) 

+M _lJ,(U)@,(u)Gm _ l ( - 2Vx - 2V2), (4.107) 
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where 

a= Vx _!V2, u= -2Vx _2V2. 

However, (4.88) and (4.89) readily obtain 

Mv J,€J, =AvMv' Mv J2€J2 = f/JvMv, 

where 

Av =D(D+ V}D-'{(D- V/2)(D+ V/2) 

(4.108) 

XD(D - V /2)(D + V /2)]D -'(D - V) (4.109) 

and 

f/Jv =D(D+ V}D-'{(D-2V)(D- V) 

XD(D + V)(D + 2V)]D -'(D - V). 

The identity [by (4.53)] 

A -2v = f/Jv 

(4.110) 

(4.111) 

and (4.106) for n = m - 1 imply that (4.107) vanishes, verify
ing (4.106), (4.105) and completing the proof. 

We note that, in another context, the method offactori
zation of operators has been used to derive Miura transfor
mations and Hamiltonian structures. '0-'2 

Remark 3: It is not known whether the sequences of 
KdV, Caudrey-Dodd-Gibbon, and Kuperschmidt equa
tions exhaust the equations in the class (4.1). Presumably, 
there may exist a sequence of equations for every index pair, 
(m,lIm), m = - 1, - 2, - 3,···. 

We conclude this section with some remarks concern
ing the nature of the higher-order poles for the class of equa
tions considered herein. For instance, the sequence of KdV 
equations, (4.32), can have singularities of the form 

q; = q;o€- N + q;,€-N+' + "', (4.112) 

where it is not assumed that (4.112) is Painleve. 
For simplicity we employ the "reduced" expansion! 

(4.113) 

Now, since (4.32) is invariant under the Moebius group, the 
transformation 

I/! = 1Iq; 

produces a solution which has an expansion 

I/! = I/!o? + I/!,?+' + .... 
Furthermore, the symmetry 

q;x = I/!x-' 
obtains 

(4.114) 

(4.115) 

q;x = q;o€-N+' + "', (4.116) 

q; = q;o€ - N + 2 + .... (4.117) 

If N is an odd integer, after a finite number of steps, 
there results 

q; = q;oc' + .... (4.118) 

However, singularities of the form (4.118) identically possess 
the Painleve property. Now In € terms could arise in going 
from (4.112) to (4.118) [but do not, since (4.118) is Painleve 
with the complete set of "arbitrary functions"]. However, no 
In € terms can occur in going from (4.118) to (4.112). Thus, 
(4.112), as reconstructed from (4.118), has the Painleve prop-
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erty (when N is odd). [Note in going from (4.118) to (4.112) 
Taylor, not Laurent, series are integrated.] 

Let us now assume that 

q;zq;o€" + '. (4.119) 

Then, 

[q;;x] z - !m(m + 2)€-2, (4.120) 

and using the Lenard formula (4.26) with 

b n({ q;;x]) zP n(m)€ - 2n 

obtains 

(2n + 2)pn + lIm) = 2(2n + I)(A + n(n + 2))pn(m) 
(4.121) 

where A = - !m(m + 2). 
Thus, each higher-order equation of order (n + I) ac

quires two new leading orders 

A = - !m(m + 2) = - n(n + 2) 

or 

m = 2n, - 2 - 2n, 

where 

q;zq;ocn +' 
or 

q;zq;O€-2n -I. 

(4.122) 

(4.123) 

The higher-order KdV equations (in the Schwarzian 
formulation) can have only odd integral leading orders, and 
by the previous remarks these have the Painleve property. 

Considerations of a similar nature determine that the 
higher-order singUlarities of the Caudrey-Dodd-Gibbon 
and Kuperschmidt sequences, again, "reduce" to singulari
ties ofthe (Painleve) form (4.118). Thus, these equations 
identically possess the Painleve property. 

5. ITERATIVE CONSTRUCTION OF RATIONAL 
SOLUTIONS 

For the KdV equation 

U, + ~ (~2 + Uxx ) 

the Backlund transform 

az 
U = 12 -2 In q; + U2 ax 

implies that 

!!l. + {q;;x] =A. 
q;x 

=0, 

Equation (5.3) is invariant under: 
(i) The Moebius group 

al/!+b 
q;= cl/!+d 

and the transformation 

(ii) q;x = I/!x- '. 
Combining Eq. (5.4), i.e., 

I/! = - 1Iq;, 

John Weiss 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 
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and Eq. (5.5), there is defined the Backlund transformation 

(5.7) 

Without loss of generality (modulo a Galilean transforma
tion) we set A. = 0 in Eq. (5.3). Then setting 

rpo = x, (5.8) 

it is found from Eqs. (5.7) and (5.3) that 

rpl = x 3/3 + 4t. (5.9) 

We normalize (5.9) by setting 

rpl = x3 + 12t. (5.10) 

From Eq. (5.7) it is found that (after normalization) 

and 

rp3 = l/rpl [x lO + 180tx7 + 302400t 3x 
+ 7e(x5 

- 6Otx3 - e/3) + jrpd, 

where (el) are constants of integration. 
Equations (5.8)-(5.12) suggest that 

(5.11) 

(5.12) 

(5.13) 

where the ~ are polynomials in (x,t). Substitution of (5.13) 
into (5.7) obtains 

Pn- I Pn+I,x -Pn-I,x Pn+1 =P~, (5.14) 

where 

Po=x, 

PI =x3+12t, (5.15) 

P2 = x6 + 6Otx3 - nOt 2 + ex. 

The solutions obtained from (5.14) and (5.15) are (essentially) 
those rational solutions of the KdV equation found by 
Ablowitz and Segur,13 using Hirota's method, and are equi
valent to rational solutions of Airault, McKean and 
Moser. 14 

From Eqs. (5.13) and (5.2) we find that 

a2 

u = 12-
2

1nPn , 
ax 

a2 

u2= 12-21nPn_ 2 
ax 

define rational solution of the KdV equations. 

(5.16) 

For the Caudrey-Dodd-Gibbon equation (3.1) and the 
Kuperschmidt equation (3.25), there are defined the follow
ing Backlund transformations: 

and 

a2 

u = -2 In rp + u2 (5.17) 
ax 

laz 
a = - -2 In tP + a2 , 

2 ax 
(5.18) 

respectively, where 

rp a2 

-' + -a 2 {rp;xJ +4{rp;XJ2=0 
rpx x 

(5.19) 

and 

A + az
2 

{tP;xJ + ~ {tP;XJ2 = O. 
tPx ax 4 

(5.20) 
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Using the transformation 

tPx =rpx- 2 (5.21) 

and invariance under the Moebius group, we find the follow
ing Backlund transformation: 

rpn,x = tPn/tP~:;' 

tPn,x =rp:-I/rp~-I.x' 
Letting 

rpn = Pn/Pn - I 

and 

tPn = Qn/Qn - I 

obtains 

Pn- I Pn,x - Pn-I,x Pn = Qn' 

Qn-IQn,x - Qn-I,xQn = P!-l' 

It is readily found that 

Po = 1, Qo = 1, 

PI =x, QI = 1, 

P2 = x 5 
- nOt, Q2 = x 5 + 180t. 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

are the first terms (after normalization) that satisfy Eqs. 
(5.26) and (5.27) and define (rational) solutions ofEqs. (5.19) 
and (5.20). 

APPENDIX A: LAX PAIR AND BACKLUND 
TRANSFORMATIONS FOR THE CAUDREY-DODD
GIBBON EQUATION 

In Sec. 3 the Caudrey-Dodd-Gibbon equation 

u, + ~ (u= + 30uuxx + 6Ou3) = 0 (AI) 
ax 

was found to have the Backlund transformation 

az 
u = -2 In rp + u2, (A2) 

ax 

where U2 satisfies (AI) and 

(i) U2 = - ~ rpxxx , (A3) 
6 rpx 

(ii) !fr. + ~ {rp;.x J + 4{ rp;.x J 2 = O. (A4) 
rpx ax2 

Equations (A3) and (A4) may be rewritten as the follow-
ing "Lax pair": 

rpxxx + 6u2rpx = 0, (A5) 

rp, = - 18uz>: rpu + 6(u= - 6u~)rpx' (A6) 

With the exception that the spectral parameter vanish-
es, this is the Lax pair found in Ref. 4. 

To obtain a Lax pair with the spectral parameter, it is 
necessary to generalize the procedures introduced in Ref. 2. 
That is, we define a Backlund transformation (A2), where 
(u,u2 ) satisfy (AI). In Sec. 3 the resulting expressions were 
ordered according to the inverse powers of rp, i.e., (3.6iii, iv, 
and v). Herein, other than requiring that U2 satisfy (AI) the 
various terms are collected into a single equation, obtaining 
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~(!Jl.) + ~(Hs + H4) =0, 
aX2 ~ ax ~ ~2 

(A7) 

where 

H4 = -~! {!2 {~;xJ + 4{~;XJ2 

+ 5Wxx + t1 2 + 2{~;xJt1)}, (AS) 

{ ~ a a} Hs = ~x ax3 {~;X J + 4 ax {~;x J 2 + 5t1 ax {q7;X J 

+ {}xx {~2 {q7;xJ + 4{q7;xJ2 + 5{}xx 
ax 

+ 5{}2 + lO{q7;xJ{}}, (A9) 

{} = {q7;xJ + 6W, (AlO) 

and 

Now, letting 

{} = 6Aq7 lq7x' 

it is found from (AlO) and (All) that 

q7xxx + 6u2q7x = 6Aq7. 

From (A7HA9) and (A12) there results 

~ {!Jl. + ~ (~ {q7;xJ + 4{q7;XJ2 + 3M q7q7xxx 
ax2 q7 q7 ax2 q7 ! 

-30A q7q7; -30Aq7xx -lSOA 2q7:)} =0. 
q7x q7x q7x 

Setting the term inside the bracket equal to 0, 

!Jl. + ~ {q7;X J + 4{ q7;X J 2 + 30A q7q7xxx 
q7x ax2 q7! 

(All) 

(A 12) 

(A13) 

(A14) 

2 2 
_ 30A q7q7 xx _ 30A q7xx _ lSOA 2 L = o. (A15) 

q7! q7x q7! 

Using (A 13), 

q71 = (54A - lSu2x )q7xx + 6(U2x;c - 6u~ )q7x + 2l6Au2q7· 
(A16) 

Equations (A13) and (A16) constitute the Lax pair for the 
Caudrey-Dodd-Gibbon equation,4 where A is the spectral 
parameter. We note that Eq. (A15) is not invariant under the 
Moebius group. 

APPENDIX B: SOME SEVENTH-ORDER EQUATIONS 

We consider when the equation 

!Jl. + ~ {q7;xJ + a{q7;xJ ~ {q7;xJ 
q7x ax4 ax2 

+ {:J (! {q7;X J r + A {q7;X J 3 = 0 

has a transformation 

q7x = 1/1: 
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(Bl) 

(B2) 

preserving the form of (B 1). 
Directly, 

{ J "'xxx (m2 ) tP!x q7;x =m-- - - +m -
"'x 2 tP! 

(B3) 

and 

q7xl = m"'': - l"'xl· 

We note that 

(B4) 

or 

m"'': - l"'xl = ! (1/I:F) 

= 1/1: ~ F + m1/l: - l"'xxF 
ax 

a 
m"'x, = "'x - F + m"'xxF. ax 

(B5) 

(B6) 

Therefore, for Eq. (B6) to be of the form (B 1) 

a a "'x -F+m"'xxF= -G, 
ax ax 

(B7) 

where G is a functional of "'x. Expressions on the lhs of (B7) 
that are not "gradients" must vanish. In this case, we find: 

(i) Term "'xx ~xxxxltP! obtains the condition 

2m + 7 + 2m(a -(:J) = o. (BS) 

(ii) Term "'xx "'!xxl",! obtains the condition 

17m + 42 + ~am(9m + 2S) - 6{3m(m + 3) - 3Am2 = o. 
(B9) 

(iii) Term "'!xx tP!xx I",! obtains the condition 

- 39m - S4 + am(3m2 - ~m - 25) 

- 2/3m(m2 - 5m - 16) + 3Am2(m + 2) = O. (BlO) 

(iv) Term "'"'xxl"'~ obtains the condition 

6O(m + 2) - ~am(13m2 - Sm - 6S) + 2/3m(2m2 -7m - 22) 

+ iAm2(m3 + m2 - Sm - 12) = O. (Bll) 

Equation (BSHBll) have the following solutions: 

(i) m= -1, a={:J+~, 6A=5{:J+~, (BI2) 

(ii) m= -2, a={:J+~, 6A={:J+!, (B13) 

(iii) m = -~, a = 12, {:J = 6, A = ¥, (BI4) 

(iv) m= -j, a=26, {:J=Jj, A=4S, (B15) 

(v) m = -~, a = 5, {:J =~, A =~. (B16) 

Further calculation obtains that Eq. (B6) will be of the 
form (B 1) when 

(i) m = - 1, a = 5, 

(ii) m= -2, a=~, (BI7) 

(iii) m = -!, a = 12, {:J = 6, A = ¥ 
The transformations defined by (BI5) and (BI6) do not 

preserve theform of Eq. (B 1). 
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The completeness relation for the system of "squared" solutions of the discrete analog of the 
Zakharov-Shabat problem is derived. It allows one to rederive the known statements concerning 
the class of difference evolution equations related to this linear problem and to obtain additional 
results. These include: (i) the expansion of the potential and its variations over the system of 
"squared" solutions, the expansion coefficients being the scattering data and their variations, 
respectively; thus the interpretation of the inverse scattering transform (1ST) as a generalized 
Fourier transform becomes obvious; (ii) compact expressions for the trace identities through the 
operator A, for which the "squared" solutions are eigenfunctions; (iii) brief exposition of the 
spectral theory of the operator A; (iv) direct calculation of the action-angle variables based on the 
symplectic form of the completeness relation; (v) the generating functional of the M operators in 
the Lax representation; (vi) the quantum version of the 1ST. 

PACS numbers: 02.30.Hq 

I. INTRODUCTION 

The intensive development of the inverse scattering 
transform (1ST) has led to the discovery of a vast number of 
completely integrable Hamiltonian systems. For such physi
cally important nonlinear evolution equations (NLEE) as the 
KdV, nonlinear Schrooinger, sine-Gordon equations, etc., 
the classes of soliton solutions, the infinite series of con
served quantities, the Backlund transformations, the explicit 
form of the action-angle variables, etc. (see Ref. 1 and the 
review papers, Refs. 2-4) have been constructed and investi
gated. 

The investigation of the class of NLEE, related to the 
one-dimensional Zakharov-Shabat system 

[iU3 ! + (r(~) q~)) -A ]t/!{X,A) = 0, 

U3 = (~ _ ~), (1.1) 

has revealed the importance of: (i) the expansions over the 
"squared" solutions of (1.1 )2.5-8 and (ii) the operator for 
which the "squared" solutions of (1.1) are eigenfunctions. 
The spectral theory of the operator A 7 enables one to justify 
the suggested in Ref. 2 interpretation of the 1ST as a general
ized Fourier transform, linearizing the corresponding 
NLEE. An important property of the operator A consists 
also of the fact that it generates the hierarchy of Hamiltonian 
structures for the NLEE.9 

Besides the NLEE there also exist a number of impor
tant difference evolution equations (DEE), solvable by the 
1ST. 1.3 An example of such system is the Toda chain. 10 

The main result of the present paper consists in the deri
vation of the complete integrability, the construction of the 
hierarchy of symplectic structures and the quantization of 

alOn leave of absence from the Institute of Nuclear Energy and Nuclear 
Research. Sofia, Bulgaria. 

the DEE, related to the discrete analog of the Zakharov
Shabat systemll: 

t/!{n + 1,z) = L (n,z)f/!(n,z), L (n,z) = E (z) + Q (n), 
(1.2) 

E(z) = (~ Z~I)' Q(n) = (r(~) q~)). 
Our construction is based on the completeness relation for 
the "squared" solutions of the system (1.2). 

Ablowitz and Ladik have considered in Ref. 11 the 
more general at first sight system (we put it in the form, 
proposed in Ref. 12): 

u(n + 1,;) = 2"(n,;)u(n,;), 

Sn)( ; 
1 Rn 

Iln = 1- QnRn, Vn = l-SnTn. (1.3) 

The class of DEE related to (1.3) includes the discrete ana
logs of the nonlinear Schrodinger, KdV, sine-Gordon equa
tions, etc. For these DEE the soliton solutions, conservation 
laws, the Backlund transformations, Hamiltonian structure, 
and the asymptotic ofthe solutions for t-+oo are 
known.3.11-15 

It comes out that the systems (1.2) and (1.3) are equiva
lent. (The authors are grateful to I. T. Khabibulin for this 
remark.) Indeed, it is easy to see that if we relate the poten
tials and the solutions of these problems by 

Sn = q(2n + 1), Qn = q(2n), 

Tn = r(2n + 1), Rn = r(2n), (1.4) 
2n - I 

u(n,;)I~=? = II h(k)E-1/2(z),p(n,z)EI/2(z), 
k= - 00 

where h (k ) = 1 - q(k )r(k ), we obtain 

2"(n,;)I~=? = [h (2n)h (2n + 1)]-1/2E- 1/2(z)L(2n + 1,z) 

XL (2n,z)E 1/2(Z). (1.5) 

As a result all the objects related to the system (1.2) such as 
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DEE, conservation laws, Hamiltonian structures, etc. trans
fer to the corresponding objects of the system (1.3). There
fore, we confine ourselves to the system (1.2). 

The present paper is a further development of our pre
print. 16 We regret that when writing this preprint we were 
not aware of Ref. 12. We thank the referee for calling our 
attention to this paper. 

In Sec. II we derive the completeness relation for the 
"squared" solutions of (1.2). Starting from it, we easily re
produce the statements from Refs. 11-14, and also obtain 
additional results. These include: (i) the expansion of the po
tential of (1.2) and its variation over the "squared" solutions, 
which justify the interpretation ofthe 1ST as a Fourier trans
form (Sec. III); (ii) compact expressions for the trace identi
ties (Sec. III); (iii) brief exposition ofthe spectral theory of the 
operator A (2.21) (Sec. II); (iv) direct calculation of the ac
tion-angle variables based on the symplectic completeness 
relation7

•
8 (Sec. IV); (v) the generating functional of the M 

operators in the Lax representation (Sec. III). In Sec. V it is 
shown that the DEE related to (1.2) with the natural reduc
tionr(n) = ± q+(n) maybe quantized through the quantum 
1ST. 17-19 

II. COMPLETENESS RELATION OF THE "SQUARED" 
SOLUTIONS 

Let us start with some known facts (see Refs. 3 and 11) 
from the direct and inverse scattering problem for the system 
(1.2). In order to make the exposition simpler, we consider 
the case when the potential wIn) = (_ ~~) )E6(Z,C2

), the space 
of complex-valued vector sequences such that 

lim nkw(n) = 0 for all k = 0,1,2, .. ·. (2.1) 
n~oo 

This together with the condition 
00 

0< II Ih(k)l<oo, h(k)=l-q(k)r(k) (2.2) 
k= - 00 

ensures the existence and the analyticity properties of the 
Jost solutions of (1.2), introduced by 

lim t/J(n,z)E - n(z) = I, lim rp (n,z)E - n(z) = 1, 
n-+oo n-+oo 

t/J(n,z) = Iit/J- ,t/J+ II, rp (n,z) = Ilrp +,rp -II, 
wheret/J+,rp +,(t/J-,rp -)areanalyticfor Izl > 1 (Izl < 1). The 
transition matrix is introduced by 

rp (n,z) = t/J(n,z)S (z), S (z) = (::: 

00 

det S (z) = v = II h (k ). 

-b-) - , 
a 

(2.3) 

k= - 00 

We shall denote by X + (x -) the fundamental solutions of 
(1.2), analytic for Izi > 1 (Izl < 1): 

26 

X +(n,z) = Ilrp +,t/J+II, X -(n,z) = Iit/J-,rp -II, 
x+(n,z)=t/JS- =rpS+, x-(n,z)=t/JT+ =rpT-, 

(2.4) 

~) , 
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obviously S - S + = T + T - = S (z). Here and in what follows 
by X we shall denote the matrix inverse to X, i.e., X ==X - I. 

The solutions X + and X - satisfy the following relations: 

X +(n,z)E- n (z) = x-(n,z)E- n (z)G (n,z), Izl = 1, 

G (n,z) = En (z)T(z)S - (z)E - n (z), 
(2.5) 

on the unit circle S I. If we consider G (z) as a given matrix
valued function of zES I, then this relation may be interpreted 
as a noncanonical Riemann problem.20 

The continuous spectrum of the problem (1.2) has mul
tiplicity 2 and fills upS I. Thediscretespectrum.J =.J +u.J -
is located at the zeroes of a ± (z), 

.J ± = I Zj± :a ± (Zj± ) = a ± ( - Zj± ) = 0, 

IZj± 1~1, j= 1, ... ,N± J. (2.6) 

Here for simplicity we asume that n + = n - = N. The fact, 
that a ± (z)(b ± (z)) are even (odd) functions of z follows from 

Remark 1: If t/J(n,z) is a solution of (1.2), then 
( - l)n u3t/J(n, - z)u3 will also be a solution of (1.2). 

From the analyticity of X ± it follows that a ± (z) will 
also be analytic functions of z for Izl ~ 1. One is able to derive 
the following dispersion relation for them: 

Izl < 1, 

where p ± (z) = b ± (z)/ a ± (z) are the reflection coefficients 
for the system (1.2). 

We shall not discuss the solution of the inverse scatter
ing problem in detail; see Refs. 3, 11, and 20. Note only that 
the set of independent scattering data Y = Y+uY-

Y± ==Ip± (z) = -p± (-z),zES 1
; 

cl, Zj± , IZj± 1~1, j = 1, ... ,N J, 

p±=b±/a±(z), cl=bl/ill, 

ill = da± I ' 
dz Z~ZJ± 

(2.8) 

b l: rp ± (n,zj± ) = b l t/J ± (n,zj± ), 

and the dispersion relation (2.7) allow one to reconstruct 
uniquely the functions a+(z) (a-(z)) for all z, Izl > 1 (lzi < 1), 
and also b ± (z) for Izl = 1. 

It is instructive to consider the interrelations between 
the potential wIn) and the set of scattering data Y, (2.8), 
following from the formulas 
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x± (n,z)u3X± (n,z)I:= - '" 

"" A 

= 2 L x± (n + 1,z)u3Q(n)x± (n,z), 
n= - 00 

(2.9) 

x(n,z)t5x± (n,z)I: __ '" 

= f X ± (n + 1,z)t5Q (n)x ± (n,z), 
11=--00 

which are direct consequences of (1.2). The lhs of (2.9) are 
expressed easily through the scattering data Y, (2.8), and 
their variations. Inserting the first line of (2.4) into (2.9) for 
the matrix elements of the rhs of(2.9) one obtains expressions 
of the type: 

f 4> (n,z)w(n)h -I(n), 
11=--00 

(2.10) 
'" L 4>± (n,z)u3c5w(n)h -I(n), 

11= - 00 

where 

4J± (n,z) = v(n~± (n,z)o~± (n + l,z), 4> = (4J2, - 4JI ), 

(2.11) 
~ (n,z)°tfi(m,z) 

= (~I(n,z)t/tl(m,z)), v(n) = IT h (k). 
~2(n,z)t/t2(m,z) k = II 

Ifwe introduce in the space 6(Z,C2
) the skew-scalar product, 

X,Ye6(Z,C2
): 

[X,Y] = f X(n)Y(n) 
11= - 00 

'" = L [X2(n)YI(n) -XI(n)Y2(n)], (2.12) 
11:::1:: - 00 

then the matrix elements of the rhs of(2.9) can be interpreted 
as expansion coefficients of w(n) and u3c5w(n) over the 
"squared" solutions 4J ± (n,z) of (1.2), i.e., the terms (2.10) 
will have the form [4J± (n),w(n)h -I(n)], 
[4J± (n),u3c5w(n)h -I(n)]. 

Let us introduce the system {4J }, {I[/} of "squared" 
solutions of (1.2) by 

{4J }=={4J± (n,z), zeSI; 4J/(n), ~/(n),j= I, ... ,N}, 

{I[/}=={I[/± (n,z), zeSI; I[//(n), q,./(n),j= I, ... ,N}, 

I[/± (n,z) = v(n)t/t± (n,z)°t/t± (n + l,z), 

I[//(n) = I[/± (n,zJ±)' 

. d 
I[//(n) = lim -I[/± (n,z); 

z-+ZJ± dz 

(2.13) 

4J / (n) and ~ / (n) are obtained analogously from the defini
tion of 4J ± (n,z) in (2.11). The completeness of the systems 
{ 1[/ }, {4J } is proved by introducing the Green function 
G = G± (n,m,z), Izl~l, 

G± (n,m,z) = {2/[a± (zW} {I[/± (n,z)4> (m,z)8 (n - m) 

+ 8(m - n)[2(~± (n,z)°t/t± (n + l,z)) 

Xh6± (m + l,z)0t/t± (m,z)f v(n)v(m) 
- 4J± (n,z)W± (m,z)]), 
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{

I, n>m, 

8(n-m)= !, n=m, 

0, n<m, 

(2.14) 

and applying the contour integration method to the integral, 

~" dz G +(n,m,z) _ ~" dz G -(n,m,z). 
2m :r" + z 2m :r" _ z 

Here the contours r + = S IUS'" , r _ = S IUSO, where S I is 
the positively oriented unit circle andS"" and SO the negati
vely oriented circles with infinitely large and infinitely small 
radii resp. The result is 

h (n)t5(n _ m) = _,_' " dZ[ 1[/ + (n,z)4> +(m,z) 
21T 1, z [a+(zW 

_ 1[/ -(n,z)4> -(m,z) ] 
[a-(zW 

N 

- 2 L [X/(n,m) +Xj-(n,m)], 
j=1 

(2.15) 

X/(n,m) = 1 ± 2 [1[//(n)4>/(m) + q,./(n)4>/(m)] 
zJ± (aj ) 

.± "± 
_ aj +Zj±aj 1[/,±(n)4> ±(m). 

-2 ('±)3 J j Zj± aj 

This completeness relation may be rewritten in the so-called 
symplectic form: 

f dz - -h (n)t5(n - m) = - [P(n,z)Q(m,z) - Q(n,z)P(m,z)] 
s' z 

N _ _ 

+ 2 L [P/(n)Q/(m) - Q/(n)p/(m) 
j= 1 

+ Pj-(n)Qj-(m) - Qj-(n)Pj-(m)], (2.16) 

where 

P(n,z) = - (l/21T)(p+l[/+ +p-I[/-)(n,z) 

= - (l/21TV)(U+4J + + u-4J -)(n,z), 

Q (n,z) = (iv/b + b -)0+ 1[/ + - u
v
+ 4J + }n,z) 

= (iv/2b + b - (u
v
- 4J - - P -1[/ - }n,z), (2.17) 

P/(n) = + (ic//zJ± )I[//(n), 

Q/(n) = +~i[m/~/(n)-c/q,./(n)], 
u± (z) = b =F (z)/a ± (z), m/ = (b /a/ )-1. 

The two systems { 1[/ J and (4J J are biorthogonal with 
respectto the skew-scalar product (2.12). Indeed, using (1.2), 
one can verify the following biquadratic relations between 
any two solutions ~ (n,z) and tfi(n,t ) of (1.2): 

[4J (n,z), 1[/ (n,t)h -I(n)] 

t v2(n) 
=-;-'t 2 -zl 

X [z~2(n,z)t/tI(n,t) - t~l(n,z)t/t2(n,tWI:= _ "". 
(2.18) 

Making use of (2.4) and of the fact that 
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P.v.lim (z/~T 
n~oo t; - Z 

= 1Tti (arg z - arg t; ), z,t;eS I, 

we obtain 

[<P± (n,t;),CJI± (n,t;)h -I(n)] 

= += 21T[a ± (t; )j2ti(arg z - arg t;), z,t;eS I, 

[<Pl(n),CJlk±(n)h-l(n)] =0, 

[<P l (n),.p k± (n)] = - Mal )2Zj± tijk' (2.19) 

[<Pl(n),CJlk±(n)h-l(n)] = -~(al)2zj±tijk' 
[<Pl(n),.p k±(n)h -I(n)] = - !(iilZj± + al)altijk . 

From (2.18) and (1.29) we also have 

[Q (n,z),P(n,t;)h -I(n)] = - iti(arg Z - arg t;), z,t;eS I, 

[Ql(n),Pk±(n)h -I(n)] = ~tijk' 

[Ql(n),P t(n)h -I(n)] = O. 

(2.20) 

Relations (2.19) and (2.20) allow one to conclude that the 
systems { CJI J, { <P J, and {P,Q J consist of a linearly indepen
dent element. 

Now it is natural to introduce the operators A ± ' for 
which the elements of { CJI J and { <P J are eigenfunctions, i.e., 

(A + - ZZ)CJI± (n,z) = 0, (A _ - ZZ)<P ± (n,z) = 0, zeS luLl, 

(A+ - zJ± ).pl (n) = 2zj± CJI/ (n), 

(A_ -zJ± )<Pl(n) = 2zj± <P/(n). 

(2,21) 

The explicit form of A ± has been known. 11,12,14 For us it will 
be convenient to factorize them in the form 

A ± X(n) =A z±A I±X(n), X(n)E@:i(Z,C2), (2,22) 

where the operators A i±' i = 1,2, are defined by 

A 1+ CJI± (n,z) = zji± (n,z), A 1- <P ± (n,z) = z(p ± (n,z), 

z = S luLl, (2.23) 

A 2+ W± (n,z)zCJI± (n,z), A 2- (p ± (n,z) = z<P ± (n,z), 

W± (n,z) = v(n)¢± (n,z)o¢± (n,z), 

(p ± (n,z) = v(n)~ ± (n,z)o~ ± (n,z). 
The explicit form of A i± , i = 1,2 and their inverse is given by 

A I±X(n) = ( Xl(n) ) ± ( q(n) ) 
\x2(n - 1) - r(n - 1) 

XLn± [r(k)X](k)+q(k)Xz(k)]h-l(k), 

From (2.26), (2.21), and (2.15) it follows that 

(A + + zZ)-I(A + - ZZ)G (n,m,z)h -I(m) = ti(n - m), 

i.e., G (n,m,z) is the Green function for the operator 
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AlX(n)=h(n)(Xl(n+l))+( q(n)) 
Xz(n) - - r(n) 

X Ln±+ I [r(k - l)XI(k) + q(k )Xz(k)], 

A I±X(n)=h(n)( XI(n) )+( q(n) ) 
X2(n + 1) - r(n) 

X Ln±+ I [r(k )XI(k) + q(k - l)Xz(k)], 

A lX(n) = (xI(n - 1)) += (q(n - 1)) 
Xz(n) - r(n) 

X Ln± [r(k )XI(k) + q(k )Xz(k )]h -I(k), 

(2.24) 

where 

The condition (2.1) ensures that A i± X E@:i(Z,CZ
) for any 

XE@:i(Z,C2
). 

The operators A i±' i = 1,2, and A ± satisfy conjuga
tionlike relations with respect to the skew-scalar product 
(2.12): 

[Y(n),A 1+ X(n)h(n)] = [A 2- Y(n),X(n)], 

[Y(n),Az+X(n)] = [A l-h(n)Y(n),X(n)], (2.25) 

[Y(n),A+h(n)X(n)] = [A_h(n)Y(n),X(n)]. 

The first two lines of (2.25) follow directly from the explicit 
form of A l, (2.24), and from the definition of [ , ], (2.12); 
the third line is a consequence of the first two and (2.22). 

The spectral theory of the operators A ± can be con
structed analogously to Refs. 7 and 21. Here we will only 
show the interrelation between the Green function (2.14) and 
the operator A +. Applying the contour integration method 
to the integral 

-1-f dt; t;2+r G+(nmt;) 
2 · t; t;2 2 " 1TI y+ -z 

1 i dt; t;2+Z2 _ 
- 21Ti 1'r _ T t; 2 _ r G (n,m,t; ), 

we obtain the following spectral decomposition for G: 

CJI-(n,t;)~-(m,t;)} -2 ~ [Y+(nm)+ Y.-(nm)] 
[a-(t;W /~I J' J" 

(2.26) 

(A + + r) - I (A + - ZZ). This result is esentially different 
from the one related to the Zakharov-Shabat system (1.1); 
there the continuous analogs of G and A + are related by 
(A + - A )G (x, y.A ) = ti(x - y). 
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III. THE 1ST AS A FOURIER TRANSFORM 

Let us start by deriving the expansions for w(n) and 
0"30w(n) over the systems of "squared" solutions { IJI} and 
{ tP }. To do this, we multiply the completeness relations 
(2.15)and(2.16)byw(m)h -'(m)and0"30w(m)h -'(m)fromthe 
right and sum over m. Thus the corresponding expansion 
coefficients have the form (2.10) and through (2.9) are easily 
expressed in terms of the scattering data Y. The result is 

and 

wIn) = _1_' j dz (p+lJI+ +p-IJI-)(n,z) 
21T 1s, z 

w(n) = -ii, ~ p(n,z)- 2i
j
t, [P/(n)+Pj-(n)] 

(3.1b) 

N 

+ 2 L [Y/(n) + Yj-(n)], (3.2a) 
j= , 

0"30w(n) = j dz [Q(n,z) op(z) - P(n,z) oq(z)] 1s, z 

N 

+2 L [Z/(n)+Zj-(n)], 
j=' 

Z/(n) = Q/(n)op/-P/(n)oq/, 

(3.2b) 

where 

dw 
0"3- +f(A+)w(n,t) 

dt 

In obtaining the rhs of(3.6) we have made use of(2.21). It 
remains to be noted that the lhs of (3.6) vanishes if and only if 
all the expansion coefficients on the rhs of(3.6) vanish, which 
readily gives (3.5). This last step follows also from the fact 
that the systems {IJI j and (tP j are biorthogonal [see (2.19)]. 

Analogously, using the symplectic expansion (2.16), we 
can prove 

Theorem 2: w(n,t ) satisfies (3.4) if and only if the set 
(p,qjin (3.3) satisfies the linear equations: 
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p(z) = -(l/21T)ln[1 +p+p-(z)], 

q(z) = -! iln[b +(z)/b -(z)], ZES', 

p/ = + iln zH' ql = + iln(b ll/zJ), 

op(z) = - [P(n,z)'0"30w(n)h -'In)], 

oq(z) = - [Q(n,z)'0"30w(n)h -'In)]. 

(3.3) 

Now the parallel between the 1ST and the Fourier transform 
is obvious: The expansion coefficients in (3.1) and (3.2) are 
simply the scattering data Y, (2.8), and their variations. As a 
generalization of the usual "discrete exponent" zn , one 
should consider {IJI} or {P,Q }; the role of the shift operator 
will be played by the operator A + (2.21). 

From (3.1) and (3.2) there follows a more rigorous proof 
of the theorem, concerning the description of the DEE relat
ed to (1.2). 

Theorem 1: Letf(r) be a meromorphic function with 
poles lying outside of a certain neighborhood of the spec
trum S 'uLi of (1.2). Then w(n,t ) satisfies the DEE 

dw 
0"3 - + f(A +)w(n,t) = ° (3.4) 

dt 

if and only if the scattering data Y, (2.8), satisfy the linear 
equations: 

dp± --;Jt + f(Z2)P ± (z,t) = 0, 

dcl _ -2 ± - + f(zH )cj (t) = 0, 
dt 

~=o. 
dt 

(3.5) 

Proof Let us insert the expansion of w(n), (3.1a), and 
0"3(dwldt ) over the system {IJI} in thelhsof(3.4). The latter is 
obtained from (3.2a) by considering variations of the form 
0"30w(n) = 0"3(dwldt)& + 0 ((& )2), and differs from (3.2a) 
only in that the coefficients op ± .... are replaced by dp ± I 
dt .. ··; the same is true also for (3.2b). This gives 

(3.6) 

(3.7) 
dp/(t) 
--- =0, 

dt 

From (3.5) and (3.7) it follows that the DEE (3.4) has an 
infinite series of conserved quantities C(p) ,p = 0, ± 1 ..... As 
a generating functional of C(P) it is natural to consider d'(z): 
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..of(z) = In a+(z), Izl > 1, 

..of(z) = - In a-(z), Izl < 1, 

CIPI being the expansion coefficients of ..of(z): 

00 

..of(z)= L CIPi z - 2p, Izl>l, 
p~1 

00 

..of(z)=- LCIPirP, Izl<1. 
P~O 

(3.8) 

(3.9) 

To derive compact expressions for C(pi as functionals of 
wIn), we start with the relation 

d..of z--
dz 

= ~ tr{ [zi+(n,z)x+(n,z) - n0'3](1 + 0'3) }I: ~ - 00' 

Izl > 1, (3.10) 

which follows from (2.4), (3.8), and (1.2). Using (1.2) once 

Inserting the rhs of(3.l3) into (3.12), we arrive at 

z d: = - n~~ 00 L n+ :i~~ (A+ +r)(A+ -r)-Iw(k), 

(3.14) 

which proves to be valid both for Izi > 1 and Izl < 1 (the con
siderations for Izl < 1 are analogous). Comparing (3.14) and 
(3.9) for C(pi, we obtain 

Clpi= J.. i: Ln+ w(k)AP+w(k) , 
P n ~ - 00 h (k) 

P = ± 1, ±2, .. ·. (3.15) 

The dispersion relations (2.7) allow one to express Cipi as 
functionals of the scattering data Y: 

II ifdZ-2 -C P = - -z P In[l +p+p (z)] 
21T S' Z 

1 N - - L (1~ -1~), p#O, (3.16) 
P j~ I 

C(O)= -Inv=_l_' i dZ ln [l+p+p-(z)] 
21T 1, z 

N z7+ - L In_1 _. 

j~1 1-
The desired trace identities are obtained after equating the 
rhs of(3.15) and (3.16). Through the same pattern one can 
derive compact formulas for the variations of ~Clpi .12 For 
this it is enough to note that 
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more for the rhs of(3.1O), we obtain 
00 

L {pr[ i+(n,z)0'3x+(n,z)(1 + 0'3)] - l} 
n = - 00 

00 

= L L n+ tr[ i+(k + 1,z)Q (k )0'3X+(k,z)0'3], 
n = - 00 

(3.11) 

which can be put into the form 

d..of 
z--= -

dz 

00 

L L n+ v(k + 1 )w(k ) 
n= - 00 

x ¢+(k + l)oc;6 +(k) + ¢+(k )oc;6 +(k + 1) 
a+(z) 

(3.12) 

Let us now expand [v(k )/a + (z)][¢+ (k + l)oc;6 +(k) 
+ ¢+(k )oc;6 +(k + 1)] over the system {I/I). The correspond

ing expansion coefficients are expressed through the scatter
ing data Y by using (2.18). Thus we obtain 

~..of(z) = ! tr[X+(n,z~i(n,z)(l + 0'3)] I: ~ _ 00 

= J.. i [0'3~w(n)] - v(n++ 1) 
2 n~ - 00 a (z) 

(3.l3) 

X [c;6 +(n,z)o¢+(n + 1,z) + c;6 +(n + 1,z)o¢+(n,z)], 

Izl > 1, 

which with (3.l3) directly leads to 

(3.17) 

We end this paragraph by reproducing in compact form 
the formulas from the traditional approach2,3 to the DEE 
(3.4) as a consistency condition, 

dL (n,z) + L (n,z)M (n,z) - M (n + 1,z)L (n,z) = 0, 
dt 

of two linear problems: (1.2) and 

d¢(n,z) = M (n,z)¢(n,z). 
dt 

(3.18) 

(3.19) 

ChoosingM(n,z) = ~k ~ Mlki(n)aspolynomialofzandz- I 

and inserting in (3.18), one obtains recurrent relations for the 
coefficients M(k i (n) II; trying to solve them, one, after some
what tedious calculations, naturally obtains the A operator. 

Here we shall use another approach, developed for the 
NLEE by Gel'fand and Dickey22; see also Ref. 21. Let us 
introduce the resolvent of the system (1.2)23 
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~(n,m,z) = ~ ± (n,m,z), Izl~l, 

~ ± (n,m,z) = x± (n,z)e(n - m)i± (m + 1,z), (3.20) 

.a +( ) _ {diag( - 1,0), m>n, 
~ n-m-

diag(O, 1), m < n, 

.a _( ) {diag(O, - 1), m>n, 
~ n-m = 

diag( 1 ,0), m < n, 
and define its "diagonal" as 
R (n,z) = ~(n,n - 1,z) -! = - !x± (n,z)u:&,± (n,z). It is 
easy to verify that R (n,z) satisfies the equation 

L (n,z)R (n,z) - R (n + 1,z)L (n,z) = O. (3.21) 

Since R ± (n,z) is analytic in z for Iz I ~ 1, one may consider the 
asymptotic expansions 

00 

R + (n,z) = -!u3+ I R(P)(n)z-P, Izl>l, 
p~1 

(3.22) 
00 

R -(n,z) = !U3 + I R (- p) (n}z", Izl < I, 
p~1 

Note that R (p)(n) and M(p) (n),p#O, satisfy the same recur
rent relations. From the definition of R (n) and (2.23) and 
(2.24) we have 

U
3
(R t'~ (n)) = + v(n)¢ ± (n,z)0tP ± (n,z) 
R 21(n) - a± (z) 

= ! zA / ~[¢ ± (n + l,z)°tP ± (n,z) 
a± (z) 

+ ¢ ± (n,z)°tP± (n + 1,z) + w(n)], 

R 11(n) = -Rli(n) 

= + ~ a ~nlz) [¢ 1± (n,z)tP2± (n,z) 

+ ¢ 2± (n,z)tP1± (n,z)] . 

(3.23) 

Making useof(3.12) and (3.13), one obtains compact expres
sions for R (p) (n,z) through the operator A +: 

R (2p) (n) - U3~ + w(k) A P w(k) p = ± 1 + 2 ..• 
~ n h (k ) +, '- , , 

R (2p-1)(n) = ' 12 
(

OR (2P -1)(n)) 

R ~f-I)(n), 0 ' 
(3.24) 

(R;~=::(n))= -uy1E+AP+w(n), E={2
1
, p>O, 

R 21 (n) , P < 0, 

The M operators for the DEE (3.4) are simple linear combi
nations of R (p) (n). We write down the M operator only for 
the simplest case, when in (3.4)f(r) = vrN, N> 0, 
v= const: 

M(N)(n,z) = v[ 2XOI 

rN-PR (p)(n) +!R (2N)(1 + U3)]' 

(3.25) 

Thus R (n,z) may be considered as a generating functional of 
the M operators and also of the conserved quantities of the 
DEE (3.4). The last statement is obtained by comparing 
(3.24) and (3.11), which gives 
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doff 
z-- = =t= 

dz 
[tr(R (n,z)u3) ± 1], Izl~1.(3.26) 

n= - 00 

IV. HIERARCHIES OF HAMILTONIAN STRUCTURES 

The proof of the Hamiltonian structure of the DEE (3.4) 
is now easy. For this one should introduce the following 
symplectic fonn 12

: 

!1 (0) = 2i f c5q(n) /\ c5r(n) 
n~-oo h(n) 

=i[u3c5w(n), exterior product, u3c5w(n)h -l(n)], 
(4.1) 

where c5q /\ c5r = c5 1qc52r - c52qc5 1r is the usual exterior pro
duct. In order that the Hamiltonian equations of motion 

11 (0)( U 3 ~~ , .) = c5HI {-} (4.2) 

coincide with (3.4), one should choose HI in the fonn 

HI = - i Ifp
CIP) 

P 
00 

= -i/o I lnh(n) 
n = - 00 

n = - 00 

where 

fIr) = ~J;,rp, F(r) = fZ> ~s [f(s) - fo]. (4.4) 

The complete integrability of the DEE (3.4) becomes 
obvious after recalculating !1 (0) and HI in tenns of the scat
tering data variations. Most simply 11 (0) is calculated by in
serting the symplectic expansion (2.16) into (4.1) and using 
the third line in (3.3). This immediately casts 11 (0) in canoni
cal fonn: 

11 (0) = 2;,[ dz c5p(z) /\ c5q(z) 
JsI Z 

N 

+ 4i I [c5p/ /\c5q/ + c5pj- /\oqj-]' (4.5) 
j~1 

which means that! p,q} is a set of canonical coordinates and 
momenta. From (3.16) and (4.3) we see that 

HI = - 11 ~ f(Z2).D(Z) + ijtl [F1(zJ+) -F1(zJ- I], 
(4.6) 

FI(s) = r ~~' f(s'), zJ± = exp( ± 2ip/), 

i.e., HI depends only on the set of the new momenta! p}. 
Thus! p,q} in (3.3) is the set of the action-angle variables for 
the DEE (3.4).12 

The symplectic structure !1 (0) is not unique. One can 
introduce a one-parameter family of symplectic fonns 11 1m) , 

generated from 11 (0) (4.1) by the operator A +: 

11 1m) = i[u3c5w(n)h -l(n), A ,;; u30w(n)]. (4.7) 

The proof that 11 1m) are symplectic is most easily perfonned 
as in Ref. 9 after recalculating 11 1m) in tenns of the scattering 
data variations, which now gives 
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n (m) = 2i i dZ?m c5p(z) 1\ c5q(z) 1, z 

N 

+ 4i L [zJ~ c5P/ 1\ c5q/ + zJ~ c5pj- 1\ c5qj - ]. 
j~ • 

(4.8) 

From (4.8) it is obvious that {n (2m) , 
m = 0, ± 1, ± 2,· .. J is a hierarchy of compatible symplectic 
forms, which generate a hierarchy of Hamiltonian structures 
for the DEE (3.4). Indeed, thechoicen = n(m) ,H = H flml in 
(4.2) with jim) (?) = ?m f(Z2) lead to the same DEE (3.4) as 
il _ il (0) H - H 
J~ - J~ , - f' 

In complete analogy to Refs. 7 and 8, one can define the 
Lagrange manifold for the DEE (3.4) by 

mIt )- [X (n,t )Em: [X (n,t ),P (n,t,z)] = 0, zES ·uA J. 
Let us list without proof the main properties ofm(t): 

(i) if XEm, then A +X = A _XEm; 

(ii) dim m = codim m; 

(iii) u3c5w(n )Em if and only if c5p(z) = 0 for all ZE S ·uA, 
i.e., the restriction of n(m) 1m =0 for all m = 0, ± 1, .... 

Remark 2: From (2.17), (2.9), and (2.4) one verifies that 
w(n,t )Em(t). This together with the property (i) of m gives 
f(A +)w = f(A _ )w, i.e., the operators A + and A _ generate 
the same DEE (3.4). 

Remark 3: Ifw(n,t) satisfies any of the DEE (3.4), then 
u3(dwldt )Em(t) for all t. 

At the end of this paragraph let us consider two particu
lar examples of soluble DEE. They are related to the system 
(1.2) with simple reductions of the potential, which naturally 
requires a recalculation of the action-angle variables. 

A. The difference nonlinear SchrOdinger equation 
(DNLS) 

i dq(n,t) = _ [1 - eq*(n)q(n)] [q(n + 1) 
dt 

+ q(n - 1)] + 2q(n), e = ± 1, (4.9) 

is obtained from (3.4) withf(z2) = i(2 - Z2 - Z-2) provided 
the reduction r(n) = cq*(n) holds. This reduction imposes 
the following restrictions on the scattering data: 

a+(z) = a-(l/z*), b +(z) = - cb -*(lIz*), 

Zj+ = lIZj*_' cj- = c(c/ )*/(zt+ f (4.10) 

As a Hamiltonian and 2-form, generating (4.9), one can 
choose 

n DNLS = cn(O)lq~Er" 

= - ~ f1T dr c5(arg b + (eiT )) 1\ c5 
1T -1T 

N 

- 4c I [c5tj 1\ c5pj + c5wj 1\ c5Sj ], (4.11) 
j~. 

where In zJ + =;j + iWj' In(b / lJU) = Sj + ipj; 
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H = e(2C(0) - eO) - e(-I))I 
DNLS q~ Er" 

<Xl 

L ! q*(n)[q(n + 1) + q(n - 1)] 
n= - = 

+ 2eln[1 - eq*(n)q(n)]j 

=2c{- ~f1T drsin2rln[l- clp+(eiT W] 
1T _" 

+ 2 jt. [cos Wj sinh;j - tj]}' (4.12) 

The explicit form of the action-angle variables is obvious 
from (4.11). Note that from (4.10) and (3.16) one obtains 
e(p) = C(-p)" 

B. The difference modified KdV equation (DMKdV) 

i dq(n,t) = _ [1 - cq2(n)][q(n + 1) - q(n - 1)], 
dt 

c = ± 1, (4.13) 

is obtained from (3.4) withf(z2) = Z-2 - Z2 provided that the 
reduction q(n) = cr(n) holds, which means that 

a+(z) = a-(lIz), b +(z) = - cb -(lIz), 

(4.14) 

As it has been noted in Ref. 12, n (0) vanishes identically if 
this reduction is imposed. Therefore, we should use another 
symplectic structure from the hierarchy, e.g., 
I") '1")(-1)1 2 
J~MDKdV = IJ~ q~Er = - C 

X f [2c5q(n) 1\ c5q(n + 1) + c51n h (n) 1\ c5 
n = - 00 

X(I n+ q(k )q(k - 1))] 
2 1" = - - drsin 2rc5 
1T 0 

Xln[ 1 - cp+(eiT)p+(e - iT)] 1\c5 

X - - In ---'----'--[ 
i b +(eiT) ] 
2 b +(e- iT) 

N 

+ 4 I c5 cosh(tj + iWj)I\c5(Sj + ipj)' (4.15) 
j~ 1 

In zJ + =;j + iWj' In(b / 1.jV) = Sj + ipj' 

The corresponding Hamiltonian is 

H MDKdV = e(O) - e(2) 

n = - 00 

+ cq(n)q(n - 2)[ 1 - q2(n - 1)] 
- ! q2(n)q2(n - III 

2 1" - - drsin22r 
1T 0 

Xln[ 1 - ep+(eiT)p+(riT)] 
N 

- 2 I [tj + iWj - ! sinh 2(;j + iWj)] . 
j~ 1 

Ifbesidesq(n) = cr(n) we requireq(n) = cr*(n), then the scat
tering data Y, (2.7), will satisfy both (4.10) and (4.14). In this 
case the eigenvalues appear either in four tuples (zj+ ,zt+ ' 
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- Zj + , - zj + lor pairwise if among Zj + there occur real or 
pure imaginary numbers. Let us introduce the notations: 

..2 !;j+iWj b +1 r:: Sj+ipj . 1 N 
Zj+ = e , j 'IIV = e ,J = , ... , I' 

z;, + = e'a, b a+ I/V = era, a = 1, ... ,Nz, (4.16) 

~+ = - e"l3, b // I/V = e(Jl3, /3 = 1, ... ,N3, 

2NI +N2 +N3 =N. 

Then the 2-forms in (m) = - in ( - m) become real and 

equal to 

i{) (m) = ~ (1T drsin 2mr 8 (In [1 - Elp + (e i1"W]) 
1T Jo 
A8(arg b +(eiT

)) 

8 N, - - L 18 [ cos(mtLlj) cosh(m~j)] A 8/3j 
mj=1 

- 8 [sin(mtLlj ) sinh(m~j)] A 8pj J 
4 N, - - L 8 cosh(mEa)A8Ya 
m a=1 
4( -It N, - L 8 cosh m7]p A8()p. (4.17) 

m P=I 

From (4.17) with m = 1 we easily get the action-angle 
variables for the MDKdV (4.13) with real-valued q(n). If in 
(4.13) we change the variables to u(n) = arctanh q(n) for 
E = 1, and u(n) = arctanh q(n) for E = - 1, we obtain an
other interesting DEE: 

du(n,t) = tan u(n + 1) - tan u(n - 1), E = 1, 
dt 

(4.18) 

du(n,t) = tanh u(n + 1) - tanh u(n - 1), E = - 1. 
dt 

The equivalence of (4. 13) and (4.18) is obvious only for 
E = - 1; for E = 1 the change of the variables u(n) = arc
tan q(n) is singular. 

There are more examples ofinteresting DEE which can 
be obtained from (3.4). Obviously for all of them one can 
calculate the Hamiltonian structures and the action-angle 
variables, following the above considerations. 

V. QUANTUM DIFFERENCE NONLINEAR EQUATIONS 

The nonlinear DEE mentioned above can be solved by a 
quantum version ofIST. Let us consider quantum DNS (4.9) 
where now the quantities q(n) and q+(n) are operators with 
commutation relations (m,n = 0, ± 1, ± 2, ... , ± N) 

[q(m),q+(n)] = 1i[1 - Eq+(n)q(n)]8(n - mI. (5.1) 

Hereafter we shall use the normal ordering with respect to q 
and q +. For finite N we can realize these operators in the 
state space K (N) : 

N 
CU'N = CU' 

eTl ® ifl n' 
n= -N+ 1 

(5.2) 

where !L' denotes closure of a linear space I···J and 
Ik)n = (q+(n))k 10)n,q(n)10)n = 0. As a consequence of(5. 1) 
the norm in JY IN) is positive definite provided n (OIO)n = 1: 
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k 

(k Il)n = 8k1 (lit II Cm' cm = (5.3) 
m=l 

n 
The parameter 7] = ! In( 1 - Eli) is more appropriate in the 
following formulas. In order that the Heisenberg equations 
of motion coincide with (4.9), we must add the quantum cor
rections to the classical expression of the Hamiltonian (4.12): 

H = - I Iq+(n)[q(n + 1) - q(n - I)J 
n 

- [2li/ln(1 - Eli)] In[1 - Eq+(n)q(n)]}. (5.4) 

The quantum version of 1ST (QIST) also uses an auxil
iary linear problem. In this case we can take the same L 
operator (1.2), r(n) = Eq+(n), with its entries as operators in 
Kn (5.2). The main step ofQIST is the determination of 
commutation relations of the quantum scattering data or, to 
be more precise, the operator-valued entries of the mono
dromy matrix 

(5.5) 

(5.6) 

whereR (cp )isa4X4c-numbermatrixorintertwiningopera
tor, I is the identity operator in C 2

, exp cp = z/~. The R ma
trix can be calculated from the very same relation (5.6) but 
with Ln (z), Ln (~ ) instead of TN (z), TN (~): 

RI~I~(~ b~- b:+ ~} 
a = sinh(cp - 7]), b± = e± 7J sinh cp, 

C = - sinh 7]. (5.7) 

For finite chain with periodic boundary conditions 
(2N + k = k, mod 2N) the trace of the monodromy matrix 
tN(z) = AN(Z) + DN(Z) is the generating functional of the 
quantum integrals of the motion. In order to define eigen
states and eigenvalues of t N (z), we shall need the following 
commutation relations (5.6): 

[tN(Z),tN(~)] = 0, [CN(Z),CN(~)] = 0, (5.8) 

AN(Z)CN(~) = [lib -(cp )]CN(~ JAN(Z) 

- [c(cp)/b -(cp )]CN(ZJAN(~)' 

DN(~ )CN(Z) = [lib -(cp )]CN(z)DN(~) 

- [c(cp)/b -(cp )]CN(~ )DN(Z), (5.9) 

Since, when applied to the vacuum 10) = n;; = _ N + I 10) n , 

Ln (z) becomes triangular, one easily finds for the action of 

AN (z), BN(z), DN(z) on 10) 

AN(z)IO) =rNIO), DN(z)IO) =z-zNIO), (5.10) 

BN(z)IO) = 0. 

Using (5.8)-(5.10) via the general scheme of the QIST,17,18 
one constructs the eigenstates of tN(Z): 

n 

IZI,· .. ,Zn) = II CN(Zk)IO) (5.11) 
k=1 

provided the quasi momenta Zk satisfy the algebraic equa
tions (exp A = z) 
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4N sinh(Ak - AI + TJ) 
(Zk) = II ' k = 1,2, ... ,n. (5.12) 

I-I'k sinh(Ak - AI - TJ) 

The corresponding eigenvalue is given by 

V(z!z 1 n) _ r-N lIn e
71 

sinh(A - Ak - TJ) 
, k I - k = I sinh(A - A k ) 

_ 2N lIn e71 sinh(A - Ak + TJ) 
+z . 

k = I sinh(A - Ak ) 

(5.13) 
For the energy of the state (5.11) we have 

n 

E(!zd~)= I €(Zk)' €(z)=21i-z2 _Z- 2
• (5.14) 

k=1 
There exist different phases in the limit N--oo. The 

phase with finite number of particles is the simplest one. The 
state space has the Fock type structure with vacuum 10) and 
creation operators q+(n), n = 0, ± 1, ± 2,.··, or 

R +(z) = lim CN(z)Ir-N AN(Z), Izl = 1. (5.15) 
N-ao 

The additional factor r-N is a consequence of the transition 
matrix definition 

T(z) = lim E-N(z)TN(z)E-N(z) 
N_ao 

BN(z) I IA (z) 
r-N DN(z) = C(z) 

B(Z)I 
D(z) , 
(5.16) 

whereE(z) = (OILn(z)IO) = diag(z,z-I). It is possible to de
fine operator-valued Jost solutions (in the weak sense) and 
their analytic properties and relations to the transition ma
trix T(z). The inverse to Ln (z) is [Pn = 1 - €q+(n)q(n)] 

L n-I(z) = e-
71 

VL
n
(e- 71Iz)V-I, 

Pn 
V = diag(e - 71

/2
, - e71/2

). (5.17) 

Using L ~(z) = UILn (l!z)ul, we get 

Tiil(Z) = QiiIWT:V(e71z)W-I, W= VUI' 
N 

QN = II e71Pn· 
n=-N+I 

(5.18) 

The operator R + (z), R (z) = €D -l(z)B (z) is called quantum 
scattering data. They are generators of the Zamolodchikov
Faddeevalgebra. By means of the formulas (5.17) and (5.18) 
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one can obtain a quantum analog of (2.5), i.e., the quantum 
Riemann problem. The reconstruction of the local quantum 
operators q(n) and q+(n) from the quantum scattering data 
would enable one to calculate the Green's functions of this 
model. 
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A new integral equation for summing Feynman graph series (general scalar 
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The Schwinger parameter formalism is used to derive a new integral equation verified by the 
"open" four-point amplitude built from any scalar Lagrangian. This integral equation is a 
generalization of the one already obtained and studied by the authors in the cp3 ladder graph case. 
One of the main results obtained here is a new representation of the Feynman amplitudes: the so
called,B-representation, which expresses the Bethe-Salpeter structure of a graph in the Schwinger 
parameter space. The integrand of the ,B-representation satisfies a recurrence relation which is 
used to sum the perturbation series, and which leads to an integral equation for its sum. The 
expression ofthis integral equation is also given in some particular cases (particular values of the 
invariants, particular classes of graphs, etc.). The Mellin transform of the open amplitude satisfies 
a similar integral equation which may be used to describe the Regge behavior. 

PACS numbers: 02.30.Rz, 1l.l0.Mn, Il.lO.Ef 

INTRODUCTION 

This work takes place in a set of studies whose aim is to 
obtain, in the framework of Lagrangian field theory, results 
on the infinite sum of the perturbation series, whatever the 
value of the coupling constant is. The common feature of this 
set of studies is that they are performed in the framework of 
the Schwinger parametrization of Feynman integrals. 

Some years ago, powerful results were obtained on the 
complete asymptotic behavior of each term of the perturba
tion series (mainly in the Regge limit) for scalar Lagrangians, 
and on their sum. 1 

Another way, more recently explored, provided results 
on the four-point amplitUde which are not restricted to 
asymptotic values of the invariants. It relies on the existence 
of a new integral equation (IE) that does not apply to the 
amplitude itself, as it is the case for the Bethe-Salpeter (BS) 
integral equation, but rather to a new quantity: the "open 
amplitude." The first step has consisted of deriving this new 
IE in the restricted case of cp3 ladder subseries. 2 The present 
work is the generalization of this first step to the complete 
perturbation series built from any scalar Lagrangian. 

The advantages of working with IE are well known: 
Under conditions of sufficient regularity of the inhomogen
eous term and of the kernel, the solution of an IE can be 
computed. For example, when an IE satisfies the conditions 
of the Fredholm theorems, its solution is the ratio of two 
holomorphic functions, and its singularities are poles, given 
by the zeros of the Fredholm denominator, which depends 
only on the kernel. 

As for the Bethe-Salpeter IE in momentum space, our 
IE makes use of the Bethe-Salpeter structure of the ampli
tude, that is to say, its decomposition into generalized lad
ders whose rungs are t-channel two-particle irreducible sub
graphs (t-2PI subgraphs) [see Fig. l(b)]. The Bethe-Salpeter 
IE reflects directly the factorization of the integrand when 
the Feynman amplitude is expressed as an integral over in
ternal 4-momenta. 

The Schwinger parametrization of the same amplitude 
destroys this factorization. For example, the quadratic form 
DG (a) which appears in the integrand is a complicated func
tion of all the Schwinger parameters of the graph G. How
ever, the ladder structure of the graph was still reflected, in 
the cp3 ladder case, by the open amplitude built in Ref. 2: 
Inside the set of all integration variables of the Schwinger 
parametrization [Eq. (1 )], we have distinguished there a sub
set a c = ! ail ,ai, ," J, called the closing variables. The open 
amplitude OG (ac ) is then defined by the same integration as 
the Feynman amplitUde IG itself, except that the closing 
variable integration is not performed. Of course, the Feyn
man amplitude of the graph G is the integral of OG (ac ): 

IG = f dac OG(ac )' 

We have shown that the open amplitUde obeys a recurrence 
law on the number of rungs of the ladder. This recurrence 
law is the key result from which the existence and the proper
ties of the IE verified by the infinite sum of the open ampli
tudes is deduced. 

We show in the present paper that an analogous work can 
be done independently of the ladder restriction and for any 
scalar Lagrangian cpn . 

Although the Bethe-Salpeter IE and our IE, both, re
flect the Bethe-Salpeter structure of the amplitude, they are 
qualitatively different: It is not possible to transform one of 
them into the other. They concern different amplitUdes and 
different variables: 

(i) Our IE is not satisfied by the amplitude, but by the 
open amplitUde. 

(ii) The integration variables in the Bethe-Salpeter IE 
are the external momenta, whereas our IE involves as inte
gration variables the closing variables, i.e., a given subset of 
the Schwinger parameters. 

A consequence of the qualitative difference between the 
two IE appears in the actual computation: In the cp3 ladder 
case, our IE turns to be very appropriate; indeed it provides 
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5 channel ___ 

(a) 

9j = 

FIG. I. The kinematics of the four point graph and its Bethe-Salpeter struc
ture: G = u i gi. In the first part of this work, the subgraphs gi have no 
special property of reducibility: There is, in general more than one such 
decomposition of the graph G. In the second part, gi are restricted to be two 
particule irreducible in the t channel: There is an only Bethe-Salpeter de
composition of G. 

not only the Regge singularities but gives directly the ampli
tude itself, whereas the Bethe-Salpeter IE has to be studied 
by two different methods to obtain the same results.3 From 
the method initiated by Lee and Sawyer, indeed, the Regge 
singularity analysis is obtained from an analytic continu
ation of the partial waves, the problem of the summation of 
the partial wave expansion, which gives the amplitude, being 
left over. If one is interested in the amplitude, other methods 
must be used (such as the perturbation-theoretical integral 
representation,3 for instance), and so the complete study of 
the properties of the amplitude through the Bethe-Salpeter 
equation is difficult and lengthy. 

Though our integral equation is singular, we prove the 
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existence and uniticity of its solution and make explicit its 
singularity structure. Our fundamental result is that, for 
each given value of the coupling constantA, the solution can 
be written as a finite sum of solutions of Fredholm equations 
plus a function which is the sum of a convergent series in A. 
Moreover, our IE allows simple approximate quantitative 
computation: For example, the trace approximation gives 
good results for the dominant trajectory.4 

To achieve the generalization of our IE, we split the 
problem into two steps: First we neglect the UV divergences 
and focus our attention on the algebraic structure. This step 
is completely done for all scalar Lagrangians (Secs. I-IV). 
Then we have to face the ultraviolet divergence problem, 
namely, in our approach the compatibility of the Bergere
Zuber5 renormalization procedure and of the structure of 
the recurrence relation [see Sec. I A, Eqs. (32)]. This is done 
here only for the rp3 interaction. 

The price to pay for the generality of our result is, of 
course, the formal character of the equation obtained. The 
kernel, which governs the properties of the solution, is given 
in terms of an infinite series. The logical following step of our 
program is the link between the properties of this series and 
those of the four-point amplitude. 

We conclude this introduction with a more precise pre
sentation of the content of this paper. We obtain two new 
results: the first one, presented in Sec. I, is a scalar integral 
representation for the Feynman amplitudes, which is an al
ternative to the Schwinger one. The Schwinger a-parametri
zation gives in fact the amplitude associated with a given 
graph as a multiple scalar integral involving as many scalar 
variables as internal lines in the graph. There appears in the 
integrand no factorization according to the "rungs" of the 
generalized ladder [see Fig. I (b)]. Our aim is to make explicit 
on the Schwinger integrand the BS structure of a graph. This 
requires, as presented in subsection I A, a change in the 
choice of the invariants and consequently of the topological 
functions which are their coefficients in the quadratic from 
DG (a). In subsection I B, important properties of quasifac
torization and of recurrence of these topological functions of 
the graphs are given. In subsection I C, the structure of the 
quadratic form DG (a) is made precise. In subsection I D, we 
are then led to establish our alternative parametrization for 
the Feynman amplitude: the .B-parametrization. Let us con
sider the graph G of Fig. I(b), which is a generalized ladder 
with n rungs gj. The .B-parametrization is an integral over 
6 X n scalar variables (the.B variables) and its integrand is a 
product of two factors: 

( I) The first one is completely factorized, and is a pro
duct of n functions of six variables, each one being attached 
to one rung gj . 

(2) The other one is a global factor, which depends only 
on n and is independent of the structure of each rung: It is the 
skeleton of BS structure of the graph. 

The.B variables represent appropriate combinations of 
the topological polynomials associated with each gj. Their 
variation domains are always explicitly indicated by means 
of e step functions. 

We have then the adequate tools for proving the exis
tence of the integral equation, which is the second new result 
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ofthis work. It is the aim of Sec. II. From the recurrence 
relation obeyed by the open amplitudes (defined in II A) we 
deduce the integral equation satisfied by their sum (II Band 
II C). 

Then we discuss in this framework the Regge limit, that 
is to say. the structure of the IE in the Mellin space (Sec. III). 

Some physically interesting particular situations are 
grouped in the fourth section: forward scattering. bound 
states equation, .... In this section one can find also the sim
plified expression of the IE for a special class of kernels (the 
ladder with generalized rungs; see Fig. 4). or for particular 
values of the variables {3. 

Finally, the renormalization problem is achieved for 
the q;3 interaction Lagrangian in Sec. V. Some technical 
points are grouped in the Appendix. 

I. BETHE-SALPETER STRUCTURE AND 
TOPOLOGICAL POLYNOMIALS 

We consider here the scalar Lagrangian field theories. 
With any graph G is associated its Feynman amplitude. 
whose Schwinger integral representation is 

L
'" IIG) 

I~(P) =,1 N(G)(ie- i£)-lUIG)/2 IT da
a 

o a=\ 

(1) 

In (1), w( G ) is the superficial degree of divergence of the 
graph G: 

wIG) = 4L (G) - 21(G), 

where L (G ), I (G ), and N (G ) are, respectively, the number of 
independent loops, of internal lines, and of vertices of G. Pis 
the set of externaI4-momenta, and A is the coupling constant 
of the theory. There is a scalar variable aa attached to each 
internal line of the graph. The set (a l,a2, .... aI IG ) ) will be 
noted a or a G every time an ambiguity is possible. The oper
ator R is the Bergere-Zube~ subtraction operator which 
ensures the ultraviolet (UV) convergence of the Feynman 
amplitude. In this work we will pay no attention to the UV 
convergence problems, but for the case of the interaction q;3 
which we treat exhaustively (see Sec. V). 

In Minkowsky space the amplitude is the limit E-G + of 
I ~. As we are mainly interested with the algebraic structure 
of the integrand, and not with the convergence conditions of 
the integral, we place our problem in Euclidean space, in 
which the amplitUde is given from (1) with E = 1T12: 

IG(P) = L'" df.tG(aG)e
Dda

). 

where 

d (a )="tNIG)lrrIG)d exp(-l:~I~)laam2) 
f.tG G aa . 

a=1 P~(a) 

(1 ') 

(2) 

The function DG(a) is a quadratic form built from the 
external 4-momenta. In 2 particles __ 2 particles case which 
we are studying, it is equal to 
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A ::'(a) A ~(a) A ~(a) 
DG(a)=s-- +t-- +u--

PG(a) PG(a) PG(a) 

~ 2 A ~(a) + ~Pi---' 
i=1 PG(a) 

(3) 

s,t,u are the Mandelstam invariants built from the external 
momenta Pi [see Fig. l(a)]. andPG(a),A ::,(a),A ~(a),A ~(a). 
A ~(a) (i = 1, ... ,4) are the topological polynomials, charac
teristic of the graph G. Their definition can be found in the 
Appendix A of Ref. 2. Let us only say that they are polyno
mials. homogeneous in the seta, and ofdegreeL (G) for PG' 
(L (G) + 1) for the other ones. 

The problem we solve here is the adaptation of this for
malism in order to make use of the Bethe-Salpeter structure 
of the four-point amplitude: Any graph composed of at least 
n two-particle irreducible subgraphs in the t channel may be 
drawn as the generalized ladder of Fig. lIb). As we consider 
the two vertical lines attached under each bubble as internal 
lines of the corresponding subgraph. the graph G is exactly 
the union of each subgraph gi: 

G = I gl>· .. ,gn)· 

In this first section, except for the existence of the two addi
tional vertical lines, the graphs gi can have absolutely any 
structure: They can be reducible or irreducible. 

The problem stands of course in the fact that the inte

grand eDda)1 P ~ (a) in (1') is not factorized in functions, each 
attached to each subgraph gi' As we want to build G as a 
ladder of rungs gi' we are faced with the necessity of per
forming loop integrals to link two subgraphs: In the follow
ing paragraph a change of external momenta is performed in 
order to make easier this integration. 

A. Alternative expression for the quadratic form DG{a) 

The first step consists in modifying the usual form of 
DG(a). We choose as external momenta the three combina
tions, 

ql = ~(PI + P3)' 

q2 = !(pz + P4)' 

q=(PI-P3)=(P4-P2)' 

and build their associated invariants, 

Sl1 = qi = ~ (pi + p;) - g 

Sl2 = 2q\q2 = !(s - u) =s+~(t- ± p;), 
2 ;=J 

S22 = q~ = ~(p~ + p~) - ! t. 
SI = 2qql =pi - P;' 

S2 = 2qq2 = p~ - p~ , 

Sf = q2 = t. 

(4) 

(5) 

The seven invariants s,t,u, P;. i = 1,2,3,4, are not indepen
dent (s + t + u = l: PT), so it is enough to define the six inde
pendent invariants Sj ,jEK, where K is the set of indices: 

K = pI, 12,22, 1,2,t ). 

Putting in (3) the inverse relations of (5), which gives the 
Mandelstam invariants in terms of the Sj variables, we find 
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DG(a) = I Sj /3 b(a). (6) 
jEK 

The /3 b (a) are the combinations of topological polyno
mials associated with Sj : 

/3g(a) = [lIP(a)] [A ~(a) +A ~(a) +A ~(a) +A ~(a)], 

/3:i(a) = [lIPG(a)][A~(a)-A~(a)], 
/37](a) = [lIPG(a)][A ~(a) +A ~(a) +A ~(a) +A ~(a)], 

/3~(a)=~ [lIPG(a)][A~(a)-A~(a)], (7) 

/3~(a) = ~ [lIPG(a)][A ~(a) -A ~(a)], 

/3~(a) = [lIPG(a)][A ~(a) 

+! [A ~(a) +A ~(a) +A ~(a) +A ~(a)] J. 
The set of the six functions /3 b , iE/(, will be noted /3 G . 

Let us now give the variation domain of /3G' when the a 
parameters vary from zero to infinity. For the most general 
graph, the topological functions AjG(a)/PG(a), 
i = s,t,u, 1,2,3,4 are independent and vary from zero to plus 
infinity. Then, using (7), one obtains the bounded domain: 

1/3:i1 +21/3~1</3~1, (8a) 

1/3:i1 + 21/3~1</37], (8b) 

1/3~1 + 1/3~I<2{3~· (8c) 

In opposition with A {.;(a)IPG (a), some ofthe/3 bmay be
come negative. 

In fact, we will see in the following that the six/3j ,iE/(, 
do not play an equivalent role: We have to group them into 
two sets: 

Y=! /3IZ,/3Z,/3zzJ 
and 

(9a) 

(9b) 

Thus, the variation domain (8) may be built in two steps: the 
variation domain of y, y being kept fixed and the domain for 
y, whatever y is. These variation domains play an important 
role in the following. To each of them are attached, respec
tively, the function 8 1, 8 z, 8 3 with 

8 1(/3) = 8 2.83, 

where 

(lOa) 

8 z(y,y) = 8(/3 11 -I/3 lz l-21/3 11).8(2{3' -1/3 11-I/3 zl), 
(lOb) 

83(y)=8(/3ZZ-I/3IZI-21/3ZI), 

with 8 the usual step function. 

B. Bethe-Salpeter structure of the /3 functions 

(We) 

The theorem we establish now concerns the Bethe-Sal
peter structure of the topological polynomials. It is the result 
upon which the whole work relies. 

Theorem 1: Let us consider a graph G which can be 
written as a generalized ladder with n rungs [Fig. lIb)]: 

G=! gl,gz,···,gn J. 
Then there exists seven functions of 6 X n variables, S ~ ,iE/(, 
and S ~, verifying the three following properties: 

-They are independent of the graph gi' depending 
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only on the number n of such sub graphs, 

- /3 b(aG) = S ~ (/3g, (ag,), /3g2 (ag2 ), ... , /3g.!agn )), (11) 

and 

PG(aG) = (iii Pgi(ag))S~(/3g,(ag,), ... ,/3g.!agJ). (12) 

-The functions S ~ , iE/(, and S ~ verify the following 
recurrence relations: 

S ~ (/31"'" /3n) 

= S ~ _ 1(/31"'" /3n -Z,SZ(/3n_1 ,/3n)), 

S~(/3I,· .. ,/3n) 

(13) 

= S~ _ I (/31"'" /3n - Z ,Sz( /3n - I' /3n ))S~ (/3n - I' /3n)· 
(14) 

The meaning of this theorem is the following: The /3 func
tions associated with the graph are themselves functions of 
the /3 functions associated with each subgraph gi in a way 
which is independent of the graph G except for the number of 
subgraphs gi . 

I t is this property which replaces the factorization prop
erty of the integrand in the momentum space. 

Proof The proof proceeds through two stages: first we 
show it directly for the case n = 2. Then the proof works by 
recurrence. 

n = 2 case: Let us consider a graph G which is two
particule reducible in the t channel (see Fig. 2): G = ! g l' gz J. 

We write the amplitude I G in terms of the convolution 
of the two amplitudes Ig, and Ig2 : 

I G(qpq2,q) 

= cstJ d 4q' Ig,( - q',q2,q)·Ig2 (ql,q',q), 

where 

q' = ~(p~ + p;). 

(15) 

In the two members ofEq. (15), we use for I the expres
sion (1'), where D (a) is given by (6). After having done the 
integration over q', we can identify on the two sides the de
nominators and the coefficients of the invariants. We remark 
that/3G dependsonag, andagZ onlythrough/3g, and/3g2' We 
thus obtain explicitly the functions Sz: 

S~I(/3I,/32) =/3~1 - (/3~2)ZI(/3:1 +/3~Z), 

S ~2( /31' /32) = /3 :2/3 ~2 I( /3: I + /3 ~2), 

S ~Z( /31' /32) = /3 iZ - (/3 :2)2/( /3:1 + /3 ~Z), (16) 

S~(/3I,/3Z) =/3~ -/3~2(/3~ -/3:)/(/3:1 +/3~Z), 

S~(/3l>/32) =/3i +/3:2(/3~ -/3:)/(/3:1 +/3~Z), 

S ~ (/31' /3z) = /3; + /3 ~ - (/3 ~ - /3:)Z I( /3 : I + /3 ~2), 

and finally 

(17) 

n subgraph case: Let us turn now to the graph of Fig. 
lIb). We build by recurrence the set offunctionsS ~ ,iE/( [see 
(13)]. Inside the graph G we can group together the two last 
subgraphs gn _ I and gn : 

G=! gl,gz,···,gn-Z,g~-I J, 
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with 

g~ - I = 1 gn - 1> gn ). 

If we assume that the S ~ _ I functions are known, we have 

13 b(aG) = S~ _ I (f3g, (ag, ), ... , f3g• _ 2 (ag._ 2)' f3g~ _, (ag~ _ )). 

then using Eq. (16) to compute 13. , we obtain 
g,,- t 

13 b(aG) = S ~ _ I (f3g, (ag, ), ... , f3g• _ 2 (ag• _ 2 ),S2( f3g• _, (ag• _,), 

f3g.(agJ)). (18) 

The comparison of (18) with (11) proves the existence of 
S ~ (jEK) and gives us their recurrence law. With the same 
procedure, we deduce the recurrence law (14). 

This achieves the proof of Theorem 1. 

c. Bethe-Salpeter structure of the quadratic form 

In this subsection, the dependence of the quadratic 
form in function of the variables Yn is studied. In the recur
rence relations (13) and (14), the six variablesf3n do not play 
an equivalent role. The dependence in function of three of 
them (Y n ) is linear and does not depend on all the 6 X n - 3 
other variables. It will be seen further that this property al
lows to obtain an IE with only three integration variables 
and not six. To lighten the notations, we write 
f3 ln) = 1 f3l,.··,f3n ).ThefunctionsS~,jEK,arehomogeneous 
functions of degree one in the set of the 6 X n variables f3 ln)' 

and S ~ is homogeneous of degree (n - 1) in the same set. We 
recall that we have defined the two subsets [see (9a) and (9b)): 
Y = 1 13 12, 13 22, 13 2) and Y = 1 13 11 , 13 I, 13' J; we define also 
the two subsets of indices: 

K'=112,22,2) and [('=111,1,1). 

From (16) and (13), one can show by recurrence that it is 
possible to define a set off unctions S ~ such that 

S ~ (f3ln)) = S ~ (f3ln _ Ii'Yn), forjEK' andj = 0, 

S ~(f3ln)) = S ~(f3ln _ 1),Yn) + f3~, forjEK'. 
(19) 

As a direct consequence of Theorem 1, we are led to 
define a function D n : 

Dn (131"'" f3n )= I SjS ~ (f3l>"'" f3n)· 
jEK 

(20) 

The quadratic form DG (aG) has a simple expression in func
tion of Dn: 

DG(aG) = Dn (f3g, (ag,), f3g2(ag2), ... ,f3g.(agJ). (21) 

The useful properties of Dn are given in the following 
theorem. 
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Theorem 2: The dependence of the D n function upon 
the three variables Y n of the last graph g n is explicit and 
linear: 

(22) 

jEK' 

where the Dn function depends, as fa! as the last subgraph is 
concerned, only on the set Yn' The Dn function verifies the 
recurrence law: 

Dn (f3ln - Ii'Yn) 

= Dn _ I (f3ln - 2i'S2( f3n -I ,Yn)) + d (Yn - I ,Yn), (23a) 

where 
( 13 i2)2 13 i2( 13 ~ - 13 : ) 

-SII -SI 
13: 1 + f3~2 13: 1 + f3~2 

(
, (13 ~ - 13: f) 

+ S, 13 I - 13: 1 + f3~2 (23b) 

and where S2 represents the set of functions 1 S {, jEK '). 
Proof The relation (22) follows immediately from Eqs. 

(19) and (20). The function Dn and the term l:jEK' Sj 13 ~, fol
low the same recurrence law (13) asS ~,Thus, using (22), one 
can obtain the recurrence law (23) for Dn. 

Let us remark that the function d, and the term 
(l:jEK' Sj 13 ~) in (22) correspond exactly to the violation of the 
• law in the framework of our work on the rp3 ladder. 2 

D. f3-parametrlzatlon of the Feynman amplitudes 

Weare now able to proceed any further and to propose 
an alternative form for the Schwinger parametrization, form 
which reflects the Bethe Salpeter structure of the amplitude: 

Theorem 3: The amplitude I G attached to the graph of 
Fig. l(b) may be written as 

IG = J iI (df3jjg,(f3j)) [S:;;'····;) )]2' (24) 
l - 1 n 1"" n 

where 

jg(f3)=el(f3) (00 djlg(ag) II 8(13 j-f31(ag)). (25) Jo jEK 

Proof Theorem 3 is easily proved if, inside expression 
(1') where DG(a) is given by Eq. (21), we insert 

1 = J jDJI8( 13 ( - f31,(ag,)) df3{. (26) 

Let us make three remarks: 
(1) We purposely make explicit the integration region 

for the 13 via the factor e l [see Eq. (10)). 
(2) For a given graph G, the decomposition 

G = 1 gl'"'' gn ) is not unique, as far as the irreducibility of 
the subgraphs gj is not required. In particular, to any graph 
is associated its f3-parametrization with n = 1: 

IG = J df3jG(f3)eDtII3
). 

(3) The strength of the expression (24) is that the inte
grand appears as the product of two qualitatively different 
factors: 
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(a) e
D

"(.8(")); [S~ (/3(n))] 2 is independent of the character
istics of the graph G but the number n of subgraphs gi' 

(b) The n functionsjgi( /3i ) depend on the subgraphs gi' 
This factorized structure is the main property which is 

used to build the integral equation derived in the next sec
tion. 

II. INTEGRAL EQUATION 

The Bethe-Salpeter integral equation is written for the 
amplitude. It is not the case here. Our work relies upon the 
properties of the partially integrated integrand. The first 
subsection is devoted to define this "open amplitude." Then 
a first form of the integral is given. The third subsection gives 
the final form of this equation. 

From now on and up to the end of the work we consider 
for each graph its unique decomposition in the generalized 
ladder [see Fig. l(b)] oft-2PI subgraphs: Here the notationgi 

will always refer to such a two-particle irreducible subgraph. 

A. The recurrence relation obeyed by the open 
amplitude 

The open amplitude OG"_, (Yn) is defined by the rela
tion 

(27) 

where Yin) is a condensed notation: 

Yin) = I /3ln - II,Yn l· (28) 

Equation (27) is nothing but Eq. (24) where we let remain the 
last six integrations df3n : 

The open amplitude is only dependent on the (n - 1) sub
graphs G n _ 1 = I g I"'" gn _ 1 j, and not on the last subgraph 
gn' From a given open amplitude OG" ... " it is possible, using 
(29), to reconstruct all the amplitudes of the family of graphs 
G n which have the sames (n - 1) first subgraphs and a differ
ent nth subgraph gn . Such graphs, which are generalized 
ladder with n rungs, but with only the (n - 1) first subgraphs 
Gn _ 1 specified, will be called n-open graphs (see Fig. 3). 

The integration (29) can be simplified: Inside the set of 
the six variables /3 n , the three integrations dy n can be per
formed: 

(30) 

with 

Inserting definition (25) for jg (/3), we find 
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FIG. 3. The n-open graph 
G"_, = {g, •...• g" __ ,}. An n-open 
graph. and the open amplitude 
which is associated with it. depend 
on the (n - I) subgraphs gi' 
i = I •...• n - 1. but not on the nth 
subgraph. The nth bubble is a skele
ton which may be dressed by any 
graphg". 

}g(Y) = e 3(y) J d,ug(ag) exp( Ii.Sj /3 ;(ag)) 

X II O(/3j -/3£(ag )). (31) 
jEK' 

The way to build the recurrence relation on the number of 
subgraphs of the open amplitude is straightforward: In the 
expression OGJYn + I)' we make use of the recurrence rela
tions (14) and (23). 

We recognize the open amplitude OG" ,(S2( /3n, Yn + 1 )) 

in the integrand and so 

OG,,!Yn + d = J d/3n }gJ /3n) [SO~~Yn'Yn+ d W 
2 n ,Yn + 1 

XOGn ,(S2(/3n,Yn+d). (32) 

In the relation (32), only the variables with an index equal to 
n or n + 1 appear. Thus the notations can be simplified: in
steadof/3n = IYn,Ynl and/3n+l= IYn+I,Yn+lj,wewill 
use in theremainder/3' = li,fl and/3= Iy,Yl· 

Let us remark that the open amplitude has been defined 
in perfect analogy with the cp3 1adder case. 2 We recall that, in 
this latter work, the closing variables (see the Introduction) 
were the three Schwinger parameters attached to the last 
rung and the last vertical lines of the ladder, whose corre
spondent here is exactly the last subgraphgn [see Figs. l(b) 
and (c)]. One can get convinced that the elements of Yn con
cern the same topological polynomials of gn that the closing 
variables of the ladder. 

B. Summing the series over all graphs 

As we already said, we may draw all graphs generated 
by any scalar Lagrangian as a generalized ladder (see Fig. 
l(b)], where each subgraphgi is t-2PI. Now, the crucial point 
when one wants to face the whole perturbation is to organize 
the infinite sum. The results already obtained [the factoriza
tion ofEq. (24) on one hand, the definition of the open ampli
tude on the other] lead us to the following four steps: 

(i) For any n-open graph, we define its open amplitude 

OG" __ ,· 
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(ii) We group together all the n-open graphs and define 
the quantity 

On(Y)= L OGn_,(Y)· (33) 
G"_1 

From Eqs. (32) and (33), we see that On (y) verifies the 
recurrence relation 

(34) 

with 

k(y,fJ') = L kg(y,fJ'), (35a) 
g 

where ~g is the sum over all the t-2PI graphs and where 

edlY•r) 
(35b) 

(iii) The following step consists in summing over each 
such set of graphs; we define 

00 

O(y) = L On (y). (36) 
n=1 

then 0 (y) verifies the integral equation 

O(y) = OIly) + f dfJ' k(y,fJ')O(S2(fJ',y)). (37) 

with 

(38) 

Equation (37) is essentially the integral equation we are look
ing for. 

(iv) The last step consists of performing the integration 
on the variables y in order to get the four-point amplitude I: 

1= f dy J(y)O (y), (39) 

where 

(40) 
g 

withJg given by (31). 

c. Final form for the integral equation 

We will now proceed a little further in order to get the 
integral equation verified by 0 (y) in a more classical form, 
and see whether it falls under the scope of classical theorems. 

We define the change of variables 

r'-Y* (41) 

such that 

fJ 12'_fJ 12* = S ~2(fJ',y) =fJ I2'fJ I2/(fJ II, +fJ 22), 

fJ 22'-+/3 22* = S~2( fJ ',y) = fJ22, _ (fJ22')2/( fJ II' + fJ 22), 

fJ2'-+/32* =S~(fJ',y) (42) 

= fJ 2, + fJ 12'( fJ 2 - fJ I')I( fJ II, + fJ 22). 

This change of variables does not concern the variables Y'. 
We define 

u = fJ 12* /fJ 12 = fJ 12'/( fJ I I, + fJ 22). (43) 
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One can immediately see that the variation domain of y* is at 
most as large as the domain defined by 8 3(y*), as y* is noth
ing but the y variables of the graph of Fig. 2 with 
! gI,g2} =! g',g}. 

The computation of the actual variation domain of y* is 
given in Appendix A. It is given by the following function: 

8 4(y,y*) = 8(1 - lul)8(fJ22* _julfJ 22 
- 21fJ2* - ufJ21). 

(44) 

The Jacobian of the transformation (41) is 

J (y'_y*) = ({3 II, + (3 22)/{3 12. (45) 

Among the six integrations of the integral (37), three 
can be done explicitly and a new kernel K can be defined by 

K (y,y*) = L Kg (y,y*) 
g 

with 

Kg(y,y*) = f dY' kg(Y, (3')J(y'-y*). 

Using (35b) and the expression (25) ofjg, one obtains 

Kg(Y,y*) = 8 4(y,y*) f dvg(ag ) exp[ d(8y(ag ),y)] 

X II 8({3j* -Sl(fJg (ag ),y)) 
jEK' 

with 

We finally have 

o (y) = OIly) + f dy* K (y,y*)O (y*), 

(46) 

(47) 

(48) 

with OI(Y) given by (38) andK (y,y*) by Eqs. (46) and (47). Of 
course, we obtain the amplitude 1 from Eq, (39). 

Let us make three last remarks about the IE: 
-The dependence of 0 (y) as function of Sj ,jE/(, has two 

sources: OIly) depends upons I2, S22' ands2, and the kernelK 
depends on the three other invariants SII' SI' and Sf. 

-Whereas the number of integration variables was six 
in the IE (37), it is only three in (48). This diffeH!nce reflects 
exactly the difference between the recurrence relation veri
fied by Sn andDn and which concerns six variables [see (13)], 
and the one verified by b n , where only the three variables y n 

are concerned. 
-The inhomogeneous term OI(Y) is a simple explicit 

function [Eq. (38)] which is independent of the Lagrangian. 

III. MELLIN TRANSFORM AND REGGE POLES 

A. The integral equation verified by the open amplitude 
of the Mellin transform 

The reasons for working with the Mellin transform of 
the amplitudes are of two different types: 

-First, there are technical reasons which are linked to 
the Wick rotation problem and to the Landau singularities. 
These points have been discussed in Ref. 2 for the tp3 ladder 
case, and we shall not come back to it in the present paper. 

-On the other hand, it is well known that the Mellin 
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transform is very well adapted for the study of the amplitude 
at high energy, where the Regge model is relevant. The sin
gularities of the Mellin transform are linked to the Regge 
singularities in the angular momentum space. 

In term of the invariants Sj,jE/(, the Regge limit is de
fined by 

S 12----+ 00 , Sj = cst for j =f. 12; 

so we are going to perform the Mellin transform of the am
plitude for the variable S12' The Mellin transform/Ix) of a 
function/Is), which is integrable and regular when S goes to 
zero, is defined by 

e-;TrXF( _ x17(x) = f" dss- x - 'f(s) 

for - 1 < Re(x) < O. (49) 

For the values of x where the integral (49) does not exist.!(x) 
can be defined by analytic continuation. If one uses the /3-
representation (24) of I G, it is possible to perform the integra
tion (49) over the variable SI2 explicitly, and one obtains 

IG(x) = J ;~\ [d/3;jg,(/3;)] 

[S !2( /3w .. ,/3n)] x 
X 0 2 [S n(/3p ... ,/3n)] 

xexp( ~ SjS~(/3I, ... ,/3n)). 

J# 12 
Using the relations (13) and (16), it can be shown that 

rrn /3 12 
SI2(/3 ,/3) = ,= 1 , 

n I"" n S~(/3I, ... ,/3n) 

the Mellin transform I G (x) becomes 

IG(x) = Jill [d/3;jgj(/3;)(/3:2t] 

X 0 1 x + 2 exp ( I SjS ~ (/31"'" /3n )). 
[S n (/3I,· .. ,/3n )] jEK 

J# 12 
(50) 

The factors (/3 :2)X and [S~( /3", .. ,/3n)] - x introduce no 
new singularity in the integral when x > - 1, and IG(x) is 
defined when I G is defined. 

The open amplitude of the Mellin transform is a func
tion of three variables y = (y12,y22,y2) defined by suppress
ing in (50) the last integration d/3n and the factor 
}gn (/3n)( /3 !2)X exp(~jEK' Sj /3 ~), which depends only on the 

variables /3n : 

aGn _ I (Yn) = J i;ll [d/3; }gj( /3;)( /3 :2)X ] 

1 

x exp( I S; S~(/3p ... ,/3n)). 
IEK 

;# 12 
The important property of the function aGn (y) is the fact that 
it follows nearly the same recurrence relation than 0G.!Y)· 
The only difference comes from a factor 
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[ /3 !2/S~( /3n ,y) r = (/3 12*1/3 12)X 

which appears in the kernel 

- J . (/3 12*)X 
°G.!Y) = d/3n }gJ /3n) /3 12 

exp[d(Yn,Y)] a (S (/3 )) 
X [S~(/3I, ... ,/3n)r+2 G n

_
1 2 n'Y' 

Then, in the same manner as for the function ° (y) [see Eq. 
(48)], one can show that the sum a of all the open amplitudes 
of the Mellin transforms verifies an IE: 

(51) 

with 

K (y,y*) = (/3 12*1/3 12r K (y,y*). (52) 

Due to the factor (S !2r , or ( /3 :2r , all the expressions de
rived here would be well defined only if S !2 or /3 :2 would 
never become negative. It is not true in general [see Eqs. (7) 
and (11)]. 

So it is necessary to replace (S !2)X by 

(S !2)x --+() (S !2)(S !2)x + () ( _ S !2)e;?TX( - S !2r , 

and similarly for ( /3 :2)X . It is known that the step functions () 
are the origin of the Mandelstam cut. 

B. Particular value of y: [112 = 0 

Usually, when an IE is written for a particular values of 
a variable, the number of integration variables does not vary. 
Here, if we put /3 12 = 0, then 

Si2(/3',/3) = 0, 

the interval of integration for the variable /3 12* disappears 
and the IE becomes a two-variable IE. Actually it is not 
possible to put/312 = ° directly in the IE ofEq. (51) because 
the JacobianJ(y'--+y*) becomes infinite and one must come 
back to Eq. (37). The change of variables y'--+y*, being not 
allowed when /3 12 = 0, we replace it by the change 
y----+(/322*,/32*,U) with 

U = S~(/3',y)l/312 =/312'/(/3"' + /322). (53) 

For any value of /3 12, the IE can be written as 

O(y) = OI(Y) + J d/322* d/32* du 

xl (y, /3 22*, /3 2*,U)O (/3 22*, /3 2* ,u/3 12) (54) 

with 

I (y,/322*,/32*,U) 

= 8 4 (/322,/32,/322*,/32*,U)UX f dVg exp(d) 

X II 8(P* -Sil8(u _ f3:2~a)), 
J= 22.2 S 2 

(55) 

where d is defined by (23b). 
It is now possible to put /3 12 = ° in the previous equa

tion, and we find 
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0°(/3 22
, /3 2) = O~( /3 22, /3 2) 

+ f d/3 22* d/3 2* 

XK (/3 22, /3 2; /3 22*, /3 2*)0 O( /3 22*, /3 2*) 
(56) 

withKO = ~Ko and g 

K~( /3 22, /3 2, /3 22*, /3 2*) 

f ( /3 12(a) )X 
= dvg(ag) S~(~(:),y) 

xexp[s (/3 t(a) _ (/32 -/3
I

(aW)] 
t /311(a) + /322 

X II 8(pi*-Si(/3(a),/322,/32)) (57) 
j = 22.2 

and 0°(/3 22,/3 2) = 0(/312 = 0,/322,/32). 
When/3 12 = 0, twoinvariantssl1 andsl disappearin the 

expression of the IE. The solution 0 ° depends on the three 
remaining invariants S22' S2' and St and on the Mellin variable 
x. The kernel itself depends only on St = t and x. 

C. Expansion of the IE. Leading Regge poles 

In Ref. 2, this reduction of the number of integration 
variables, when /3 12 = 0, was the basis of a method of com
puting the amplitudes and its singularities by means of an 
expansion, the first term of which is precisely the function 
0o( /3 22, /3 2). Each term of this expansion was the solution of a 
Fredholm type IE, and so its singularities were given by the 
annulation of the determinant of the kernel. This expansion 
classifies the singularities, which give the Regge singularities 
of the amplitude, in a simple manner: Only the first term of 
the expansion contributes to the leading Regge pole, only the 
two first terms contribute to the subleading poles, and so 
on .... In the general case we study here, it is again possible to 
perform such an expansion which has the same formal struc
ture. Of course, the nature of the kernel depends on the La
grangian, and on the particular graphs one actually keeps in 
the kernel. For the complete perturbation it will be difficult 
to verify if we are or not in the Fredholm case. 

Let us expand the function 0 ( /3 12, /3 22, /3 2) as a series of 
/3 12: 

n 

Using Eq. (51), it can be easily verify that each function On is 
the solution of an IE with a kernelKn = ~g K;, whereK; is 
equal to K ~, with x replaced by x + n. 

If we note explicitly the dependence of these kernels, 
they verify 

Kn(x) =KO(x + n). (59) 

If the kernel K ~ are of the Fredholm type (bounded, 
squared-integrable, kernel of a compact operator, ... ), the reo 
lation (59) shows that all the Regge poles are given by the 
first kernel KO(x). The poles coming from the other kernels 
Kn (x) are obtained by a simple translation: x-x - n. In the 
tp3 1adder case, the kernelK O(x) are not of the Fredholm type. 
The expansion (58) must be slightly modified in order to ob-
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tain Fredholm type kernels, and the degenerescence of the 
daughter spectrum is lost (the exact degenerescence is true 
only in the limit -1.-0). 

As thekernelsKn (x) depend only onst = tandx and, of 
course, on the coupling constant -1., the Regge poles, when 
they exist, depend only on t and-1.. We recover here the well
known property that the Regge poles are independent of ex
ternal squared four momentap;. 

IV. PARTICULAR CASES 

A. Particular values of the Invariants 

When some of the invariants are equal to zero, the 
structure of the integral equations changes: The number of 
integration variables is reduced from three to two, and even 
only one in one case. 

1. Forward elastic scattering 

The elastic scattering in the forward direction is defined 
by 

pi = pL p~ = p~, t = 0, 

in term of the Mandelstam invariants or by 

SI =S2 =St =0 

in term of the Sj variables [Eq. (5)]. 
The kernel K of Eq. (48) depends on /32 and /3! only 

through the combination/3 2* - u/3 2. In particular, one of the 
three 8 functions contains this combination. Thus, if one 
integrates the kernel with a function/( /3 12, /3 22) which is in
dependent of /3 2, the result is also independent of /3 2: 

f dy* K(y,y*)f(/312*,/322*) 

= f d/3 12*d/3 22* k (/3 12, /3 22; /3 12*, /3 22*)f( /3 12*, /3 22*) 

with 

and 

kg (/3 12, /3 22; /3 12*, /3 22*) 

= 0(1 - lul)0(/322* - lul/3 22 - 21/3 2(ag ) 

- u/3 l (ag )l) 

f ( (/3
12
)2) 

X dVg exp -Sl1 /312(ag) +/3 22 

X II 8( pi * - S i (/3 (ag ); /3 12, /3 22)). (60) 
j= 12.22 

So, since the first term 0 I does not depend on /3 2 when S2 is 
equal to zero, 02,03, ... ,On' and thus their sum 0 does not 
depend on /3 2. This last function is a function of only two 
variables, 0 = 0 ( /3 12, /3 22) and it verifies an IE, the kernel of 
which is k (/3 12, /3 22; /3 12*, /3 22*). 

The reduction from three to two of the number of inte
gration variables is a consequence ofthe well-known result6 

that in the equal mass case and at t = ° the BS IE have a 
supplementary symmetry. 
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2. Threshold in the t channel 

The annulation of the three invariants s II> S 12' and S I 
corresponds to the threshold in the t channel: 

PI = - P3 or pi = p~ = A t and S = u. 

When SII = SI2 = SI = 0, it can be shown, in the same man
ner as in the previous subsection, that the amplitude verifies 
an IE of only two variables f3 22 and f3 2. The first term is 

0 1 = Ol( f3 22, f3 2) = exp(S22 f3 22 + S2 f3 2), 

and the kernel corresponding to the graph g becomes 

kg (f322, f32; f322*, f32*) 

- dv (a )exp S f31(a) g f [ ( f32 - f31(a ) )] 
- g gIg - f311(ag)+f322 

X II 8([Ji* - S1(f3(ag);f3 22,f3 2)) 
j = 22.2 

with 

uta) = f3 12(a)/[ f3 II(a) + f3 22]. 

3. £Iastic scattering with some external momentum equal to 
zero 

or 

Here we consider the case where 

PI =P3 =0 

pi =p~ =1=0 

and 

S= U =p~ =p~. 

This case contains, as an even more particular case, the 
scattering when all the momentum and all the invariants are 
equal to zero: 

Pi = 0, i = 1,2,3,4. 

The simplifications of the two previous paragraphs can 
be done together, and one obtains an IE of only one variable 
f3 22, with a kernel which is given by k = 1:g kg and 

kg (f3 22, f3 2*) 

= f dVg 8(f322* -S~2(f3(ag);f322)) 

XO(f322* -lu(a)1 f322 - 21 f3 2(a) - u(a)/3l(a)I). 
(62) 

4. Bound states 

It is possible to give another interesting interpretation 
of the cases studied in subsections 2 and 3. Using, for exam
ple, the Schwinger representation of the graphs, one can see 
that the vertex function of a bound state (the "relativistic 
wavefunction"), of squared mass t and which contains two 
particles of momentum P2 and P4' has exactly the same struc
ture in the invariant SI = t, S2 = !( p~ - p~), and 
S22 = !( p~ + p~) - At as the 2~2 amplitudes in the 1 channel 
whenPI + P3 = O. Thus one can define on "open" relativis
tic wa vefunction q;( f3 22, f3 2) which verifies a homogeneous 
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IE: 

q;( f3 22, f3 2) 

= f df322*dfJ2* k(f322,f32; f322*,f32*)qJ (f322*,f32*). 

(63) 

The wavefunction itself can be computed by integrating the 
open wavefunction qJ over f3 22 and f3 2. 

Similarly, ifnow one considers a bound state of mass 
equal to zero (t = 0), its "open" relativistic wavefunction 
q;( f3 ) verifies a homogeneous IE of one variable: 

qJ(f322) = f df322* k(f322; fJ22*)qJ (fJ22*). (64) 

B. Particular value of r: (312 = 0 

It has been seen in the previous section that the IE veri
fied by the Mellin transform became simpler when fJ 12 was 
equal to zero. It is also the case for the IE (48). The ampli
tudesOO( fJ 22, (32) = 0 (fJ 12 = 0, fJ22, fJ2)verifiesanIEwitha 
kernel KO = 1:g K~ defined by 

K~( fJ22, fJ2; fJ22*, fJ2*) 

= f dv (a) exp[s (fJ 1 (a) _ (fJ 2 - fJ l(a))2)] 
g 1 fJlI(a)+fJ22 

X II 8(fJ 2*-S1(y(a),f3 22,f3 2)). (65) 
j = 22,2 

WhenfJ 12 = 0, three invariants, S12' SII' and 51' disappear in 
the expression of the IE. The solution depends only on the 
three remaining invariants 522' S2' and S, (the kernel depends 
on 51 and the first term on 522 and S2)' 

C. Particular class of graphs 

In this section, we consider a particular class of graphs: 
the generalized rung ladder graph (GRLG), where the rungs 
are made with subgraphs which are linked to each upright by 
only one vertex (see Fig. 4, where different examples of such 
generalized rungs are given). To this class belongs the ladder 
graph of q;3, which has been already widely studied in our 
previous paper.2 When one considers the GRLG, four 
among the seven topological polynomials [Eq. (3)] of the 
rungs are equal to zero, 

AI =AU =A I =A 3 =0, (66) 

and the formalism which has been worked up in the first 
sections become simpler: All the kernels [Eqs. (25), (31), (35), 
and (46)] depend on the graph by the same function}g of only 
one variable, and, except for this function, they are explicit 
functions. In the q;3 ladder graph case, the function}g is a 
constant, and, of course, we find the IE of our previous paper 
again. 

FIG. 4. Some example of generalized rungs. The three first graphs come 
from a tp3 Lagrangian; the two last ones, from a tp4 Lagrangian. 
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In this subsection we note g the generalized rung itself 
and g the same graph with two vertical lines added (see Fig. 
5). If a and a' are the Schwinger parameters attached to 
these two lines, the measure dp,g becomes 

dp,g(ag) = da da' exp[ - (a + a')m2] dp,g(ag). 

In addition to the relations (66), the particular structure of 
the graphs lead to simple expressions for the other topologi
cal polynomials of g: 

Pg =Pg , Ai =aA;, 
A; =a'A;, A~ =A~. 

If one computes the /3 ~ functions, one obtains 

/3~(ag) = 0, 

/3 flag) = /3 j2(ag) = /3 !2(ag), (67) 

/3i2(ag) = a + a' + /3 !2(ag), 

/3i(ag) = ~(a' - a), /3~(ag) = Ala + a'). 

We are not going to transform all the results of the previous 
sections, but only the main ones. 

Taking into account the relations (67), we can give the 
new expression of the kerneljg( /3) [see Eq. (25)] 

jg( /3) = {j( fll~( fl 11 - fl 12){j( /3' - i( /3 22 - /3 12)) 

X exp( - fl 22m2'iJg( /3 12), 

where the new function}g is defined by 

}g (/3 12) = 0 ( fl 12) exp( fl 12m2) I dp,g{j (/3 22 - /3 12(ag)). 

(68) 

In the particular case of the rp3 ladder graphs, the function} g 

is a constant: 

}g (/3 12) = A 2. 

The /3-representation [Eq. (24)] can be written 

IG = IlJI [d/3J2}gi(/3J2)]Q"(/3l~), (69) 

where Q" is an explicit function of n variables, /3 (~ 
= (/3 :2, /3 ~2, ... , /3 ~2), independent of the graph and equal to 

Q"(/3 (~) = I lJI [d/3t
2 

d/3t exp( - /3;2m2)] 

exp[D"(/31,· .. ,/3")] I 
X pI 0 pl1 p12. 

[S~ (/31'···' /3")] 2 ;:: (~f~ -=P!~)~4; 
;= 1,,,,,n. 

For example, the /3-representation of dimension 1 is 

IG = I d/312}G(/312)QI(f3 12), 

9 

45 

FIG. 5. Definition ofg and g. In sub
section IV C, gis the rung itself and g 
is the rung to which two vertical lines 
have been added. a and a' are the 
Schwinger parameters attached to 
these two additional lines. 
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with 

Q (flI2) = exp[ - f312(m 2 
- Sl1 - S12 -S22)] 

1 (m2 _ S22 _ !S,)2 _ (¥2)2 
exp[ - (m 2 - s)/312] 

(m2 _ p~)(m2 _ p~) 

The denominator of Q I represents the propagators of the two 
extra lines which have been added to the graph. 

Let us now come to the integral equation itself [Eq. 
(48)]. The product of the three {j functions in Eq. (47) can be 
written as 

[fl22/f312(1 - u)2]£5(f3 !2(ag) - [u/(1 - U)]f322) 

X {j (a + a' - /3 22* + u/3 22)o(~(a' - a) - /3 2* + u/3 2). 
(70) 

In the definition of Kg [Eq. (47)], the integrations over the 
two variables a and a' can be done, using the two last £5 
functions. The remaining integrations of the first {j function 
give the}g function with an argument equal to [u/ 
(1 - u)] /3 22. As/3 12 and thus u are always positive variables, 
the 8 4 function becomes simpler: 

8 4(y,y*) = O(U - u) 

with 

_. ~ /322* _ /32* /322* + /3 2*) 
U - m 1, 22 2' /3 22 /3 2 . 13 -/3 + 

Finally we obtain 

with 

K (yy*) = __ I_exp( _f322*m2 _ ~f322m2) 
g' /3 12/3 22 1 - u 

Xexp(d)}gC : u 13 22
) 

XO(U(f322,f32,f322*,f32*) - u) 

d = - [Sl1(/3 12 )2 +slfll2f32 +s,(f32)2](I- u)lfl22 

+S,(/322* _ u/3 22)/4. 

In order to verify that, in the rp3 ladder case (}g = A 2), this 
kernel is actually identical to the one of Ref. 2, two changes 
must be done. First we must perform the change of variables 
/3 12, /3 2, /3 22-a,a', /3, defined by the relations 

a = !( /3 22 - 13 12) - /3 2, 

a' = ~(f3 22 - 13 12) + 13 2, 

13 = /3 12
• 

The other change comes from the different normalization of 
the amplitUdes. Here the pole term is OI(Y) [see Eq. (38)] 
when in Ref. 2 it would be defined by 

FI (a,a', 13) = exp(sf3 + p~ a + p~ a'). 

v. RENORMALIZATION: rp3 1NTERACTION 
LAGRANGIAN CASE 

As soon as some graphs of the theory are divergent, we 
have to take into account the renormalization operator R. 
We do this here only for the most simple case, namely the rp3 
Lagrangian case. 

The general definition of the renormalization operator 
can be found in Refs. ltd) or 5. 
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When we restrict ourself to cp3 interaction, there is only 
one connected divergent subgraph in the theory (see Fig. 
6).I(d) Such subgraphs are logarithmically divergent, and 
they are always disjoint. The renormalization operator for a 
given graph G reduces to 

RG = II (I - 7"-;;4) (71) 
II" g 

where g! are all the connected divergent subgraphs de
scribed by Fig. 6 of G and 7'" 4 is the generalized subtraction 
Taylor operator. If the graph G is partitioned into a set of 
subgraphs g;:G = (gl' g2"'" gn), for example, if one consid
ers the Bethe-Salpeter structure ofG [see Fig. I(b)], thenR G 

appears as a product of renormalization operators, each act
ing on a given subgraph g; : 

n 

R G = II R gi
• 

;=1 
(72) 

It is this property which makes easy the demonstration of the 
compatibility of the renormalization and of the /3-represen
tation of the Feynman integral. Before going on, we give the 

expression of R II" for a simple divergent graph. The operator 

R II" is an operator which acts on a functionf(a,a') which 
depends on the two Schwinger parameters of the graph g! 
(see Fig. 6). Putting A. = 4 in Eqs. (1.9) and (1.10) of Ref. I(d) 
and using the integral representation ofthe Taylor remain

der [see, for example, Eq. (111.15) of Ref. 2], R II" can be writ
ten as 

Ri'f(a,a') = i l 

dg*(u) du 
o du 

=f(a,a') -lim [u~(au2,a'u2)], (73) 
u---+O 

where g(u) is defined by 

g(u) = u~(au2,a'u2). 
The generalization to the case of several divergent subgraphs 
is straightforward, but we are not going to write it because 
the only property we need is actually the factorization prop
erty of Eq. (72). 

In the Euclidian space, the amplitude I G of a graph G is 
[see Eq. (1)] 

with 

The functions DG and P G verify the structure property of 
Eqs. (12) and (21). Then, using (26), one obtains 

a 

--<>-- FIG. 6. The only connect divergent 
subgraph of rp'. 

a' 
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Dd,aG) 1 J n 

[;( )]2= n 2 IIIId/3f 
GaG [n;=IPgi(ag.l] j=ljeK 

.. eDn(Plnl) 

x8( /3! - /3 ii(ag)) [P
n 
(P(n))] 2 

If one commutes the integration on the variable /3 ! and the 
renormalization operator RG , then one finds that the /3-re
presentation (24) remains unchanged, except thatjg( /3) 
needs to be renormalized and becomes 

f( /3) = J dA. (a ) R g (njeK o( /3 j - /3 ~(ag))). (74) 
g g g [P

g
(a

g
)]2 

One sees now a supplementary advantage ofthep-represen
tation: the different singularities of the Schwinger represen
tation are disconnected: 

-The UV divergences appear only in the a g integra
tion which are contained in the expression ofjg. 

-The Landau singularities can come only from the P 
integration because only the function Dn (/3(n)) depends on 
the Lorentz invariants Sj. 

VI. CONCLUSION 

In the present paper, it has been shown that the 
Schwinger parameter formalism, could be modified in such a 
way that the Bethe-Salpeter structure of the amplitUde be
comes explicit. This is done through the introduction of a 
new scalar representation of the Feynman amplitudes, the/3-
representation [Eq. (24)]. The fundamental feature ofthis/3-
representation is the quasifactorization property of Theorem 
3. Reflecting the generalized ladder structure of the graphs, 
the /3-representation naturally exhibits a recurrence law in 
the number of "rungs" [Eq. (32)]. We are then able to build 
the infinite sum of the "open amplitudes" as the solution ofa 
three-variable integral equation [Eq. (48)]. The last step to 
obtain the four-point amplitUde is to perform the closing 
integration [Eq. (39)]. 

We conclude and indicate the next steps that this pro
gram should follow. The treatment of the renormalization is, 
of course, one of them. It has been shown in the framework 
of asymptotic behavior studies I(e) that in the case of a strictly 
renormalizable theory (such as cp3 in dimension six or cp4 in 
dimension four) the renormalization procedure can be split 
into two steps: On the one hand, the divergent subgraphs 
occuring inside the t-2PI subgraphs have to be subtracted: a 
behavior predicted by the renormalization group is thus gen
erated for the infinite sum of graphs building each "rung" of 
the generalized ladder; on the other hand, UV divergences 
arising from the ladder structure itself have to be treated. 
Obviously we have to look for such a two-step treatment 
within our framework. Already, for the cp3 Lagrangian, we 
have shown (Sec. V) that the R operator respects the factori
zation property of Theorem 3 (see Sec. I D). 

The next point of our program after renormalization 
has to do with the fact that the actual properties of the solu
tion of our integral equation, of course, depends on the ana
lytic structure ofthe kernel [the inhomogeneous term is ex
plicit; see Eq. (38)]. This structure is not known in general for 
the complete perturbative expansion of the kernel. 
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However, our approach allows to reach many exact re
sults even in cases where infinite subseries of the perturba
tion series are kept: The structure of the kernel is actually 
entirely explicit whenever it is restricted to a finite sum. It is 
then possible to classify the cases where global theorems 
(such as Fredholm theorems) may be used: quantitative 
work, such as in the rp3 ladder case,2 can be done. 

In this paper we have paid attention essentially to the 
four-point amplitude. As outlined in Sec. IV, it is possible to 
exhibit an analogous integral equation for the three-point 
amplitude (vertex). This can also be obtained for the propa
gator. 

Let us end this conclusion by a remark concerning the 
contested interest of the study of the rp3 ladder subseries pre
sented in Ref. 2. The results we have obtained in the present 
paper, taking into account the whole perturbation series, in
deed show that essential properties of the perturbation series 
are already present in the ladder. For example, as in the 
ladder case, we find a three-variable integral equation and 
this equation happens to be simpler under the same circum
stances (reduction of the number of variables in various par
ticular cases). Also, the,8 12 expansion, the analog of the y 
expansion for the ladder case, allows us to classify the singu
larities in the Mellin space. We even obtain a complete ana
logy between the ladder and the "generalized rung ladder" 
(see Sec. IV C and Fig. 4). 

As a last statement, we want to stress the importance of 
the kind of factorization property of a Feynman amplitude 
into a "skeleton," which exhibits its BS structure and con
tains its external momentum dependence, and a "dressing," 
which carries the whole information concerning the dynam
ics attached to the interaction Lagrangian. 

APPENDIX: VARIATION DOMAINS 

In the integral (37), the integration domain of the vari
able,8' is determined by the factor el( ,8 '), which is present in 
the kernel (see Eqs. (35) and (25)]. If one performs the change 
of variables r' -+y., the new integration domains of the inte
gration variables (y.,y') must be determined. As the change 
of variables depends on y [see Eq. (42)], the new domain also 
depends on y. We are going to describe this domain in two 
steps: the variation domain ofr' when yand y. are fixed; the 
variation domain of y. and y is fixed. 
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A. Variation domain of r' with y and y* fixed 

Using Eq. (42), one calculates y' as a function of y,y. 
and r': 

with 

,8 12, = u(,8 II' + ,822), 

,8 221 =,8 22. + u2( ,811' +,8 22), 

,8 2, =,8 2. - u(,8 2 - ,8 It) 

u =,8 12./,8 12. 

(AI) 

Then one writes that,8' = (y',r') verifies the three conditions 
(8): 

(8a)=> - 21,8 1'1 + (1 - lulV'II' - lul,822.;;;O, (A2a) 

(8b)=>21,8 I, _,82 + ,82·/u l + (1 -lulV'II' 

_,822./lul +,822(1-lul).;;;O (A2b) 

(8c)=>I,8I'1 + 1,82. - U(,82 -,81')1- 2{3I'.;;;O. (A2c) 

These three inequalities define the variation domain of 
r' = (,8 II', ,82" ,81'). 

B. Variation domain of y* with r fixed 

This domain is defined by the condition that the pre
vious domain for r' is not empty. A necessary condition for 
the inequality (A2a) to be verified is 

lui < 1. (A3) 

It can be easily shown that the compatibility of the relations 
(A2a) and (A2b) needs the fact that y. verifies the inequality 

21,82. - u,821.;;;,822. -lul,822. (A4) 

The two relations (A3) and (A4) determine the variation do
main ofy·: 

e 4(y,y·) = 0(1 -luIlO(,822. -lul,822 - 21,82. - u,821). 
(AS) 
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The potentials V(x) with a given U norm that maximize the lowest eigenvalue of -.:1 + Vare 
characterized. 
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I. INTRODUCTION 

How large can a given eigenvalue of a differential opera
tor be? This question has implications for many topics in 
mathematical physics, especially when the operator has the 
form 

H= -.:1 + V(x), 

where Vis a real-valued multiplication operator. Self-adjoint 
realizations of H are the fundamental mathematical objects 
of quantum mechanics. The eigenvalues are the energy levels 
of quantum-mechanical particles, and V is the potential en
ergy. Here the variable will range over a finite open domain 
D in Rm with a smooth boundary (an assumption much 
stronger than necessary), and V will be a nonnegative func
tion in L I(D). Nonnegativity of V is assumed only to avoid 
confronting questions of self-adjointness. Except for that it 
would follow automatically that a potential maximizing an 
eigenvalue would be nonnegative. H can be defined as a self
adjoint operator on L 2 by either of the following methods. 

(a) Let -.:1 be the usual self-adjoint Laplacian with 
Dirichlet boundary conditions on the boundary of D, and 
define -.:1 + V(x) via the sum of the associated quadratic 
forms. I Alternatively, equip -.:1 with Neumann or mixed 
boundary conditions. 

(b) Extend H to the infinite domain Rm by forcing the 
potential outside D to equal an appropriate fixed function. 
With the assumptions to be imposed on V, it suffices to have 
the exterior potential be bounded below, locally integrable, 
and greater than a positive constant outside some compact 
set (the constant need only be large enough to ensure the 
existence of an eigenvalue). 

Let Q (p, c) denote the set of potentials V defined on D 
such that II V lip <c. LetE ( V) denote the ground-state (lowest) 
eigenvalue of H. The question asked above can now be made 
specific: What is the supremum of E (V) over the set Q (p, c) 
and for what V is it attained, if any? The answer turns out to 
be that there is a maximizing potential, and that it is of a very 
special form, ordinarily the maximal eigenvalue times a 
characteristic function, 

V. (x) = Emax Xs(x). 

Indeed, the techniques of this paper also allow one to 
characterize the function V (x) that maximizes the bottom of 
the spectrum of a rather general semibounded operator of 
the form T + V, where T represents a closed, semibounded 
operator on L 2(D ) with a few simple properties. Specifically, 

a) Partially supported by NSF grant MeS 7926408. 

the domain of self-adjointness of T + V should be the same 
for all Vin Q (p, c) and Tshould be local in the sense that iff 
is constant (a.e.) on an open subset UofD, then Tf = Oa.e. on 
U. For example, T could be a positive higher-order differen
tial operator with no zeroth order term. The maximizing 
potential function Vis still ordinarily of the form Emax X sIx), 
subject to qualifications analogous to the ones spelled out 
below for the case T = -.:1. 

This problem was raised most recently in a list of open 
problems in mathematical physics at a meeting of the Ameri
can Mathematical Society.2 Prominent among the reasons 
for interest in it are its implications for inverse spectral the
ory, where for practical as well as theoretical reasons it is 
important to know what properties of a potential are deter
mined by incomplete spectral information. The result men
tioned above would be read by an inverse-spectral theorist 
the other way around, as stating that if the lowest eigenvalue 
is larger than a certain amount, then the L p norms of V are 
larger than something, and that if a potential has L p norm 
equal to c and maximizes the eigenvalue, then it has a parti
cular very simple form. From the latter point of view the 
statement is reminiscent of Levitan and Gasymov's striking 
version of Ambarzumian's theorem, viz., for VEL 1[0,1] and 
Neumann boundary conditions imposed at 0 and 1, if 
Eo=O, 

En -n2 __ O, 

where En is the nth eigenvalue, then necessarily V(x) = 0 
a.e.3 

II. MAXIMIZING POTENTIALS 

Let H be as above, and suppose that V belongs to 
Q (p, c) for some fixed p, c, and D. In the case p = 00 it is 
obvious that the lowest or any other eigenvalue is maximized 
by V = c, so p = 00 will not be considered further. It will 
first be established that there exists a Vin Q (p, c) that maxi
mizes the lowest eigenvalue, at least for certain p. 

Proposition 1: There is a bound on the lowest eigenvalue 
depending only on p, c, and D. Consequently there exists a 
maximizing sequence Vn E Q (p, c) such that 

lim E(Vn) = Emax sUPQ(P.c) E(V). 
n~ 00 

Proof The normalized ground-state eigenfunctionfo of 
- .:1 is bounded and hence in the quadratic-form domain of 

H. Therefore an upper bound for E (V) is given by the Ray
leigh-Ritz inequality as 
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E (V)<E (0) + (10' viol 
<E(O) + IVoll:, II vIII 

<E (0) + IVoll:, IIV lip [Vol (D)] I/q, 1/p + 1/q = 1, 

which depends only on e, p, and D. [E (0) is just the lowest 
eigenvalue of - Ll.] • 

Remark: Any sufficiently smooth function!o in the 
quadratic-form domain of H will furnish an upper bound. 
The normalized ground-state eigenfunction gives a good es
timate to compare with the exact answer for simple special 
cases. 

Proposition 2: For all N> 0 there exists a 
V E Q (p, c) n Q (00, N) that maximizes E (V) within that 
class. If p > max(2, mI2), then there exists a maximizing po
tential V within Q (p, c). 

Proof By interpolation Q (p, c) n Q ( 00, N) lies within 
Q (r, e') for all r,>p and some e' depending on r. Choose r> 2 
and > m12; this ensures that the eigenvalue depends con
tinuouslyon Vin the 1111, norm. 1.4 The maximizing sequence 
Vk within Q (p, c) n Q ( 00, N) has a subsequence that con
verges weakly in L ' to some limit V •. By a theorem of 
Mazur there is a sequence of convex combinations of Vk 

that converges strongly to V •. Since Q (p, c) n Q (00, N) is 
convex, the new sequence remains within that class. By the 
Rayleigh-Ritz inequality, the replacement of Vk by convex 
combinations can only increase E (V), i.e., if 

I ai = 1, ai,>O, 
i 

and!now denotes the normalized ground-state eigenfunc
tion of 

then 

= I ai(!,( - Ll + Vi)!) 
i 

It follows that E (V. ) = Emax. Observe that the relevance of 
Mazur's theorem is more convex combination than the na
ture of the convergence. The latter takes place in a somewhat 
arbitrary L '. Of course, if p > max(2, m/2), then the trunca
tion to Q ( 00, N) in this proof is unnecessary. • 

Definition: The potential function Vis a local eigenval
ue extremizer for the set Q (p, c) iff 

(a) II VI/p = c; 
(b) H (or its restriction to a given connected subset of D) 

has a nondegenerate eigenvalue A; 
(c) for every bounded multiplicative function W (x) such 

that 

dl/V,lIp I = 0, 
dt '=0 

where V, = V + tWo the eigenvalue A (V,) such that 
A (Vo) = A satisfies 
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dAd;') 1'=0 = O. 

Remarks: (a) Perturbation theory guarantees the exis
tence and differentiability of A (V,) for sufficiently small real 
values of t. 4 

(b) This is a necessary condition for V to maximize the 
lowest eigenvalue, which is known to be nondegenerate 
(after restriction to a connected component of D, if neces
sary); if it were false, then W could be given some higher
order dependence on t so that V + t W E Q (p, c), but dE I dt 
would still differ from O. 

Proposition 3: Any local eigenvalue maximizer in 
Q (p, c) is equivalent almost everywhere to a function satisfy
ing the nonlinear partial differential equation 

LlV(P-11/2=(V-AjV(P-I)12 (1) 

on the interior of its support. 
Remark: This curious equation has the obvious solu

tion V = A on S = int supp(V), which is the only solution 
when p = 1. It would be surprising if other conceivable solu
tions were relevant, but they might arise if either the shape of 
D or the boundary conditions were peculiar enough. While 
(1) is trivially satisfied away from S, it is not satisfied on the 
boundary of S, and so does not hold throughout D in the 
usual distributional sense. 

Proof Let y and z be points in S at the centers of small 
balls of radius d, denoted Yand Z. Let 

W(x) = Xy(x) - kXz(x), 

where k is chosen to satisfy the condition in (c) of the defini
tion. Since for almost every y and z the averages of V p over Y 
and Z approach P( y) and VP(z) as d _ 0,6 from the defini
tion of the L p norm, k can be taken arbitrarily close to the 
value 

(V(y)lV(z)Y- I 

for almost every y andz (write the integrand for /I V, II~ to first 
order in t). Let tP(x) be the normalized eigenfunction for 
A (V). By the Feynman-Hellmann theorem,4 

dA(V,) Iff = Xx t/?(x)dx - Xy kt/?(x)dx. 
dt ,=0 

For V to be a local eigenvalue extremizer it is necessary for 
the derivative to be 0 regardless of y, z, and d. By letting d 
tend to 0, it follows that for almost every y and z in S, 

tIlly) = (V(y)lV(Z)y-It/?(Z), 

or, in other words, that 

tP(x) = CV(p-I)/2(X) almost everywhere on S (2) 

for some constant C. SinceLl tP = (V - A )tP (sense of distribu
tions), Eq. (2) implies Eq. (1). • 

Actually, Eq. (2) holds almost everywhere on supp( V) 
(the distinction is the possible existence of nowhere dense 
sets of positive measure), since the balls can be replaced with 
appropriate sets that "shrink nicely.,,6 

Proposition 4: Let V,> 0, VEL P(D), p'> 1, D as above 
and moreover assumed connected. Define VT = min(V,T). 
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Let Eo(H ) and tP (H) denote the ground-state eigenvalue and 
eigenfunction of an operator H. Then Eo( -.1 + V T) tends 
monotonically to Eo( -.1 + V) and tP ( -.1 + VT ) tends to 
tP(-.1+V)inL2. 

Remark: Connectedness just ensures nondegeneracy of 
the ground state. 

Proof For simplicity of notation, letf = tP ( -.1 + V) 
andE = Eo( -.1 + V). Monotonicityoftheeigenvalueisan 
immediate and well-known consequence of the min-max 
principle, or the Rayleigh-Ritz inequality. From straight
forward corollaries of the spectral theorem it suffices to 
show that 

II( -.1 + VT -E)fIl2---+0. 

Actually, this just ensures that some point of the spectrum of 
-.1 + V T tends to E and the associated eigenfunction con

verges. But since the ground-state eigenfunctions are charac
terized by positivity, that point has to be the ground state. 
Also, set p = 1, which includes all the other cases. 

Since VT(x)f(x) increases monotonically to V(x)f(x), 
the distribution ( -.1 + V T) J, which is only in L 1 a priori, 1 

increases to ( -.1 + V)f = EfEL 2. Therefore 

III -.1 + VT -E)fll~ = 1 (( -.1 + VT -E)f)2d m x 

is finite, and hence tends to zero by the monotone conver-
gencetheorem. • 

Theorem 1: For p = 1 or p > 2, m/2, there is a potential 
in Q (p,e) that maximizes the lowest eigenvalue, and it satis
fies (1) with A = Emax on S. In particular, when p = 1, 
V. = Emax and "'equals its maximum almost everywhere on 
S. 

Proof The foregoing propositions cover all p other than 
p = 1. If p = 1, then consider the set Q ( 1, e) n Q ( 00, N) in 
place of Q (1, c), where N is larger than the upper bound on 
E (V) from Proposition l. The proof of Proposition 3 goes 
through unchanged, so that on supp(V), t/J(x) = C (a fixed 
constant) and V = E (V) almost everywhere, independently 
of N as N ---+ 00 . But truncation of Vat high values affects the 
ground-state eigenvalue continuously by Proposition 4. 
Hence there cannot be an unbounded VE Q(I, c) with a high
er eigenvalue than the maximum on Q (1, p) n Q (00, N). • 

Theorem 2: Ifp = 1, orifp:;i= 1, but it is known that V ... 
exists and is constant on its support, then V ... is unique a.e. 

Proof Suppose that there were two distinct sets S. Then, 
as in the proof of Proposition 2, the eigenvalue correspond
ing to the average of the two maximizing potentials would be 
no less than Ema. , since the average is a convex combination. 
This is a contradiction, since the averaged potential would 
equal Emu. /2 on a set of positive measure. • 

What makes the proof of Theorem 1 work is that all the 
maximizing potentials within Q (1, e) n Q (00, N) satisfy a 
pointwise bound independent of N. If the same were known 
for allp, then the restriction to values for which Vis relative
ly bounded could be dispensed with. It would suffice, for 
example, to know that the only solution of (1) of interest is 
the obvious one. In principle, these arguments leave open the 
possibility that different solutions are relevant for different 
N, and do not have a uniform bound. 
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111. EXAMPLES 

The one-dimensional case of an interval is rather easy to 
analyze in detail, since there are no geometrical complica
tions and since all eigenvalues are automatically nondegen
erate. By a change of variable it suffices to consider only the 
interval [0,1]. The case of a sphere is similar. 

Scholium: Let H be the one-dimensional operator 
- d 2/dx 2 + V(x)onL 2[0,1], with Dirichlet boundary con

ditions, and denote the nth eigenvalue En' n = 0,1,2, .... Let 
V range over Q (1, c). The eigenvalue En is maximized by 
potentials of the form 

Vn(x) = En, max XsJx), 

uniquely determined only for n = O. If n > 0, then there are 
uncountably many distinct choices of Sn' which can consist 
of any number of subintervals from I to n + 1. The subinter
vals are constrained only by their total length and the dis
tances between them and from them to the endpoints 0 and 
1. 

The somewhat informal proof will be given by con
structing the possible potentials. In one dimension there is 
no possibility of S differing from supp( V. ), since supp{ V. ) is 
the set on which the corresponding eigenfunction", has its 
maximum or minimum value, and on the complement'" is a 
simple exponential function. Since'" is not maximized at 0, V 
must equal 0 on some interval beginning at O. Since'" Eel, 
its first chance to attain its maximum occurs when 

sin(.JE; x) = 1, i.e., at 

x = 11'[£:/2. 

At that point the eigenfunction may either be constant for a 
while or continue oscillating until some later maximum or 
minimum. It is a matter of utter indifference how long the 
eigenfunction remains constant after reaching a sinusoidal 
maximum or minimum, so long as the total length of con
stancy has the correct value. By the Sturmian theorem, the 
nth eigenfunction must make (n + 1)/2 complete sinusoidal 
oscillations punctuated by intervals on which it is constant. 

The total length of the oscillations is (n + 1 )1T/.JE;, while 
from the condition that Vn E Q (1, c) the total length of the 
intervals of constancy of", is c/En (see Fig. 1). Therefore 

(n + 1)1T/[£: + c/En = 1. 

The solution of this is 

En = ((n + 1)11' + {(n + 1)2~ + 4c)1/2)2/4. 

For instance, the first several maximum eigenvalues are 

n En, max 

e=1 e=lO 

0 11.7847490 26.0275168 

1 41.4542947 57.7467175 

2 90.8154283 107.899653 

3 159.907417 177.349813 

4 248.736090 266.364685 

5 357.302960 375.039 120 

The asymptotic form is En, max -((n + 1)11')2. For compari-
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o 

1 

FIG.!. Typical maximizing potential and eigenfunction for a higher eigen
value. 

son, the bounds on Eo. max from Proposition 1 are, respec

tively, 11.8696044 and 29.869 6044 (i.e., r? + 2c), and the 
lowest eigenvalue with V = ° is r? = 9.869 6044. Eo. max has 
been found by an independent method by Farris. 7 

The maximizing potential for the lowest eigenvalue 
with Neumann boundary conditions is V(x) = c, and the 
maximizers of the higher Neumann eigenvalues are obtained 
by an argument analogous to the above. 

Similarly, if n > 1 and D is a regular figure, such as a 
cube, sphere, ellipsoid, etc., it is highly probable that the 
maximal lowest eigenvalue is attained when S is a smaller 
concentric figure of similar shape, and the maximum eigen
values can be obtained explicitly in terms of the special func
tions associated with the separated Laplacian. 

This is certainly true of the sphere. Let p = 1 and let D 
be the unit sphere in Hm. The maximizing potential for the 
lowest eigenvalue is of the form 

V. (x) = Emax Xs(x). 

The set Sin this case is again equal to supp(V.) and must bea 
concentric sphere. This is because a spherical average of all 
rotations of any putative V. would lead to at least as high an 
E., as seen above. Yet supp(V. ) cannot be hollow without 
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violating the minimum principle for the superharmonic 
ground-state eigenfunction on supp( V. r 

It follows that the eigenvalue equation is separable and 
reduces to the one-dimensional equation 

-R H(r) - (m - I)R , (r)lr + (V.(R) - Emax)R (r) = 0, 

which is just a form of Bessel's equation, with solutions 

R (r) = r1 - m121fj ml2 _ 1 (~Emax - V. r) 

on the interval [0, ro] on which V. is constant, where 1ff is 
any of the usual Bessel functions of index ml2 - 1. Conse
quently, Emax is the unique solution of the following triple of 
equations in three unknowns, Emax , ro, and a: 

J ml2 _ 1 (~ Emax ) + a Y m12 _ 1 (~ Emax ) = ° (first zero), 

:r (r1 - m12(J ml2 _ 1 (~ Emax r) 

+ aYm12 _ 1 (~ Emax r)))I,= '0 = 0, 

where (Urn is the volume of the m-sphere. In dimension 
m = 3, the Bessel functions reduce to circular functions, and 
the equations may be written 

417'r6 Emax/3 = c, 

~Emax + ¢ = 17', 

tan(~ Emax ro + ¢ ) = ~ Emax rD· 

These are easy to solve numerically. For example, with 
c = 1, 

Emax ~ 11.0247609. 

(The lowest eigenvalue with V = ° is r? ~ 9.869 6044, and 
the upper bound from Proposition 1 is r? + 17'12 
~ 11.440 4007.) 
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We prove convergence of an approximation of the stochastic product integral for conditional 
Wiener paths to the solution of a certain stochastic integral equation. This is used to establish the 
Wiener-Ito representation for the kernel of the semigroup exp t ..1 A , where ..1 A = l:JL (a JL 1 + A JL)2 
for functions AJL with values in the space of anti-Hermitian matrices. 

PACS numbers: 02.50.Ey, 02.30. - f 

I. INTRODUCTION 

The aim of this paper is to construct a (symmetrized) 
stochastic product integral w.r.t. the D-dimensional condi
tional Wiener path Z starting at x at time zero, ending at y at 
time t. The product integral is defined as the limit of a poly
gonal approximation and we show convergence of this ap
proximation to the solution of a certain stochastic integral 
equation w.r.t. Z. 

The existence of this product integral, which we sugges
tively denote by Ifs" exp A(Zsl·dZs,If denoting a product 
whose factors are ordered with increasing time to the left, 
allows writing the Wiener-Ito representation of the kernel of 
the semigroup exp t..1A' t>O, with ..1A = l:~ = 1 (a/ax/-, 
+ Au )2, on L 2(RD,Cm): 

(exp t..1 A )(x,y) = f dP ~y If exp(A(Zs ).d Zs)' (1.1) 
s,r 

where A is a D-tuple of continuous functions such that div A 
is continuous, with values in the space of anti-Hermitian 
m X m matrices and dP ~y is the conditional Wiener mea
sure. 

This formula, which turned out to be very useful in 
Euclidean quantum field theory and whose prooffor the case 
m = 1 can be found in Ref. 1, Chap. V, appears already in 
several papers.2

-6 A discussion of the proof for m > 1 is found 
in Refs. 2 and 3; however, there both authors construct the 
product integral for the Brownian path without fixed end
point and restrict the integration over these paths [cf. (1.1)] 
to those with fixed endpoint. Unfortunately the product in
tegral for Brownian paths is defined only up to sets of mea
sure of zero, so that the validity of their discussions is not 
clear, since the conditioned paths Z from a set of measure 
zero. 

Stochastic product integrals for Brownian motion have 
been studied by several authors (see Refs. 7-9 and literature 
quoted there). 

A basic tool of these works is to use the independence of 
the increments of the Wiener process of the past, i.e., its 
martingale property, which does not hold for the Z-process. 
Although Simon I has shown how one can overcome this 
difficulty for defining stochastic integrals w.r.t. Z by an ap
propriate decomposition of the increments, this is not suffi
cient to generalize the proofs presented in Refs. 7 and 9. 

Actually, in this paper we have to make use of the ideas 
of the Strasbourg school1

0-
13-in particular Emery has al-

ready developed a theory of stochastic product integrals 
w.r.t. semimartingales and their related integral equations lO 

in a very general framework. 
On the other hand the Z-process is simple enough (e.g., 

it is almost surely continuous) to allow for a detailed treat
ment without going through all the complications provided 
by the general situation. In this sense part of the present 
paper can be understood as an illustration (with some modi
fications) of the ideas found in Ref. 10 and in the beautiful 
book of Metivier and Pellaumail. 12 

Instead of working directly with the Z-process we pre
fer to work with the D-dimensional Brownian bridge W, 
which is related to Z via 

Zs =(1 - s/t)x + s/ty + ,ftws1" O";;s.,;;t, 

(1.2) 

where = means equality in sense of probability distributions 
and E(·) denotes expectations; i.e., Ws , O.,;;s.,;; 1, is the Gaus
sian process [over a probability space (I1,Y,P)] of mean zero 
and covariance matrix E (WsW t) = 1 DS( 1 - t) for 
O.,;;s.,;;t.,;; 1, ID denoting the D-dimensional unit matrix. 14 

The paper is organized as follows. In Sec. II we discuss 
some preliminary material; in Sec. III we study integral 
equations w.r.t. Wand show convergence ofthe product 
integral. Finally in Sec. IV we prove the Wiener-Ito repre
sentation for the kernel of exp t..1 A as given in (1.1). 

II. PRELIMINARY RESUL TS15 

As mentioned in the Introduction the problem in deal
ing with the Brownian bridge W comes from the dependence 
of its increments of the past. Simon 1 has shown how to by
pass this difficulty using the decomposition 

W'+.:I' - W, = (w,+.:I' - 1-?~t..1t) W,) 
1 

-..1t-- W,' (2.1) 
1 - t 

so that the increment in ( ) on the rhs is past independent. 
However, in this paper we need some more detailed informa
tion about the d W-integral than is available in Ref. 1, such as 
continuity of f~·dWs in t. 
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We note that an "integrated version" of (2.1) reads 

(2.2) 

where B, has the same probability distribution as the stan
dard Brownian motion b, (B, =b,), as one easily checks. 

Let the underlying probability space of the theory be 
denoted by (n,Y,p) and let the filtration of a-suba1gebras 
generated by b, be (Y;),;>o (i.e., b is an (Y:J-martinga1e). 
Then J eulin" shows that B, is measurable with respect to the 
enlarged filtration (Y,),;>o, where Y, = Y; V a(bJ!, a(b,) 
denoting the suba1gebra generated by b,. Thus the filtration 
(Y, bo is the "natural" one in this framework and in fact B 
is an (Y,)-martingale, so that by (2.2) W, is an (Y,)-semi
martingale.'" '6 

Henceforth measurability is understood w.r.t. Yor 
(Y,) depending on the context. 

The representation (2.2) allows now for an easy adap
tion of the construction of stochastic integrals f~Xs dWs as, 
e.g., in McKean's book9 for nonanticipating functionalsX of 
W (i.e.,Xs is Ys-measurable for O<s< 1) satisfying some suit
able boundedness condition (see below). 

Obviously we have the bound 

E((f Xs dWsY)<2[E(f X; dS) 

+E((f XsWs (l-S)-'dSY)] , (2.3) 

and using HOlder's inequality it can be shown that for X such 
that E (S61Xs 12 Hds) < 00, for any If> 0, one can define 
f~XsdWs' O<t< 1 as an integral continuous in t. 
All this generalizes now naturally to the case of D-dimen
sional Brownian bridge W (i.e., D independent copies of W) 
andX taking values in some Banach space Jf'" with norm 11·11. 

We shall have to use the following 
Definition 2.1: A stopping time u is a map u :n----+[O, 1] so 

that {w;u(w)<t lEY, for every tE[O,l]. 
A stochastic interval [u,v), for two stopping times u,v is 

the set {(w,t); u(w)<t < v(w) J en x [0, 1]. [u,v], (u,v), (u,v] are 
defined similarly. 

If X is a process with values in Jf'" and if u is a stopping 
time, denoteX~ = supo<,<u IIX,II. 

For a D-tuple of processes X, whose components XI' 
take values in Jf"', we let IIX, IIz=.I1' IIXI" liz and define X: 
similarly. 

Using the fact that B is a continuous (Y, )-martingale 
the results of Sec. 6.9 of Ref. 12 imply for Z, 
: = f~Xs.dBs 17 the bound 

(2.4) 

The following theorem is a generalization of the preceding 
consideration. 

Theorem 2.2: Let X be a D-tuple of Jf"'-valued processes 
so that E (f6 IIXs 1/ 2 + Eds) is tinite; then one can define the 
stochastic integral f~ Xs·d Ws as a continuous function of t. 
Moreover, one has the estimate 

53 J. Math. Phys., Vol. 25, No.1, January 1984 

(2.5) 

for any stopping time u, where Q denotes the continuous, 
increasing process 

Q, = 16(1 + f IWsI2(1-s)-3/2dS), O<t<1. 

Remark: Continuity of Q is due to the fact that the inte
gral exists for all tE[O, I] as a consequence of Holder contin
uity of the Brownian bridge W. 

(2.5) is similar to what is called "1T*-property" in Ref. 
12. 

Let us conclude this section by the observation that if X 
has the form Xs = X(Ws) then the condition E (f ollXs W Hds) 
< 00 (in order to define f~ Xs ·d W s) can be replaced by 
XEL foc' P > 2 if D = 1, and p > D if D> 2, as HOlder's inequa
lity and the use of continuity ofW show. 

III. CONVERGENCE OF THE PRODUCT INTEGRAL 

For the rest of the paper we let Jf"'be the Banach space 
of complex m X m matrices, 1 representing the unit matrix 
equipped with the operator norm 11·11 on em. 

The central result of this section is to detine the product 
integral by an approximation which is shown to converge to 
the (unique) solution of a certain stochastic integral equa
tion. Let us begin with a short study of a class of integral 
equations, which is an adaptation of the very general theory 
in Ref. 12 to our simple situation, 

Consider the equation (let D = I for notational conve
nience) 

X, = 1 + f dWsAsXs' tE[O,l] (3.1) 

for (nonanticipating) A with values in Jf"'. 
We can state the following 
Lemma 3.1: LetA be such that 

E (S611As 112(1 - s)-I/zds) < 00. 

Then the integral equation (3.1) admits a unique solu
tion. 

The proof of this lemma has two steps. First one shows 
that (3.1) has a unique solution on a sufficiently small sto
chastic interval [O,u] (using the Banach fixed point theorem). 
Then one extends the solution globally by [0,1]. 

Define a stopping time u by1S 

Let fC' be the complete metric space of continuous H-valued 
processes defined on [O,u], withXo = 1 for XEfC' and 
IIIX Ill z: = E(suPt<u IIX, liZ) finite. We define a mapping 
U: fC' ----+ fC' by 

(UX), = 1 + L dWsAsXs' (3.2) 

By Theorem 2.2, one easily verifies that iiJ (U) = fC': 

J (l rgen Potthoff 53 



                                                                                                                                    

IIIUXIW <2(1 +E(~~PQ, L IIAsI12I1XsIl2(I-s)-1/2dS)) 

<2 + IIIXIW< 00. 

To prove that Uis a contraction letX,x'E~. Then 

IIIU(X -X')IW 

<E(SUPQ, (' liAs II 2 IIXs -X;1I2(I-S)-1/2dS) 
t<u Jo 

<!IIIX-X'IW, 

again by Theorem 2.2. 
Finally we note that U > 0. The condition E (S~ liAs 112 

(1 - S)-1/2ds) < 00 implies that P(Sb //AsW (1 - S)-1/2ds 
> 2k )<2 - k X const for every t and k, so that the Borel-Can
telli lemma implies that liAs 112 (1 - S)-1I2 is integrable on 
[0,1] and hence by continuity of Q, and 
sb liAs 112(1 - S)-1/2ds in t U > 0. This concludes the first step. 

Note that IIIX 1112 < 00 clearly implies that IIX, II < 00 for 
t<u. Hence, choosing some large B> 0, one can extend the 
solution by the same method as before for all those wEiJ, so 
that X~<B and for a new stopping time u' > u, so that 
Q.s~ liAs 112 (1 - S)-1/2ds<! for t<u'. 

This is systematized in the following construction. De
fine recursively a sequence of stopping times ! Uk! k>O as fol
lows: Uo = 0; given Uk choose Bk large enough such that 
P(X~. >Bk)<2 - k. Then ifX~. >Bk put Uk + I = Uk; ifX~. 
<Bk let 

Uk+1 =inf{t;t>Uk,Q, i~ IIA sIl 2(I-S)-1/2dS>!}/\l. 

On each stochastic interval one can now apply the contrac
tion mapping principle as above. But as k~oo uk~l, which 
proves the lemma. 

The lemma is easily generalized to 
Theorem 3.2: Consider the D-dimensional Brownian 

bridge W. Let a D-tuple of nonanticipating functionals A 
and a nonanticipating B, A and B taking values in JY, be 
such thatE(SbllAs 112 (1 - S)-1/2ds) and EUbllBsll2ds) are 
finite. Then the integral equation 

x, = 1 + f dWs·AsXs + f dsBsXs (3.3) 

has a unique continuous solution on [0,1]. 
Remark: As before for As = A(W s), Bs = B (Ws) the 

preceding conditions can be replaced by AEL foc , BEL foc , p 
as in the remark after Theorem 2.1, q = 2 if D = 1, q > D if 
D>2. 

In the following we assume As = A(Ws' s) and that A is 
C 2 on RD X [0,1], bounded with bounded first and second 
derivatives. 

Define a family of processes on [0,1], indexed by nEN, as 
follows: 

X 7 = exp [!(A, + Aim _ 1)12" )'(W, - Wlm _ 1)/2")] 

m-i 

X It exp[!AkI2"+Alk_1)I2")·..::1kW] (3.4) 
k=1 
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for 

tE..::i := -- - and [
m-l m] 

m 2"' 2" 

..::1k W: = W k12" - Wlk _ I )12"' 

For later convenience we introduce the following notations: 
..::1 A' = i(A + A )·..::1 k W' for D vectors x, y, z, etc. k . 2. k12" {k-i)/2" , 
and V the gradient on RDx·(VY)·z = ~~v= I xl'(aI'Yv)zv' 
((VY)'z)1' = ~~= 1 (al'xvlYv' etc. AlsoI"A denotes the pro

cess (J"A), = ~r= 1 1.d.(t )Alk _ I )/2"' 

We shall now show that X ~ converges as n~ 00 uni
formly on [0,1] to the solution X, ofEq. (3.3), Bs being given 
by Bs =! (V.As + A:). This is done in three steps. First we 
derive for X7 an integral equation of the type previously 
discussed. Then we show how to reduce the question of con
vergence of X ~ to X, to the question of convergence of their 
coefficient functions. Finally we prove convergence of the 
latter. 

Proposition 3.3: LetX~ be given by (3.4). ThenX~ is the 
solution of the integral equation 

X~ = 1 + f dWs'CsX~ + L dsDsX~, (3.5) 

where 

Cs = HlV As )'(Ws - (J"W).) + As + (J" A)s!, 

Ds = W..::1 As)'(Ws - (J"W)s) + 2(V'A)s 

+ ~[(VAs)'(Ws - (J"W)sl + As + (J"A)s]2 

+ 2(.!....A) ·(Ws - (J"W)s)!' (3.6) as s 

Proof The proof is based on an application oflto's 
lemma. 19 For tE..::i m , l<m<2n

, we compute 

f dWs'CsX: 

m {I i' = L - 1.d.(s)dWs·((VAs)·(Ws - W(k_l)/2") 
k= I 2 0 

+ (As + Alk _ I )/2")) exp B(As + Alk _ I )/2") 

'(Ws - W lk _ I )/2")] 1:[1: exp..::1/A (3.7) 

using the definition of X~. By Ito's lemma 

~ d Ws'((VAs)'(Ws - Wlk _ 1)/2") + (As + A(k - 1)/2")) 

X exp! !(As + Alk _ 1)/2")(W s - W lk _ 1)12")! 

= d expU(As + Alk _ I )/2")'(WS - W1k _ I)/2")] 

- dsl.dk(s)Ds expU(As + A(k_i)/2") 

·(Ws - W(k_I)/2")] 

for D as defined before. Inserting this into the rhs of(3.7) 
gives 

L dWs'CsX: = X~ -}- f dsDsX: 

proving the proposition. 
Proposition 4.4: Let X" X ~ be as above and U be the 

following stopping time: 
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u = inf{ 1;1>0, 

Q,(sup( IIx.llz + IIc.llz + liDs liz») >L J AI, 
s';" 

L some positive constant. Then we have 

E(SUP IIX, -X71Iz)<KE(suP (IIA, - C,lIz 
~u ~I 

+ liB, - D, liZ)). 

where the constant K depends only on L. 
Proof Write 

X, -X7 = f dWs·(As - CslXs 

+ f dWs'Cs(Xs -X;) 

+ f ds(Bs - DslXs 

+ f dsDs(Xs -X;), 

and by Theorem 2.2 and the definition of u we obtain 

E(SUP IIX, -X71Iz)<4{2LE(suP IIA, - C,ll z) 
'';'U '.;,q 

+2LE(f IIXs _X;1I2 

X(I - S)-1/2ds) 

+LE(~~f liB, _D,112)}. 
Hence denoting tP, = sups.;" IIXs - X;1I 2 we may bound 

E(tPU)<8LE(sup(IIA, _C,1I2+ liB, _D,112)) 
,<I 

+ 8LE(i
U 

tPs(I-S)-1/2dS). (3.8) 

The following very simple version of Gronwall's lemma (cf., 
e.g., Ref. 12) shows that (3.8) implies the proposition: 

Let [tk 10<k<k
o 

be a finite increasing sequence with 
to = 0, t ko = 1 and 

l
'k+1 

ds(I - S)-1/2«16L )-1. 
'k 

Define a sequence of stopping times [v k J by setting v k = t k 

A u. Then (3.8) entails 

E(tPv )<8LE(sup(IIA, -C,W+ liB, -D,W)) 
k+ I t< 1 

+ 8LE(tPVk) + ~E(tPVk+I)' 
so that by iteration for every k<ko, 

k" 
X L (16)j (3.9) 

j=O 

and (3.9) holds in particular for E (tPu). 
Proposition 3.5: Let A, B, C, D be as above. Then 
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E (sup (IIA, - C, liZ + liB, - D, IIZ))<const X 2 -". 
,<I 

Proof Using the explicit expressions (3.6) and Bs 
= !(V·A)s + A;) and Taylor expansion, it suffices to show 

that 

E (sup IW, - (rW), 12)<const X 2 -". 
'<I 

Consider 

E(sup IW, - (J"W), 12) 
'<I 

= E( sup IW, - W(k_I)IZ" 12) 
l<k<2" 
~k 

= E (sup IW, _ (k _ I)/Z" 12) 
l<k<Z" 
~k 

=E( sup IW,12) 
0<,<2 -" 

= E (sup I (' d WS IZ) 
o.;,,<z -" Jo 

<2(E(f-" dS) +E((f-" IWsl(l-S)dSY)) 

<6X2-", 

where we used (2.3) and (2.4) in the next to last inequality. 
Altogether we have found that for u defined as in the 

hypothesis of Proposition 3.4 the following estimate holds: 

E(sup IIX, -X711 2)<constx2-". 
,<u 

Chebyshev's inequality and the Bore1-Cantelli lemma imply 
now the convergence of X 7 to X, uniformly in t<u as n- 00. 

But, for a.e. ill, we have u = 1. This follows from the boun
dedness of the coefficient functions and the continuity prop
erties of Q, and X,. We formulate this result in the following 

Theorem 3.6: Let A be a bounded C 2 function with 
bounded first and second derivatives; then X 7 (3.4) con
verges with probability one to the solution X, of the integral 
equation 

i' 1 i' X, = I + dWs·AsXs + - ds(V·As + A;lX., 
020 

(3.10) 

the convergence being uniform in tE[O, 1]. The solution of 
(3.10) is called stochastic product integral or stochastic path 
ordered exponential, denoted ft.<, exp As·dWs. 

A 

IV. THE WIENER-ITO REPRESENTATION 

In this last section we shall discuss an application of the 
results of Sec. III. 

For the rest of the paper A will denote aD-tuple of maps 
from RD into the Banach space of anit-Hermitian m X m ma
trices. (The results carry over to the case of real skew-sym
metric matrices.) Define the operator AA = ~~ = 1 (a/ax,.. 
+ A,..)2 on the L 2 -space of functions on RD taking values in 

em (resp. am, in the skew-symmetric case). We quote the 
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following theorem of Schechter, 20 formulated for scalar A, 
generalized to the matrix-valued situation by Schrader. 6 

Theorem 4.1: Let A be such that 

(i) Apd toe, 1 <f..l<D, 

(ii) V·Ad;oc, 

(iii) s~p Ix _ YJ<1 IIA(Y)!I Ix - yl- D + ld Dy < 00. 

Then..1 A is nonpositive on L 2(RD,Cm ) and essentially self
adjoint on C ;(RD,Cm

). 

Consider the contraction semigroup exp t..1 A , t;>O. By 
standard methods, e.g., Refs. 1,21, and 22, we have 

(exp t..1 A )(x,y) = !~n;, f dP~yX;'(Z), 
2" 

X 7(Z) = Ii exp [HA(Zmt /2") + A(Z(mt _ t )/Z")J 
m~1 

·(Zm'll" - Zlmt_ ')12")] (4.1) 

as an equality of kernels of operators on L Z(RD,Cm ), when
ever the limit exists. 

Using now relation (1.2) it is easy to see that the results 
of Sec. III carryover to X ~(Z); i.e., by Theorem 3.2 X ~(Z) 
converges as n---+oo to the solution X, of the equation 

i' 1 it x, = lL + d Zs ·AsXs + - ds(V·As + A;)Xs (4.2) 
o 2 0 

if A is a bounded C 2 -function with bounded first and second 
derivatives. 

Furthermore we have IIX, II < 1, since A is anti-Hermi
tian (resp. skew symmetric), so that by Lebesgue's dominat
ed convergence theorem the rhs of (4.1) converges to 
fdPxyX,(Z). 

It is easy now to extend this representation to contin
uous A by the following standard argumene·6

: let An be a 
sequence of smooth functions converging to A in L foc' p as 
remarked after Theorem 2.2, and let XI,x ~ resp., denote the 
solution of (4.2) with the corresponding coefficients. Then 
..1 A" converges to ..1 A in strong resolvent sense, hence the 
semigroup exp t..1 An converges strongly to exp t..1 A' An argu
ment parallel to the proof of Proposition 3.4 (with coefficient 
functions mUltiplied by the characteristic function of a large 
ball) shows that X ~ converges to X" hence f dP ~yX 7(Z) con
verges to SdP~yX,(Z) by the dominated convergence 
theorem. 

Theorem 4.2: Let A be a continuous anti-Hermitian 
(resp. skew-symmetric) matrix, such that div A is contin
uous. Then we have the representation 

(exp t..1 A )(x,Y) = f dP~y n exp As'dZs, 
s<t 

(4.3) 

where Ils<, exp A·dZs denotes the solution of (4.2). 
This theorem has an obvious 
Corollary: Denoting by..1 the Laplace operator in R D

, 
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then we have the inequalities 

II(exp t..1 A )(x,y)II«exp t..1 )(x,y), 

II(m2 -..1 A )-1(x,y)II«m2 -..1 )-I(X,y), 

for nonzero, real m. 

(4.4a) 

(4.4b) 

Inequalities (4.5) are called Kato's inequalities or diamagne
tic inequalities; cf. also Refs. 1,6,20, and 23-25. 
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Constraints in dynamical systems typically arise either from gauge or from parametrization. We 
study Newtonian systems moving in curved configuration spaces and parametrize them by 
adjoining the absolute time and energy as conjugate canonical variables to the dynamical 
variables of the system. The extended canonical data are restricted by the Hamiltonian constraint. 
The action integral of the parametrized system is given in various extended spaces: Extended 
configuration space or phase space and with or without the lapse multiplier. The theory is written 
in a geometric form which is manifestly covariant under point transformations and 
reparametrizations. The quantum propagator of the system is represented by path integrals over 
different extended spaces. All path integrals are defined by a manifestly covariant skeletonization 
procedure. It is emphasized that path integrals for parametrized systems characteristically differ 
from those for gauge theories. Implications for the general theory of relativity are discussed. 

PACS numbers: 03.20. + i, 02.30. + g, 03.65. - w 

1. MOTIVATION 

The most straightforward way to describe an evolving 
classical system is to give its true dynamical degrees offree
dom qa,Pa' a = 1, ... ,n, as functions of the physical time t. 
The most straightforward way to describe an evolving quan
tum system is to give its state'" on the physical configuration 
space as a function of the physical time. 

The actual classical path of the system extremizes the 
action functional 

s[q(t)] = J:" dt I (t,q,d,q) (1.1) 

in configuration space or the canonical action functional 

s[q(t ),p(t)] = J:' dt (Pa d,~ - h (t,q,p)) (1.2) 

in phase space. In quantum theory, the state function "'(t ',q') 
at t' is evolved into the state function "'(t ",q") at t " by the 
quantum propagator (t ",q" It ',q'), 

"'(t ",q") = J d n q' (t ",q" It ',q')"'(t ',q'). (1.3) 

The connection between quantum theory and the classical 
theory is established when we represent the quantum propa
gator as an integral over all paths connecting t ',q' with t" ,q" 
in the configuration space, 1 

(t ",q"lt',q') dnq' = J Dq eis[q('IJ, (1.4) 

or as an integral over all paths connecting t ',q' with t ",q" in 
the phase space, 

(t ",q" It ',q') d n q' = J Dq Dp eiS[q(t J. p(t II. (1.5) 

The transition from classical theory to quantum theory 
thus amounts to an interpretation of the formal expressions 
(1.4) or (1.5). To do that, one must explain what is meant by 
integrating the exponentiated classical action functionals 

(1.1) or (1.2) and what are the measures Dq or Dq Dp in the 
space of paths. Both problems can be solved by a skeletoniza
tion procedure. In configuration space, the skeletonization 
of the action functional is obvious: s[q(t )] is replaced by a sum 
of Hamilton's principal functions for individual segments of 
the skeletonized path. However, the choice of the skeleton
ized measure is not obvious. One can use different measures 
and these measures yield different propagators. 1 This ambi
guity corresponds exactly to factor ordering in Hamiltonian 
quantum mechanics: The Hamilton operators in Schro
dinger's equation for the propagators differ by curvature 
terms of the order fP. 

In the phase space path integral, the situation is re
versed. The invariant Liouville measure dn q dn p in the 
phase space induces a natural measure in the space of skele
tonized paths. On the other hand, the skeletonization ofthe 
canonical action (1.2) by a sum of phase space principal func
tions is not unique. 2 Different principal functions yield the 
same classical dynamics but because nondifferentiable paths 
are the most significant contributors to the path integral (1.5) 
they do not yield equivalent quantum dynamics. The advan
tage ofEq. (1.5) over Eq. (1.4) is that the measure is fixed, and 
the ambiguity is shifted to the skeletonization of the canoni
cal action where it can be resolved by applying geometric 
criteria. 

The clarity achieved by formulating a physical theory 
in terms of its true dynamical degrees of freedom is often at 
the expense of obscuring its fundamental symmetries. Exam
ples of this statement are found in gauge theories and in 
parametrized theories. The symmetries in these two cases 
are, of course, gauge invariance and parametrization invar
iance. For complicated gauge and parametrized systems, it is 
often impractical or even impossible to exhibit the true dyna
mical degrees offreedom explicitly. It is thus imperative to 
have a procedure for passing from the classical version to the 
quantum version of the theory in its symmetry revealing 
form. We shall briefly discuss one example of a gauge system 
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and one example of a parametrized system to get a feeling for 
the problem. 

Though one can easily concoct finite-dimensional 
gauge theories, the best known specimen of gauge theories is 
a field system, namely, Maxwell's electrodynamics. The 
gauge invariance and the Lorentz invariance of this theory 
are readily seen when the field action is expressed as a func
tional ofthe 4-potential Aa (x), a = 0,1,2,3. Due to gauge 
invariance the variables Aa are redundant. However, it is 
extremely cumbersome to describe the field by its two phys
ical degrees offreedom which are the transverse components 
of Aa ( x), especially in the presence of interactions. The de
sirability of a quantization procedure which operates at the 
level of unphysical variablesAa (x) is readily seen. For gauge 
theories such procedures have been extensively developed.3 

The path integrals are ofthe same form as Eq. (1.4) or ( 1.5), 
but the paths lie in the configuration or phase space aug
mented by gauge variables. The central issue of these formu
lations is then specifying the measure which reproduces the 
physical predictions of the theory. This measure is often 
quite complicated and difficult to guess from first principles. 

As a consequence of gauge invariance, the electric field 
strength E' ( x) cannot be freely specified, but on each spatial 
hypersurface it is subject to the constraint 

(1.6) 

In the Hamiltonian version of the theory, Ea( x) is the mo
mentum conjugate to the vector potential Aa (x). The con
straint (1.6) is the price we pay for the freedom to perform the 
gauge transformations. 

Another important but quite distinct class of theories 
with internal symmetries are parametrized theories. The in
variance with respect to reparametrization is achieved by 
adjoining the physical time to the dynamical variables of the 
system. An arbitrary parameter is then used to locate the 
system on its dynamical path. Any field theory on a given 
background can be cast into a parametrized form, but the 
best known example of a parametrized theory is a finite
dimensional system, namely, the free relativistic particle. 
Let us discuss the canonical version ofthe theory. The ca
nonical action (1.2) of the particle is expressed as a functional 
of the spatial coordinates qa(t) and their conjugate momenta 
Pa (t) considered as functions of the Minkowskian time t in a 
given inertial frame: 

s[qa(t),Pa(t)] = r" dt(Pa dtqa_({jabpaPb +m2)1/2). 

(1.7) 

In the physical variables qa, Pa and with the fixed parametri
zation t, it is difficult to discuss the Lorentz invariance and 
the reparametrization invariance of the theory. However, if 
we let t be a function of a parameter r (not necessarily the 
proper time) and introduce the Minkowskian time t = qO(r) 
and energy - po(r) as dynamical variables, we can write the 
action (1.7) in the form 

S [qa (r)'Pa(r)] = i~' dr Pa qa, (1.8) 

58 J. Math. Phys., Vol. 25, No.1, January 1984 

which is manifestly invariant both under Lorentz transfor
mations and under reparametrizations of paths, 
r-r* = r*(r). The momentapa cannot be varied freely, but 
they must lie on the mass shell, 

(1.9) 

The equations of motion follow from extremizing the action 
(1.8) subjectto the constraint (1.9). The constraint (1.9) is the 
counterpart of the constraint (1.6) in electrodynamics. It is a 
consequence of the reparametrization invariance in the same 
way as the constraint (1.6) is a consequence of gauge invar
iance. 

The most important and also the most intricate system 
in which both gauge and parametrization are subtly inter
twined is general relativity. It may be studied as a Hamilton
ian theory by foliating space-time with a family of spacelike 
hypersurfaces. The foliation is specified by giving the lapse 
function N ( x,t ) and the shift vector N a( x,t ). The lapse func
tion determines the normal proper time separation 
da = N ( x,t )dt between two nearby spatial hypersurfaces t 
and t + dt and the shift vector Na( x,t) tells us how to dis
place the point xa on the hypersurface t so that by launching 
from the displaced pointxa + Na dt in the direction perpen
dicular to the hypersurface t we land at the point x a of the 
deformed hypersurface t + dt. The canonical variables 
gab (t,X) andpab(t,.x) are the intrinsic metric and the extrinsic 
curvature of the hypersurface t. The gauge transformations 
of the theory are spatial diffeomorphisms on the hypersur
faces of the foliation. The reparametrization is connected 
with the change of the foliation. Invariance of the theory 
under gauge transformations implies the supermomentum 
constraint 

(1.10) 

on the canonical data gab ( X), pab (X); the reparametrization 
invariance implies the super-Hamiltonian constraint 

H( x) = g-I/2(Pabpab - !p2) - gl/2R = O. (1.11) 

Here, g( x) = det gab ( X), the vertical stroke denotes the co
variant derivative on the hypersurface and R is the curvature 
scalar on the hypersurface. 

The gauge and reparametrization changes together 
with the constraints (1.10)-( 1.11) imply that the metric field 
has only 2",3 degrees offreedom, i.e., 2·2",3 physical field 
coordinates and conjugate momenta. The remaining 2'" 3 co
ordinates and momenta play the role of an internal time 
which distinguishes one hypersurface from another by look
ing at its intrinsic geometry or extrinsic curvature, and of an 
internal energy. Unfortunately, no one knows how to write 
an action for general relativity which involves only the two 
physical degrees of freedom expressed as functions of the 
physical time. The best we can do is to work with the ex
tended variables gab' pab. General relativity comes to us di
rectly only in the gauged and parametrized form. This is our 
strongest motivation for studying the relation between gauge 
and parametrized theories in an attempt to understand their 
similarities and differences. 

The similarities are obvious. Both types of invariance 
imply constraints. In electrodynamics, we have the diver-
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genceequation (1.6). In the parametrized relativistic particle 
theory, we have the restriction (1.9) of the 4-momentum to 
the mass shell, and in general relativity, we have the con
straints (1.10) and (1.11). Further, the constraints generate 
the changes of extended canonical variables under corre
sponding transformations. In electrodynamics, we smear the 
constraint C ( x) by an arbitrary test function A ( x), 

CAE: f d 3xA (x)C(x). (1.12) 

The Poisson bracket of C A with the extended phase space 
variables Aa ( x), E" ( x), a = 1,2,3, generates their gauge 
transformation, 

15Aa( x) = [Aa( x),CA ] =Aa( x) - aaA (x), 
(1.13) 

I5EO( x) = [Ea( x),CA ] = O. 

Similarly, for the relativistic particle the constraint (1. 9) 
determines the change of the canonical variables x a ,p a un
der displacement 15(7 in proper time, 

I5xa = [ xa ,H] 15(7, I5pa = [Pa,H] 15(7. (1.14) 

Finally, in general relativity we smear the super-Hamilton
ian (1.11) by the lapse function N( x) and the supermomen
tum (1.10) by the shift vector N a

( x): 

H N = J d 3xN(x)H(x), 

H N = f d 3xNa(x)Ha(x). 
(1.15) 

The Poisson brackets 

I5gab ( x) = [gab( x),H N ] &, I5pab( x) = [pab( x),H N] & 
(1.16) 

yield the changes ofthe canonical variables gab ( X), pab ( X) 
when the point xa is displaced by amount I5xa = N a & along 
the hypersurface, while the Poisson brackets 

I5gab ( x) = [gab( x),HN ] &, I5pab( x) = [pab( x),HN ] & 
(1.17) 

yield the changes of gab ( X), pab ( X) when the hypersurface is 
deformed by the amount N & in the normal direction. 

There is, however, an important physical distinction 
between gauge theories and parametrized theories. For 
gauge theories the changes generated by the constraints do 
not change the physical state of the system. They change 
only the gauge in which it is represented. The true physical 
degrees of freedom do not change. So, in electrodynamics, 
Aa( x) is changed by the transformation (1.13), but the field 
strengths Ea( x) and H a( x) remain unaffected. By contrast, 
in parametrized theories the changes induced by the con
straints are those associated with the dynamical evolution of 
the system. The true physical degrees of freedom are moved 
along the dynamical path. This is clearly seen in Eq. (1.14) 
for a free relativistic particle. In general relativity, the 
changes (1.16) generated by the supermomentum leave the 
intrinsic geometry and the extrinsic curvature of the hyper
surface unaffected. The quantities like f d 3X gl /2 R or 
fd 3X gab pab stay the same. On the other hand, the super
Hamiltonian generates the dynamical evolution of the spa
tial geometry and of the extrinsic curvature under the nor-
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mal deformation ofthe hypersurface [Eq. (1.17)]. 
The different roles which the constraints resulting from 

gauge invariance and those resulting from reparametriza
tion invariance play in classical theory have fundamental 
consequences for the quantum theory. This is because in 
quantum theory time is clearly distinguished from all other 
variables and cannot be represented by a Hermitian opera
tor. As a result, the path integral procedure developed in 
gauge theories to achieve the transition from classical me
chanics to quantum mechanics is not directly applicable to 
parametrized theories. In this paper we shall build a correct 
procedure for a simple class of parametrized systems and 
show how it differs from the prescription developed for 
gauge theories. An understanding of where the two prescrip
tions differ would seem an essential prerequisite to under
standing the quantization of general relativity by path inte
grals. 

The finite-dimensional theory which we have chosen as 
our model is a nonrelativistic system described by the Hamil
tonian 

(1.18) 

The potentials tP and tPa depend on the configuration varia
bles qa, a = l, ... ,n and on absolute time t. A curved nonde
generate metric ~b is also a function of these variables. We 
study a nonrelativistic theory because it contains an easily 
and uniquely identifiable time variable. We consider curved 
configuration spaces because the parametrized version of the 
theory can be expressed in terms of a degenerate curved met
ric in n + 1 dimensions and so bears structural similarity to 
general relativity which is our ultimate theory of interest. To 
emphasize this similarity, we shall express our results in a 
manifestly covariant manner using this extended metric. We 
can thus clearly exhibit the geometric structure these theor
ies possess. 

Our starting point is the path integral (1.5) in the phys
ical phase space with the canonical action (1.2) containing 
the Hamiltonian (1.18). We interpret this path integral by a 
manifestly covariant skeletonization procedure which leads 
to the Schrodinger equation for the quantum propagator 
without additional curvature term. This choice fixes the fac
tor ordering and the quantum theory. Our ending points are 
path integrals for the same propagator over associated 
spaces. The simplest of these is the integral (1.4) over paths in 
the physical configuration space. More important, however, 
are path integrals corresponding to the parametrized version 
of the theory. 

We parametrize the system by adjoining time and a con
jugate momentum to the variables {qa, Ph J, forming thus an 
enlarged configuration space { (t J, A = O, ... ,n and phase 
space {(t , PA J. The quantum propagator can be expressed 
as a path integral in the enlarged phase space or in the en
larged configuration space. Each case divides into two, cor
responding to the classical choice of how the constraint con
nected with reparametrization invariance is enforced. It can 
be enforced either explicitly on the variations of an action or 
implicitly using a Lagrange multiplier. This possibility is re
flected quantum-mechanically in two forms of the path inte
gral for each space of variables: one in which the action is 
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free from mUltipliers but the measure includes a /j function of 
the constraint and a second in which the action contains a 
multiplier and the measure includes an integration over it. 
There are thus four forms of the path integral for parame
trized theories with the basic Hamiltonian (1.18). This may 
seem an unnecessary proliferation of possibilities, but each 
of the four forms of the classical action corresponding to 
these choices can be actually constructed in general relativi
ty. They are displayed in Table I. It therefore seems appro
priate to consider all of them in the simple nonrelativistic 
systems under consideration. 

Our results are thus the six forms for the path integral 
for the system described by the Hamiltonian (1.18)-two in 
terms of physical variables and four in terms of extended 
variables. They are specified by six actions displayed in Ta
ble II (Sec. 3) and by six measures summarized in Table III 
(Sec. 10). They are six equivalent ways for passing from the 
classical theory to the quantum theory. None of the parame
trized versions of this passage correspond to the standard 
procedures for quantizing gauge theories. We shall discuss 
this in detail in Sec. 9. This only underlines once again the 
depth of the issues involved in quantizing gravity. 

2. PARAMETRIZED NEWTONIAN SYSTEMS 

Our immediate goal is to reformulate classical dynam
ics of a Newtonian system in an extended phase space. In this 
process, absolute time and energy are adjoined as conjugate 
canonical variables to the dynamical variables of the system. 
The absolute time loses thereby its privileged role in parame
trizing paths, and it is replaced by an arbitrary label time. 
For this reason, the process is called parametrization. With 

TABLE I. Alternative forms of the action for general relativity. 

Extended canonical 
action, conditional 

Canonical 
variables Multipliers Action 

absolute time lifted among the configuration variables, one 
can introduce arbitrary coordinates in the configuration 
space-time. This underscores the geometric content of the 
parametrized theory. To reduce the theory back to its hum
ble physical origins, one should learn how to identify the 
original physical variables from the geometric structures 
and reinstate them as privileged variables into the action. 
This inverse process is summarily called a deparametriza
tion. Our goal is thereby set: First, parametrize the physical 
theory and geometrize it; second, deparametrize the geomet
ric theory and return to the physical starting point. 

We assume that the Newtonian space-time is endowed 
by a privileged foliation of hypersurfaces whose leaves are 
instants of absolute time. We label the hypersurfaces by a 
parameter t, not necessarily coinciding with the pace of a 
standard clock. We assume that each hypersurface carries a 
positive-definite metric. We do not insist, however, that this 
metric be flat or time-independent. We introduce into the 
space-time an arbitrary congruence of world lines transver
sal to the time foliation and label them by three coordinates. 
The congruence represents a choice of reference frame. 

The dynamical system which we have in mind might be 
a single point particle or a system of such particles subject to 
holonomic though in general rheonomic (time-dependent) 
constraints. (These constraints have nothing to do with the 
Hamiltonian constraint we introduce later.) Knowing the 
masses of the particles and the constraints to which they are 
subject, we can express the kinetic energy of the system in 
terms of the generalized coordinates qa, a = 1,2, ... ,n, and 
generalized velocities it and deduce thus the instantaneous 
metric gab (t,q) induced in the configuration space (qal ofthe 
system. The system is also subject to forces derivable from a 
scalar potential ifJ (t,q) and a vector potential ifJa (t,q). We do 
not need to distinguish "true" forces from "ficticious" 
forces, which are already contained in the expression for the 

Lagrangian, Hamiltonian, constraints 

Extended canonical 
action, with lapse 
and shift multipliers 

N, N" 

H(x) = 0 = Ha(x) 

S[ gab , pab , N, N"] H = N (x)H (X) + N" (x)Ha (xl 

Extended Lagrangian 
action, with lapse 
and shift multipliers 

Extended Lagrangian 
action, without the 
lapse multipliers" 

gab N,N" 

gab 

= S dt S d'X(pab gab 
- H( gab,pab, N, N")) 

S[gab' N, N"] 
= S dt S d 'xL (gab' gab' N, N") 

S[gab' N"] 
=s dt Sd'xL(gab,gab' N") 

L = Ng1l2[(KabKab - K2) + R] 
= ( _ 4g)1/2 4R + (divergence terms) 

Kab = ~ N - 1( - gab + Nalb + Nb la) 

L = [gR (Uab [J'" _ U 2)]1/2 

"The elimination of N" would lead to the homogeneous Lagrangian action without multipliers. The elimination cannot be carried out explicitly. 
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kinetic energy. We thus include both types of terms into the 
potentials <p, <Pa. 

An elementary example of such a system would be a 
charged particle moving on an expanding curved surface 
placed in an external electromagnetic field. The generalized 
coordinates qa might be any curvilinear coordinates on the 
surface. Another example, closer to actual systems studied 
in nonrelativistic quantum mechanics, would be a charged 
rigid rotator in an external electromagnetic field. The gener
alized coordinates qa might be the Euler angles. The kinetic 
energy of the rigid rotator expressed as a quadratic form of 
generalized velocities indicates that the configuration space 
of the rotator is curved, but the metric is time-independent. 

The dynamical evolution of the system takes place in 
the physical phase space t qa, Pa J which is a cotangent bun
dle over the physical configuration space ( qa j. The evolution 
of physical variables is governed by the canonical action 

s[q,p] = f dt (Pa d,qa - h (t,q,p)) 

with the Hamiltonian 

(2.1) 

h (t,q,p) = ~gab(Pa - <PaHPb - <Pb) + <p. (2.2) 

A new choice of the time labeling, t * = t *(t), or a change of 
the reference frame changes the Hamiltonian (2.2) into an
other Hamiltonian of the same type. The only features of the 
Newtonian system which are important for our purposes are 
the existence of a privileged foliation of the configuration 
space-time by leaves of absolute time and the fact that the 
Hamiltonian of the system is a quadratic function of canoni
cal momenta. There is no need to introduce other features 
usually associated with Newtonian physics like the presence 
of the Galilei group. 

We now parametrize a possible path along which the 
system moves in the phase space (qa, P a j by an arbitrary 
label time T and adjoin the originally chosen absolute time 
t (T) to the configuration variables qa(T): 

~ = (t, qaJ, ~ = ~ (T), A = 0,1,2, ... ,n. (2.3) 

The action (2.1) takes the form 

s[~'Pa] = f dT(Pait-h(Q,p)t) (2.4) 

when written in the T-parametrization. The dot denotes a 
derivative with respect to the label time T. Numerically, the 
expression (2.4) is equal to the expression (2.1) and so vari
ation with respect to qa, Pa yields equivalent equations of 
motion. Moreover, the variation of the parametrized action 
(2.4) with respect to t also yields a correct equation, namely, 
the energy balance equation 

h = a,h t. (2.5) 

The integrand of the action functional (2.4) is linear in 
the velocities (t = {t, qa j. By introducing a momentum 
Po = - h canonically conjugate to t and by putting 

PA = { Po, Pa J (2.6) 

we cast the action (2.4) into a suggestive form 

S[~,PA] = J dTPA(t. (2.7) 
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However, the variables PA cannot be varied freely, because 
Po is a mere abbreviation for the function - h (~ ,Pa)' To 
obtain correct equations of motion, we must vary the action 
(2.7) under the constraint 

H(Oi Po + h (~,Pa) = O. (2.8) 

In this way, a constraint on the variables of the enlarged 
phase space enters into the theory. It is called the Hamilton
ian constraint. 

The actual path of the system extremizes the action 
functional (2.7) in comparison to all neighboring paths 
which lie on the constraint surface (2.8). In other words, the 
actual path is selected by the conditions 

H(Oi(Q,p) = 0, 
(2.9) 

8S [Q,P] = 0 \;j 8Q, 8P: 8H(Oi = O. 

Equations (2.9) constitute a conditional variational princi
ple. 

The constraint function H(Oi is a quadratic function of 
extended momenta P A • This property is preserved if we mul
tiply the constraint by an arbitrary function A (~) > 0 of 
extended configuration variables, 

(2.10) 

The constraint function H (Q,P) is called a super-Hamilton
ian of the system. 

We shall now write the constraints (2.8) or (2.10) in a 
manifestly covariant notation. We introduce a covector field 

tA =t.A(Q)=(I;O, ... ,O) (2.11) 

normal to the instants of absolute time and a vector field 

uA = (1;0, ... ,0) (2.12) 

tangent to the world lines qa = const of our "configuration 
reference frame." We collect the potentials into a space-time 
covector field 

(2.13) 

and complete the spatial metric gab into a degenerate space
time metric 

(2.14) 

The metric ~B has the signature (0; + , ... , + ) and tA is its 
degeneracy direction, 

~BtB = O. (2.15) 

Of course, 

uA tA = 1. (2.16) 

When ~B and uA are given, Eqs. (2.15) and (2.16) determine 
tA • 

The super-Hamiltonian (2.8) can now be written in a 
manifestly covariant form 

H(Oi = uA (PA - <PA) + ~ ~B(PA - <PA )(PB - <pB).(2.17) 

After scaling the fields uA and ~B by the factor A (Q ), 

GAB A~B, UA AuA, (2.18) 

H= UA(PA -<PA)+!GAB(PA -<PA)(PB -<PB)·(2.19) 

J. B. Hartle and K. V. Kuchar 61 



                                                                                                                                    

Up to now, theabsolutetimevariableQo = twasclearly 
separated from the configuration variables (l' = qa . At this 
stage, however, we can easily mix the space-time variables 
cr by an arbitrary transformation cr ° ((t), inducing there
by a transformation of the conjugate momenta: 

cro = crO({t), PAo = QBAOPB, 
(2.20) 

When we transform UA (or uA ) as a vector, GAB (or gAB) as a 
tensor, and <P A as a covector, the constraint (2.19) [or (2.17)] 
preserves its form. We shall omit the asterisks with the un
derstanding that Eqs. (2.17)-(2.19) are written in general co
ordinates. The action principle (2.9) then yields the actual 
motion of the system in general coordinates. 

In the special coordinates cr = [t, if} , the coefficients 
uA ,gAB assume the simplified form (2.12),(2.14). This implies 
that the scaled coefficients UA , GAB cannot be arbitrary 
functions of general coordinates cr . In a permissable para
metrized Newtonian theory, UA and GAB must be subject to 
two sets of restrictions which ensure that the physical theory 
can be recovered by deparametrization. These restrictions 
are: 

(I) The metric GAB must be degenerate, with signature 
(0; + , ... , + ). The degeneracy direction TA , 

GABTB = 0, TB #0, (2.21) 

must be surface-forming. This happens if and only if the 
metric GAB satisfies the integrability condition (Appendix A) 

{: G A [B.CIGA,B, GA"B" - 0 
UAA, ... A

n 
••• -. (2.22) 

(II) The inner product UA TA cannot vanish and, for a 
future-oriented TA , it must be positive, 

UA TA >0. (2.23) 

Equation (2.23) implies that TA can be normalized so that 

(2.24) 

The parametrized Newtonian system is characterized 
by a quadratic super-Hamiltonian (2.19) whose coefficients 
UA and GAB satisfy our restrictions (I) and (II). We complete 
our demonstration that the physical and parametrized ver
sions of the theory are equivalent by showing how to depara
metrize the system. To do this, we have to find the absolute 
time function and return back to the physical Hamiltonian 
(2.2). 

Notice first that the quadratic function (2.19) deter
mines the coefficient GAB uniquely, but the coefficients UA 

and <P A only up to a gauge transformation 

(2.25) 

*<PA=<PA+¢A' 
generated by a gauge variable ¢ A which satisfies the condi
tion 

(2.26) 

The transformation (2.25)-(2.26) expresses an arbitrary 
change of the configuration reference frame. We have dis-
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cussed the influence of such a gauge transformation on quan
tum description of a Newtonian system in an earlier paper.4 

Here, we shall simply assume that one reference field UA is 
chosen within the equivalence class (2.25H2.26). 

Return now to the problem of how to reconstruct the 
physical Hamiltonian. For the metric GAB with signature 
(0; + , ... , + ) all solutions TA ofEq. (2.21) fill a ray. The 
integrability condition (2.22) ensures that at least one solu
tion t A within this ray is a gradient of a scalar function, 

3 t(Q): tA = t.A. (2.27) 

In fact, all solutions which are gradients are related to one 
another by the transformations t * = t *(t). We select one 
which increases to the future, i.e., which satisfies the condi
tion 

UA t.A A (Q ) > 0 (2.28) 

for our time function t (Q). We then scale the super-Hamil
tonian (2.19) down by the factor A -1, scaling GAB down to 
gAB and UA to uA by Eq. (2.18). Equation (2.28) then implies 
Eq. (2.16). Of course, the scaled metric satisfies Eq. (2.15). 

We can now introduce within the reference frame uA 

comoving coordinates qa as any n functionally independent 
solutions qa(Q) of the equations 

(2.29) 

We take the time function (2.27) and the comoving co
ordinates (2.29) as our special coordinates cr = [t, if}. 
Equations (2.16) and (2.29) then ensure that uA in special 
coordinates has the components (2.12). Similarly, Eq. (2.15) 
ensures that the rescaled metric gAB has the components 
(2.14). Therefore, the rescaled super-Hamiltonian (2.17) re
duces back to the form (2.8), where h is our old Hamiltonian 
(2.2). When we solve the constraint (2.8) with respect to Po, 
substitute this solution into the action (2.7), and parametrize 
paths by the absolute time t, we return back to the physical 
action (2.1). In this way, we regain the physical action from 
the parametrized action (2.7) subject to the super-Hamilton
ian constraint (2.8). 

3. ALTERNATIVE FORMS OF THE ACTION 

We have transformed the canonical action (2.1 )-(2.2) on 
the physical phase space into a constrained action (2.7)
(2.10), (2.17), (2.19) on the extended phase space. Besides 
these forms of the action, there are still others which are 
frequently used in dynamical considerations. In particular, 
one can adjoin the Hamiltonian constraint (2.10) to the ex
tended phase space action (2.7) by a lapse multiplier, and one 
can cast the parametrized action into a Lagrangian form, 
either on the physical or on the extended configuration 
space, and either including or excluding the lapse multiplier. 

We have argued in the Introduction that any of these 
forms could serve as the starting point for the transition to 
quantum theory by path integrals. However, only in the 
physical phase space do we have a universal prescription for 
the measure. All other path integrals should be thus derived 
from the path integral in the physical phase space. To pro
ceed, we must first understand how the various forms of the 
action are connected to each other. We shall study this clas-
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sical problem now and postpone its application to path inte
grals to subsequent sections. 

In the beginning, we replace the conditional variational 
principle by a free variational principle by adjoining the con
straint (2.17) to the action (2.7) by a Lagrange multiplier N (0), 

S[Q,P,N(o)] = f dT(PA(r _N(O)H(O»), (3.1) 

or the scaled constraint (2.19) by a Lagrange multiplier N, 

S [Q,P,N] = f d1' (PA (r - NH). (3.2) 

All the variables ~ , PA , N(o) or ~ , PA , N may now be 
varied freely. 

The physical meaning of the multipliers N (0) or N fol
lows from the Euler-Lagrange equations. By varying Eq. 
(3.2) in the momenta PA , we get 

M :.4 AB ~ = N (U + G (P B - ~B))' (3.3) 

We multiply Eq. (3.3) by a degeneracy covector TA , Eqs. 
(2.21), (2.23), and calculate N: 

N= (TBUB)-ITAir. (3.4) 

In the special coordinates ~ = {t, rf}, Eq. (3.4) reduces to 

N=A -Ii (3.5) 

by virtue of Eq. (2.28). The same sequence of steps starting 
from the action (3.1) leads to the equation 

N(o) = (t.BUB)-lt,A (r = i, (3.6) 

We thus see that the multiplier N (0) equals the rate of change i 
of the absolute time t with respect to the label time 1'. For this 
reason, it is called the lapse function. We shall loosely use 
this name also for the scaled multiplier (3.5). 

The action (3.2) is the best starting point for further 
rearrangements. We group its arguments into several 
classes: 

extended configuration variables ~ 

= {physical time t, physical coordinates qa J, 
extended momenta variables PA 

= {physical Hamiltonian - Po, physical momentapa J, 
Lagrange multiplier = {lapse function N }. 

By eliminating one or more classes of variables from the 
action, we cast it into a number of alternative forms which 
lead to equivalent sets of equations of motion. The transition 
from the extended action (3.2) to the physical action (2.1) has 
this character: It is achieved by using the equations of mo
tion to eliminate the lapse multiplier N and the time-energy 
pair t, Po from the action. One can proceed one step further 
and eliminate all momenta variables from the canonical ac
tion (2.1). One arrives then at the physical Lagrangian action 

S[q] = f dtl(t,q,d,q) (3.7) 

by the Legendre dual transformation 
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I (t,q,d,q) = [Pa d,qa - h (t,q,p)]P=P("q,d,qp 

d,qa = !.!!.... 
aPa 
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(3.8) 

Because the physical Hamiltonian is nondegenerate, the sec
ond equation uniquely determines the generalized momenta 
Pain terms of the generalized velocities 
d,rf,Pa = Pa(t,q,dtq). For the Newtonian system (2.2), 

I (t,q,d,q) = !gabd,rfdtqb + ~adtrf - ~, 
(3.9) 

Pa = gabd,qb + ~a' 
Start now from the parametrized canonical action (3.2) 

instead of from the physical canonical action (2.1). Try to 
eliminate the momenta P A , but leave the lapse function N in 
the action. This time, however, the expression (3.3) for the 
velocities (r in terms of the momenta PA is not invertible 
because the metric GAB is degenerate. One can, however, go 
most of the way by defining the covariant metric GAB by the 
equations 

UBGBA =0, GABGBC =81:: - UBTc, (3.10) 

where Tc is the normalized degeneracy covector (2.21), 
(2.24). The metric GAB is again degenerate, with signature 
(0; + , ... , + ). After introducing the abbreviations 

~II ==~A UA, P II PA U
A, (3.11) 

we express the momentaPA in terms of the velocities (r and 
a single scalar P II 

PA =N-IGAB(r +(~A +~IITA)+PIITA' (3.12) 

After the Legendre transformation 

L=[P M -NH] . A ~ P A = PA(Q,Q,N,P11i 

=!N -IGAB(r (r + N~II + (~A - ~II TA)(r 
+PII(TA(r -N) (3.13) 

P II stays in the action as another Lagrange multiplier. How
ever, it can be eliminated by using the Euler-Lagrange equa
tion obtained by varying the lapse multiplier N, 

P II - ~II + !N- 2GAB (r (r = O. (3.14) 

This leads to the Lagrangian 

L (Q,Q,N) = (N- ' - !N-2Tc QC)GAB(r(r + ~Air 
(3.15) 

= - !(N-I(TcQC)I/2 - (TcQC)-I12)2GAB(r (r 

+!(TcQC)-IGAB(r(r +~Air. (3.16) 

It is not difficult to check that by varying ~ and N we 
obtain correct equations of motion. In special coordinates 
~ = {t, rf} with the lapse function N (0) = AN the Lagran
gian (3.15) reduces to 

L (t,q,q,N(O») = (N(O) -I _ !N(O) -2i) 

Xgabqaqb + ~aqa - ~i. (3.17) 

As a final transformation, we eliminate the lapse func
tion N from the extended Lagrangian (3.16). The Euler-La
grange equation obtained by varying N can be solved for N, 
with the result 

(3.18) 

This expression replicates Eq. (3.4) which was obtained from 
the canonical action. By substituting it back into the Lagran
gian (3.16), we get the reduced Lagrangian 

L(Q,Q)=!(TcQC)-IGAB(r(r +~A(r, (3.19) 
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TABLE II. Alternative fonns of the action. 

Physical canonical 
action 

Physical Lagrangian 
action 

Extended canonical 
action, conditional 

Action 

s[q) = f dt Itt, q, d,q) 

Lagrangian, Hamiltonian, super-Hamiltonian 

General 
coordinates 

Extended canonical 
action, with lapse 
multiplier 

S [Q, P, N) = f dr(PAQA - NH) Special 

Extended Lagrangian 
action, homogeneous 

Extended Lagrangian 
action, with lapse 
multiplier 

S[Q) =f drL(Q, Q) 

S[Q, N) = fdrL(Q, Q,N) 

which is a homogeneous function of the first degree in the 
extended velocities (r . In special coordinates et = It, qa J , 
the homogeneous Lagrangian assumes the form 

L (t,q,i,q) = !i -lgabqa qb + t/Jatia - t/Ji. (3.20) 

We display a summary of our results for the alternative 
forms of the action in Table II. 

4. PATH INTEGRALS IN PHYSICAL PHASE SPACE 

The canonical action (2.1 )-(2.2) on physical phase space 
is a logical starting point for path integration because the 
privileged Liouville measure d nq d np in this space induces a 
natural measure in space of skeletonized paths. We represent 
the quantum propagator by a path integral on the physical 
phase space following the procedure of Ref. 2. In subsequent 
sections, we transform this path integral into equivalent path 
integrals corresponding to alternative forms of the action. In 
this process, nontrivial and often quite complicated mea
sures are induced in alternative spaces of paths. 

The Hilbert space of our dynamical system is the space 
of scalar state functions 1/J(q,t ) with the scalar product 

( ¢I¢) = f dn q gI/2(t,q)¢*(t,q)1/J(t,q). 
1 2 1 2 

(4.1) 

Positions qa and momentapa are represented by Hermitian 
operators 

(4.2) 

The classical Hamiltonian (2.2) is turned into a covariant 
operator 
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h = !g-1/4(q)(Pa - t/Ja(q))g1/2~b(q) 

X (Pb - t/Jb (q))g-1/4(q) + t/J (q) 

= - ¥1 + i( rJa + ~t/J ala) + t/J + ~t/J at/Ja' (4.3) 
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coordinates, 
rescaled 

1 
General 
coordinates 

Special 
coordinates 

1 
General 
coordinates 

Special 
coordinates 

L (Q, Q, N) = -!(N -1(TcQ C)1/2 - (TcQ C)-1/2)2 

XGABQAQB + L (Q, Q) 

L (t, q, i, g, N) = - !(N -Ii 1/2 _ i -112)2 

Xgabgaq& + L (t, q, i, g) 

which is again Hermitian under the norm (4.1). The state 
function ¢(t,q) is evolved in time by the Schrodinger equation 

ig- 1/4J, (gI!4¢) = h¢. (4.4) 

The general solution ofEq. (4.4) is provided by the quantum 
propagator (t ",q"lt',q'), 

¢(t ",q") = f d Y (t ",q" It ',q')¢(t ',q'). (4.5) 

This propagator is a scalar in q" and a scalar density in q'.1t 
satisfies the Schrodinger equation 

ig" - 1/4J," (g" 1/4(t II ,q" It ',q'») = h" (t ",q" It ',q') (4.6) 

with the boundary condition 

(t",q"lt",q') =8(q"lq'). (4.7) 

We represent the quantum propagator by an integral 
over all phase space paths q(t ), pIt ) which start in the configu
ration q' at t' and end in the configuration q" at t " , 

(t",q"lt",q')dnq'= f DqDpeis[q(r),p(r ll . (4.8) 

Here, s[q(t ), pIt )] is the canonical action integral (2.1) and 
Dq Dp is a measure in the space of phase space paths. 

We interpret the formal expression (4.8) by a skeletoni
zation procedure in which the time between t ' and t " is sliced 
into small intervals and the measure becomes the product of 
the Liouville phase space measures on each slice. In the inte
grand, we need to skeletonize the action for each path in 
phase space. We replace the action functional by a sum of 
principal functions for getting from one phase space point on 
the skeletonized path to the next. These principal functions 
cannot be the Hamilton principal functions, because Hamil
ton's principal functions are determined by the initial and 
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final configurations and do not depend on momentum. A 
correct construction was discussed in Ref. 2. Evaluate the 
canonical action (2.1) along the actual path qO(t ) in configu
ration space and the momentum path Po (t) found by trans
porting an arbitrary initial momentum along the configura
tion space path by a specified rule. There results a principal 
function S(t(K + I)' q(K + Illt(K)' q(K), P(KI) which depends on 
the initial and final configurations and on the initial momen
tum. By summing such principal functions for all segments 
of the phase space path, one arrives at an action function 
which is manifestly covariant under point transformations 

qO' _ qO'(t q) P _ aqb (t,q*) P (4.9) 
- " a· - Jqa* b . 

There are, in fact, a variety of such skeletonization pro
cedures, depending on which rule is used to transport the 
momentum along the actual classical path. Each gives a dif
ferent quantum mechanical propagator. We shall use the 
rule of geodesic deviation transport. There are compelling 
reasons for such a choice: (1) A fortiori, the momentum vec
tor is Lie propagated by a flow of actual configuration paths; 
(2) a posteriori, the Schrodinger equation (4.4) does not con
tain any curvature term. 

Let us now describe this procedure in detail. The skele
tonized phase space path t(K pq(K) ,P(K)' K = 0,1 , ... ,N, starts 
at the configuration q' at t ' and ends in the configuration q" 
at t ", 

t(O) =t', q(O) =q', t(NI =t", q(NI =q". (4.10) 

The canonical action integral s[q(t), p(t)] is replaced by a 
chain 

N~I 

I S(t(K+ I) ,q(K + Illt(KI,q(KPP(KI) 
K~O 

(4.11) 

of phase space principal functions 
s( t(K + II ,q(K + II I t(K I ,q(K I' P(K I)' The skeletonized measure 
Dq Dp is taken as the product 

N~I IT (21T)~n dnq(KI dnp(KI (4.12) 
K~O 

of invariant Liouville measures on phase space. There is one 
such measure at each time t(KI' K = O,I, ... ,N - 1, with the 
exception of the final time t (NI' The integration is performed 
over all of the momentap(KI' K = O,I, ... ,N - 1, but only 
over the interpolated coordinates q(lI' 1= 1, ... ,N - 1. The 
differential d nq' thus remains unused in the integral (4.8) and 
appears on both sides of the equation. The asymmetric way 
in which q integrations and P integrations are performed re
flects the fact that the paths have fixed boundary configura
tions but free boundary momenta. The path integral (4.8) is 
defined as a limit of the described [Nno(N - l)n]-fold inte
gral (q' integration omitted) as N--+oo while the skeletoniza

tion is infinitely refined. That is, if 

.Jt MAX - max It(K + I) - t(KII, 
K~O .... ,N~ I 

(4.13a) 

then 

J
DqDP eiS(q(t)'P('II= lim JNif dnq(KI dnp(KI 

LI,MAX->O K ~ 0 

xC (t(K + Ipq(K + Illt(KI ,q(K), p(Kd· (4.13b) 
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The biscalar 

C(t(K+ l),q(K+ Illt(KI,q(KI,P(KI) 
=(21T) ~ neis(t(K + 1(,q(K + l(i'(K(,q(KI,P(K(1 (4.14) 

we call the classical propagator. 
The phase space principal functions(t ",q" It ',q',p')isde

fined as the canonical action integral (2.1) evaluated along 
the actual configuration path q(t ) between t ' ,q' and t ",q" giv
en by the equations 

V,(gob d,qb) = Fo -Bob d,qb + Eo, 
(4.15) 

Bob = aa¢lb - ab¢la' Eo = - ao¢l - a,¢lo' 

with the momentum Po propagated from its initial value Pa' 
by the equation of geodesic deviation with a force term, 

The phase space principal functions(t" ,q" It ',q', p') is a bisca
lar under point transformations (4.9). It is a quadratic func
tion of the initial momenta. 

At each step of the skeletonization procedure, the cor
responding phase space principal function enters into the 
classical propagator (4.14). In the limit (4.13), we need to 
know each function only up to terms linear in the time inter
val.J t(K I = t(K + I) - t(K I and quadratic in the instantaneous 
geodesic separation O"(K,(q(K I- Illq(KI)' 

To write such an approximate form of the phase space 
principalfunctions(t" ,q" It ',q',p'), weintroducetheconfigu
ration space Hamilton principal function sIt ",q" It ',q'). This 
function is the extremum ofs(t ",q" It ',q', p') with respect top' 
and it satisfies the Hamilton-Jacobi equations 

a,"s + h (t ",qa",PO" = aa"s) = 0, 
(4.17) 

- a"s + h (t ',qa',Pa' = - aa's) = 0. 

From the Hamilton principal function, we can find the ini
tial velocity d, qa' on the actual path from t ',q' to t ",q": 

(4.18) 

This velocity is of the order 0',' / .J t. The approximate form of 
the phase space principal function can be written in the sug
gestive form 

sIt ",q"lt',q',p') 
(4.19) 

;::;;(Pa' d,qO' - W'b'(Pa' - ¢la' HPb' - ¢lb') - ¢l') .Jt. 

The coefficient 

(4.20) 

differs from the metric g"'b' (t ' ,q') by a Riemann curvature 
term which is brought in by the geodesic deviation transport. 
This term is of the ordera-;,. The function (4.19) is construct
ed in the following way: (I) The initial value of the canonical 
Lagrangianpa' d,qa' - h (t ',q',p') is multiplied by the time 
interval.Jt = t" - t'; (II) the initial velocityd,qa' is expressed 
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as a function of the boundary data t' ,q' and til ,q", Eq. (4.18); 
(III) the metric in the initial Hamiltonian is replaced by the 
tensor-scalar coefficient (4.20). We call the modified Hamil
tonian Ii (t II ,q" It' ,q', p'). 

The description of the phase space integral is now com
plete. The approximate form (4.19)-(4.20) of the phase space 
principal function can be used in each classical propagator 
(4.14) and the path integral defined as the limit (4.13). One 
can prove l that the quantum propagator (4.8) represented by 
this path integral satisfies the Schrodinger equation (4.6) 
with the boundary condition (4.7). The geodesic deviation 
transport which induces the modification (4.20) of the metric 
ensures that no scalar curvature potential appears in the 
Schrodinger equation. 

5. PATH INTEGRALS IN PHYSICAL CONFIGURATION 
SPACE 

We pass from the phase space path integral (4.13)-(4.14) 
to a path integral on the physical configuration space by 
performing momenta integrations. The K + 1 step in the 
skeletonization process starts at t(K) ,q(K) ,P(K) and ends at 
t(K + I) ,q(K + I)' Generically, we call 

tIKI = t, q(K) = q, P(K) = P 

and (5.1) 
-

t(K + I) = t, q(K + I) = q. 

The phase space principal function (4.19) at each step can be 
completed into a square, 

s(t,qlt,q,p) = - Wb1Ta1Tb At + I (t,q,d,q)ijt. (5.2) 

Here, 

At=t-t, 

1Ta = Pa - gabd,qb -ifJa 

(5.3) 

(5.4) 

and / (t,q,d,q) is the physical Lagrangian (3.9). The initial ve
locity d,qa is still_expressed through the configuration space 
boundary data q,t,q,t: 

d,qa= _g"b(t,q)[abs(t,qlt,q)+ifJb(t,q)]. (5.5) 

Le! (4.14) be the phase space classical propagator from t,q, P 
to t,q, 

C (t,qlt,q, p) = (21T) - n eis(t,ql"q,p). (5.6) 

We define the configuration space classical propagator as an 
integral ofEq. (5.6) over the momenta, 

C(t,qlt,q)= I dnp C(t,qlt,q,p). (5.7) 

The integration over p can be replaced by integration over 1T. 
This leads to the Gaussian integral 

I d n1T e - (1/2)i~,g"b1Ta1Tb = ((21T) - I iA t ) - n12gI/2, 

where 

g(t,qlt,q)=det gab' 

Up to the first order terms in At, 

s(t,qlt,q) = / (t,q,d,q) At. 

(5.8) 

(5.9) 

(5.10) 

This leads to the configuration space classical propagator 
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(5,11) 

By integrating over all the momenta P(K) , 
K = O,I, ... ,N - 1, we transform the quantum propagator 
(4.8),(4.13) to a configuration space form 

(tl,q"lt',q')dV= IDqeiS[q(,)) 

lim INtI' dnq(K) C(tIK+ I) ,q(K + 1)lt(Kl'q(Kd· 
~tMAX----+O K=O 

(5.12) 

The integration takes place over the interpolated positions 
q(l)' I = 1, ... ,N - 1. 

The Lagrangian action integral s[q(t)] in Eq, (5.12) gets 
skeletonized by a chain of Hamilton's principal functions 

N-I 

s[q(t)]::::: L S(t(K+Il'q(K+I)lt(Kl'q(K)) 
K=O 
N-I 

::::: L / (t(K I'q(K) ,de q(K))A t(K I' 
K=O 

and the measure Dq is skeletonized by the product 

Each determinantg l/2 can be expressed as 

gl/2 =gI/2(t(Kl'q(K))(1 + Rab(q(K)) 

(5,13) 

(5.14) 

XAt(K)d,qa(K) At(K) d,qb (K))' (5,15) 

Under this measure, the quantum propagator (5.12) satisfies 
the Schrodinger equation without any curvature term. 

6. PATH INTEGRALS IN EXTENDED PHASE SPACE 

We shall now express the quantum propagator by path 
integrals in extended phase space. There are two ways of 
doing this corresponding classically to whether the con
straints are enforced explicitly or implicitly through a lapse 
multiplier. We begin by replacing each classical propagator 
C (t,ql t,q, p) by an extended propagator C (0 I Q,P) such that, 
in special coordinates (2.3),(2.6), 

C(t,qlt,q,p) = I dQOdPoC(OIQ,P). (6.1) 

The procedure then closely follows the parametrization 
process of classical action. First, we take the absolute time as 
a prescribed function t (1') ofa label time l' E [1",1'"] respecting 
the boundary conditions 

t(1") = t', t(1'") = til, 

To first order in A1', 

At = tAr, At t - t, .::11'=7 - 1', 

and, as a consequence of Eqs. (4.19) and (4.14), 

C (t,qlt,q, p) = (21T) - neil Pag" - h(t,ql',q, p);) ~I. 

(6.2) 

(6.3) 

(6.4) 

The initial velocity i/ in Eq. (6.4) is again expressed as a 
function of the boundary configuration data [cf. Eq. (5.5)]: 

i/=td,qa= -tg"b(abs + ifJb)' (6.5) 

We adjoin to it the quantity t and write 
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(6.6) 

In the expression (6.4), the variables q and q are arbi
trary, but t is considered as a given function of 7, t (7). To 
remove this asymmetry, we consider both t and q as indepen
dent variables ec = {t,q 1, but multiply the classical propa
gator (6.4) by a delta function 8 (Q 0 - t (7)). From now on, s 
and tPb in Eq. (6.6) are also considered as functions of ec , 
though t (7) is still a prescribed function of 7. 

We also extend the momenta variables by adding a vari
ablepo'PA = {Po,Pa J, and write the phase factorin Eq. (6.4) 
as the linear combination P A (r .J 7. To ensure that Po is 
-h, we mUltiply the classical propagator by the delta func

tion 8( H(O)) of the modified Hamiltonian constraint (2.8), 
-(0) - --H =Po+h(t,qlt,q,p). (6.7) 

These changes lead to the following classical propagator on 
extended phase space: 

C( 0 IQ,P) = (217")-n8(QO - t(7))8( H(O))eiPAQ< .17. (6.8) 

Integration of this propagator with respect to the newly in
troduced variables Q 0 and Po reduces it to the old propaga
tor, Eq. (6.1). 

The new propagator (6.8) can be written in a manifestly 
covariant form. We introduce fields t (Q) and uA (Q) by Eqs. 
(2.11) and (2.12) and a degenerate tensor-scalar gAB( 0 IQ) 
related to the coefficient (4.20) by a counterpart ofEq. (2.14). 
The super-Hamiltonian H (0) is thereby cast to the form (2.17) 
with gAB in place of gAB. 

In the same vein, Eq. (6.6) assumes the form 

(r =t(uA -gAB(aBs+tPB))' (6.9) 

The Hamilton-Jacobi equations which determine the Ham
ilton principal function 

S( 0 IQ) = s(r,qlt,q) (6.10) 

are obtained by substituting P A = - a A S and P-A = a AS 
into the Hamiltonian constraint at the initial and the final 
boundaries, 

- uA (aAS + tPA) + ~B(aAS + tPA )(aBS + tPB) = 0, 
(6.11) 

uA(ChiS - tfJA) + ~B(ChiS - tfJA)(anS - h) = O. 

The classical propagator (6.8) then takes on a manifestly co
variant appearance 

C (0 I Q,P) = (217") - n8(t (Q ) - t (7))8( H (O))eiPA Q< .17. 

(6.12) 

We can now mix the extended phase space variables ec ,PA 
by an arbitrary point transformation (2.20) and transform 
the classical propagator as a biscalar without changing its 
general form (6.12). 

In a final step, we scale H (0) into H by a positive scalar 
factor A (Q) as in Eqs. (2.18)-(2.19). In terms of the scaled 
quantities (2.18), S again satisfies the Hamilton-Jacobi equa
tions (6: 11), but the scaling factor enters into Eq. (6.9) by 
which ~ is interpreted in terms of the boundary configura
tions, 

(r = A -It [UA - GAB(aBS + tPB)]' (6.13) 

Because 8 ( H (0)) = 8(A - I H) = A 8( H), the scaling factor 

67 J. Math. Phys., Vol. 25, No.1, January 1984 

also explicitly appears in the modulus of the classical propa
gator (6.12), which becomes 

C (0 I Q,P) = (217") - n A (Q )8(t (Q ) - t (7))8( H )eiPA Q< .17. 

(6.14) 

The absolute time function t (Q ) is covariantly charac
terized by Eqs. (2.21) and (2.27). The scaling factor A in ex
pressions (6.13) and (6.14) can then be interpreted by Eq. 
(2.28) or, alternatively, as the Poisson bracket 

A(Q)= [t(Q),H] = [t(Q),H]. (6.15) 

This completes a covariant characterization of the classical 
propagator (6.14). 

The quantum propagator can be represented by a path 
integral in the extended phase space, 

(Q "IQ')8(/(Q') - t') d n+ IQ' = f DQDPeiS[Q,P] 

(6.16) 

The integrations are performed over all the extended mo
mentaP(KpK = O,I, ... ,N - 1, but only over the interpolated 
extended coordinates Q(l)' I = 1, ... ,N - 1. Due to Eq. (6.1), 
we obtain in this way our old quantum propagator 
(4.8),(4.13). 

The new form (6.16) of the path integral corresponds to 
the conditional form of the action, Table II, line 3. The skele
tonized measure 

N-I 

DQDP - II d n+ IQ d n+ Ip 
- (KI (KI 

K=O 

X (217") - nA (Q(K 1)0 (t (Q(K I) - 1 (7(K I)) 

X8(H(Q(K+IIIQ(KPP(KI)) (6.17) 

contains a product of delta functions 8 (H (Q(K + IIIQ(KP 

P(K I)) which enforce the Hamiltonian constraint at each in
stant 7(KI of the skeletonized time. However, these con
straints are not simply classical Hamiltonian constraints at 
7(KI' but modified constraints in which the metric GAB(Q(KI) 
is replaced by the tensor-scalar coefficient 
GAB (Q(K + III Q(K I)' This modification is necessary for the 
quantum propagator (6.16) to satisfy the Schrodinger equa
tion without an additional scalar curvature potential. If the 
measure contained the unmodified super-Hamiltonian 
H (Q(K I ,P(K I)' the SchrOdinger equation would acquire the 
potential -bR. 

Besides the delta functions of super-Hamiltonians, the 
measure also contains the delta functions 8 (t (Q(K ,) 
- t (7(K I))' These delta functions ensure that the instants of 

the label time 7 correspond to the leaves of absolute time t. 
The configurations which the system has to select at an in
stant 7 are thus all simultaneous in the absolute sense. The 
labeling of the leaves of absolute time, however, is provided 
by an arbitrary parameter 7. Finally, the factor A (Q) in the 
measure takes care of an arbitrary scaling of the Hamilton
ian constraint. 

In addition to the choice of measure, one must also spe
cify how to skeletonize the action functional 
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S [Q,P) = s~ dr PAir. Our skeletonization says that 
S [Q,P] is to be replaced by the sum 

N-I 
S[Q,P)::::::: L P(K)AQ(K)A Lir(Ki' (6.18) 

K=O 

in which Q(KJ A is the actual extended velocity at r(K) on the 
actual path from Q(K) to Q(K + I). This actual velocity can be 
derived from the Hamilton principal function 
S(Q(K+ 1) IQ(K)) by Eq. (6.13). 

It is easy to introduce the lapse multiplier and pass from 
the conditional form of the path integral to an unconditional 
one. We just interpret each 8 (li) as the Fourier integral 

8(li) = I dNLir(21T)-le-iNH,Jr. (6.19) 

In other words, we extend the classical propagator C (Q I Q,P) 
into the Q, P, N space by the prescription 

C(Q IQ,P,N) = (21T) -In + I) Lir A (Q )8(t (Q) - t (r)) 
Xei(P,Q-< -NH)M (6.20) 

and connect it with the old propagator by the equation 

C(QIQ,P)= I DNC(QIQ,P,N). (6.21) 

The quantum propagator (6.16) can then be represented by a 
path integral in the Q, P, N space, 

(Q" IQ ')8(t(Q') - t') d n + IQ' 

= JDQ DP DN eiS [Q,P.N [ 

_ lim INnl 

dn+IQ(K) dn+lp(K) dN(K) 
.drMAX----+O K=O 

(6.22) 

The integration takes place over all N(K)' K = 0, 1, ... ,N - l. 
This corresponds to the fact that the lapse function is a La
grange multiplier which, like the momenta PA , can be freely 
specified at the ends. 

The skeletonized measure has the form 
N-I 

DQDPDN::::::: II dn+IQ(K) dn+IP(K) dN(K) 
K=O 

XLir(K) A (Q(K))(21T)-(n+ I) 

X8(t(Q(K)) - t(r(K)))· (6.23) 

The product N(K) Lir(K) A (Q(K)) which enters into the mea
sure is unchanged when we use a different label time; in fact, 
N Li r A is to be interpreted as the interval Li t of the absolute 
time, Eq. (3.5). 

Finally, the action functional (3.2) is replaced by the 
sum 

N-I 
S[Q,P,N)::::::: L (P(K)AQ(K)A 

K=O 

- N(K)Ii(Q(K + 1)IQ(K),P(K))) Lir(K)· (6.24) 

Here, Q(K)A is again given by Eq. (6.13) and Ii is the modified 
super-Hamiltonian. 

We have thereby transformed the path integral in phys
ical phase space into two equivalent forms in the extended 
phase space, one with and one without the lapse multiplier. 
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7. PATH INTEGRALS IN EXTENDED CONFIGURATION 
SPACE 

The path integral in physical configuration space was 
obtained from the path integral in physical phase space by 
evaluating all integrals over the momenta. Similarly, by inte
grating the extended classical propagator (6.14) over the ex
tended momentum variables we cast the path integral into a 
form corresponding to the homogeneous Lagrangian on the 
extended configuration space. To do this, we introduce for 
convenience mechanical energy and momenta 

(7.1) 

as new variables. The extended classical propagator (6.14) 
assumes the form 

C(Q IQ,il) = (21T)-nA (Q)8(t(Q) - t(r))8(Ii)eillA Q-<,Jr 
xei<l>AQ-< ,Jr, (7.2) 

with 

Ii = UA ilA + ~ GABilAilB. (7.3) 

Let Q ~ be n linearly independent covectors perpendic
ular to UA

, 

UAQ~=O, a=I, .. "n. (7.4) 

The projected coefficient 

Gab = GABQ~Q~ (7.5) 

is nondegenerate. The covectors I TA ,Q ~ I form a basis in 
the cotangent space. We split ilA into a longitudinal and 
transversal parts according to 

(7.6) 

The Jacobian J = det a lilA J lal illl,lla J of the transforma
tion (7.6) from the variables I illl,lla I to the variables ilA is 
(see Appendix B) 

(7.7) 

where 8a •... an is the alternating symbol. As a consequence, 

C(Q IQ,P) d n+ IP=J(Q)C(Q IQ,llIl,lla)dilll dnn. 
(7.8) 

In the new variables, 

Ii = illl + ~GabiIailb (7.9) 

and the integration with respect to illl is easily performed. 
We get 

C(Q IQ,ila) = I dilll J(Q)C(Q IQ,llIl,lla) 

= (21T)-nJ(Q)A (Q)8(t(Q) - t(r)) 
xe i4>AQ-< ,Jr/(llaQa_(1I2I1TcQcIGabl1al1bl,Jr, (7.10) 

where we have introduced the abbreviation 

The terms in ila can be completed into a square, 

(ilaQa - (TcQC)~Gabilailb)LiT 

(7.11) 

= (- !(TcQC)GablIj1b + !(TcQC)-IGabQaQb)Lir, 
(7.12) 

where 
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na = IIa - (TcQC)-IGab(;t. (7.13) 

Moreover, 

GabQaQb = GABQA QB = GABQA QB. (7.14) 

One can replace the modified coefficient GAB by the metric 
GAB because, in special coordinates {t = I t,q a 1, 
(Racbd I1rit I1ril lit i/ = O. As a result, 

C(Q \Q,na) = (21T)-nJ(QJA (Q)8(t(Q) - t(r)) 
Xe -11I2)iIT&c)..:IT aabll)7beiLIQ,Q)..:I1·, (7.15) 

where L (Q,Q) is the homogeneous Lagrangian (3.19). The 
Gaussian integral over na gives 

(21T) - n J d nn e -(112)iIT &c)_' ..:IT aabllall. 

= (21TiTcQ c I1r) - n/2G 1/2 

with 

G=det Gab' 

The product 
JG 1/2 D -1/2 

(7.16) 

(7.17) 

(7.18) 

can be written directly in terms of the degenerate coefficient 
GAB (Appendix B): 

(7.19) 

This sequence of steps yields the classical propagator in ex
tended configuration space, 

C(Q\Q)= J dn+IPC(Q\Q,P) 

= J dnn C(Q \Q,na) 

= (21TiTcQ c I1r) - n/2 

XD -1/2(Q \QJA (Q)8(t(Q) - t(r))eiLIQ,Q)..:IT. 
(7.20) 

Note that by the interpretation (6.13) of QC we have 

TcQc=A -1(Q)t(r). (7.21) 

From Eq. (6.16), we obtain a representation of quantum 
propagator by a path integral in the extended configuration 
space, 

(Q" \Q ')8(t(Q') - t ') d n + IQ' = J DQ eiS[Q] 

(7.22) 

The integration takes place only over the interpolated ex
tended coordinates QII)' I = 1, ... ,N - 1. The homogeneous 
Lagrangian action S [Q] = S~: dr L (Q,Q) is skeletonized by 
the prescription 

N-I 

S [Q]:::: ~ (!(TdQIKdQ~d-1 
K~O 

XGAB (QIKdQ(1)Qi'i) + tPA (QIK))QtK) I1rIK ))· 
(7.23) 

The velocities QIK I are interpreted in terms of the configura
tion data at the ends of each step in Eq. (6.13). Note that the 
coefficient GAB in Eq. (7.23) is the ordinary degenerate met-
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ric unmodified by the curvature term. The modified metric 
coefficient enters only into the measure, but not into the 
phase of the path integral (7.22). The measure is skeletonized 
by the product 

N-I 

DQ:::: II d n + IQ (21TiTdQIK))Q~) I1rIK )) - n12 

K~O 

XD -1/2(QIK+ II\QIK)JA (QIK)) 

X8(t(QIKI) - t(TIK )))· (7.24) 

The modified metric coefficient appears in the determinant 
(7.19). 

In the special coordinates (2.3) all previous expressions 
considerably simplify. The Jacobian (7.7) reduces to 

J=A -I, (7.25) 

the determinant (7.19) goes over to 

D = A n + 2g -l, g=det gab' (7.26) 

and the classical propagator assumes the form 

C (r,q\t,q) = (21Tit (T) I1r) - n12 

XgI/2(r,q\t,q)8(t - t (r))eiL It,q,i,iI)..:IT. (7.27) 

Here, L (t,q,t,q) is the homogeneous Lagrangian (3.20). In the 
~xpression (7.24), t is an independent variable, while t (r) and 
t (T) are prescribed functions of T. The velocity qa is interpret
ed as a function of t,q, and t,q by Eq. (6.5). The measure (7.24) 
in path integral (7.22) reduces to 

N-I 

Dt Dq:::: II dtlKI d nq(KI [21Tit (T(KI) I1T(KI ] - nl2 
K~O 

Xgt/2(tIK+ II,q(K+ 1)\tIK ),q(K))8(t(KI - t(T(KI)),(7.28) 

while the Lagrangian action S [t,q] gets skeletonized by 
N-I 

S [t,q];::::; ~ [~i -1(r(KI)gab(t(KpqIKdq(K)qfK' 
K~O 

+ tPa(t(KI,q(KI)q(KI - ¢ (tIKI,q(K))t(T(K))] I1T(K)' 
(7.29) 

When we perform the integrations over til) , I = 1 , ... ,N - 1, 
and parametrize the paths by absolute time, t (T) = T, the 
path integral (7.22) reduces back to the path integral (5.12) in 
physical configuration space. 

8. PATH INTEGRALS IN EXTENDED CONFIGURATION 
SPACE WITH LAPSE 

The only form of the action remaining in Table I is the 
Lagrangian action on extended configuration space with the 
lapse multiplier, Eqs. (3.15)-(3.16). We now represent the 
quantum propagator by a path integral whose phase is this 
action. 

We start from the classical propagator (7.10) in which 
the integration over longitudinal part of the momentum IIII 
has been performed, but which still depends on the transver
sal momenta IIa. Instead of integrating over all transversal 
momenta IIa [which would lead us back to the classical pro
pagator (7.20)], we decompose IIa into a component parallel 
t.o the velocity Q a and n - 1 components perpendicular to 
Qa. We choose a l?asis Q~, a = 1, ... ,N - 1, in the subspace 
perpendicular to Q a, 

(8.1) 
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and write 

Ila =N-IQa +IlaQ~. (8.2) 

The Jacobian of this transformation is (Appendix B) 

alIla ] II-N-
2
Qa II det = det = - N - 2}, 

alN,Ila] Q~ 
(8.3) 

with 

The last equation is the counterpart ofEq. (7.7) in a space of 
lower dimension. 

Expressing the phase of the propagator (7.10) in terms 
of our new variables, we find 

[IlaQa_!(TcQc)GabIlaIlb +¢JA(t] LiT 

= - !(TcQc)GaPIlaIlp LiT 

+ [(N -I - !TcQ cN -2)Gab QaQb + ¢JA (t ] LiT 
. C - P . 

= -~(TcQ )Ga IlaIlp LiT+L(Q,Q,N)LiT. (8.5) 

The metric coefficient GaP is the projection 

GaP = GabQ~Q~ (8.6) 

andL (Q,Q,N) isthe Lagrangian (3. 15) with the lapse function 
N. The propagator (7.10) thereby assumes the form 

C(Q IQ,N,Ila) 
= - N- 2J(Q)C(Q IQ,Ila) 

= (21T) - n( - N -2-;t (Q)J (Q)A (Q )D(t (Q) - t (T)) 

(8.7) 

We now evaluate the Gaussian integral over the momenta 
Ila and find 

I dn-IIle-11I2)iITcQC)arGUf311allf3 

= (21Tt - 1)/2(iTcQ c LiT) -In - 1)/2 dee /2 Gap. 

Taking into account Eqs. (B24) and (7.14), 

JJ det l/2 Ga{3 = D -1/2(GAB(t QB)1I2. 

(8.8) 

(8.9) 

This sequence of operations leads us to the classical propaga
tor 

C(Q IQ,N) = dn-IIlC(Q IQ,N,Ila) 

( _ N -2)(21T)-1(21TiTcQ C LiT) -In - 1)12D -1I2(Q IQ) 

X (GAB(t QB) 1/2A (Q )D(t (Q) - t (T))eiLIQ,Q,N)ar. (8.10) 

All velocities (t in Eq. (8.10) are expressed in terms of 
boundary data, Eq. (6.13). 

We can now represent the quantum propagator by the 
path integral 

(Q" IQ ')D(t (Q /) - t /) d n + IQ / = f DQ DN eiS(Q,N] 

The integral in Eq. (8.11) is over all N IK ), K = O,l, ... ,N - 1, 
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but only over the interpolated Q (I)' 1= 1, ... ,N. This corre
sponds to the fact that the momentumlike multiplier N has 
free ends. 

The Lagrangian action S [Q,N] is skeletonized by the 
prescription 

N-I 
S [Q,N]:::::: L !(NIK)I - !TC!Q(K))Q1i)N IKn 

K=O 

XGAB(QIK))Q;k)Q~) + ¢JA (Q(K))Q;k)] LiT, 
(8.12) 

where QIK) are again interpreted in terms of the configura
tion data QIK I ,QIK + I) at the boundaries of each step by Eq. 
(6.13), 

The measure is skeletonized by the product 
N-I 

DQ DN:::::: II d n + IQIK) dNIK ) ( - N IK)2) 
K=O 

X(21T)-1 [21TiTc!Q(KdQ 1i) LiT(Kd -In - 1)/2 

XD -1/2(QIK + I) IQ(K))(GAB(Q(K))Q;k)Q~))1/2 
XA (QIK))D(t(QIK)) - t(TIK )))· (8.13) 

The modified metric coefficient enters into the measure 
(8.13) through the determinant (7.19). 

These expressions simplify considerably in the special 
coordinate system, but, before showing this, let us recover 
the path integral in the extended configuration space by per
forming the integrations over N IK ). To do this, we write the 
phase of the classical propagator (8.10) in the form 

L (Q,Q,N) LiT = L (Q,Q) LiT 

- ~(N -1(TcQ C)1I2 - (TcQ C)-1/2)2GAB(t Q B LiT, 

(8.14) 

whereL (Q,Q lis the homogeneous Lagrangian (3. 19). Were
place N by a new variable 

M = N -1(TcQ C)1/2 _ (TcQ C)-1/2 

and write 

C(Q IQ,N) dN = C(Q IQ,N)( - N2(TcQ C)-1/2) dM 

= dM e - (1I2)iGAse' QS ar M' 

X (21T)-I(TcQC)-1/2(GAB(t QB)1/2 

X (21TiTcQ C LiT) - (n - 1)12D -1/2A 

(8.15) 

XD{t(Q) - t(T))eiLIQ,Q)ar. (8.16) 

Integration over M yields the Gaussian integral 

I dM e -1112liGAse' Q" arM' = rW LiT)-1/2(GAB (t OS )-1/2, 

(8.17) 

and the classical propagator (8.16) reduces back to the classi
cal propagator (7.20), 

The classical propagator (8.10) again simplifies in spe
cial coordinates (2.3). Taking into account Eqs. (7.21), (7.26) 
and rescaling the lapse multiplier, 

N(o) = AN, (8.18) 

we get 
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C (i,qlt,q,N(O») dN(D) 

= - dN(O)N(D)-2(21T}-1(21Tit (r) Ar) -In - 1)/2 

xg l {2(i,ql t,qj[gab (q)q"qb ] 28(t _ t(r))eiLlt,q,<i,N'O)ILlr, 

(8.19) 
where L (t,q,q,N(D») is the action (3.17). 

The velocity qa is again interpreted by Eq. (6.5). The 
measure (8.13) in the path integral (8.11) reduces thereby to 

N-I 
DQ DN(O)-:::; II dt(K) dnq(KI dNiil 

K=O 

- N\k~'(21T)-1(21Tit (r(K») Ar(KI) -In - 11/2 

Xg1l2(t(K+ i),q(K+ II [t(KPq(KI) 

X (gab (qIKI)q(KlqtKd1l28(tIKI - t(r(KI))' (8.20) 

This completes our program, We have represented the 
quantum propagator by path integrals corresponding to all 
action functionals enumerated in Table II, 

9. PATH INTEGRALS: PARAMETRIZATION VERSUS 
GAUGE 

We have now learned how to write the quantum propa
gator for a parametrized system as a path integral in ex
tended phase space. Our prescription, Eqs. (6.16)-(6.17), re
cognizes the need to enforce the Hamiltonian constraint and 
to select a definite parametrization of the path, These two 
aims are achieved by the delta functions 8 (li (QIK + II [Q(K I ' 
P(KI)) and 8 (t (QIKI) - t (r(KI)) in the skeletonized measure. 

A similar need arises in gauge theories. One must en
force the constraints generating gauge transformations, and 
one should fix the gauge when writing the path integral in 
the space of redundant variables. It is of interest to compare 
the algorithm which we have obtained for a parametrized 
theory with the standard prescription for gauge theories. 

Let us first review the basic structure of gauge theories. 
To bring out the issues clearly, we consider again our old 
finite-dimensional nonrelativistic system. We can turn it 
into a gauge theory by adjoining an additional spurious 
gauge coordinate l/J to the physical coordinates qa. This 
brings us to the extended configuration space I qa,l/J J. As qa 
is kept fixed and l/J is varied, we move along a fiber over qa. 
We interpret all points in such a fiber as different descrip
tions of the same physical state. 

As the state of the system evolves in time, the choice of 
the gauge variable remains arbitrary. In other words, the 
velocity 

(9.1) 

can be freely prescribed at each step of the dynamical evolu
tion. Equation (9.1) can be obtained by varying the action 

U[l/J,1T;A.] = J:" dt(1Tdt l/J -..11T) (9.2) 

with respect to the gauge momentum 1T. By varying (9.2) with 
respect to A. and l/J, we learn that the momentum 1T is con
strained to vanish, 

1T= 0, (9.3) 
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and continues to vanish in the course of time. 
The evolution of the system in the extended phase space 

I qa,l/J,Pa ,1T J is then described by the action S which is the 
sum of the physical action (2.1) and the gauge action (9.2) 

S [qa,l/J,Pa ,1T;A. ] 

= L" dt (Padt~ + 1T dtl/J - h (t,q,p) - ..11T). (9.4) 

After an arbitrary point transformation in the extended 
phase space, 

{t = (t (qa,l/J), Pa = {t .aPA' 1T = (t ,,,,PA, (9.5) 

the action (9.5) assumes the form 

S[{t,PA;A.] = r" dt(PAdt{t -h(Q,P)-..17T(Q,P)). 

(9.6) 

The action (9.6) can be modified in two ways without 
changing the equations of motion. The constraint (9.3) can 
be scaled by an arbitrary factor A (Q ):;60, 

II = A (Q )1T(Q,P), (9.7) 

and it can be adjoined to the physical Hamiltonian h, 

h = h + [~(Q )PA + k (Q )]7T(Q,P). (9.8) 

We have chosen the coefficients A (Q) and ~ (Q )PA + k (Q) 
so that the new constraint II is still linear in the momenta P A 

and the new Hamiltonian h is still quadratic in the momenta 

PA' 
The constraints (9.3) or (9.7) generate the gauge trans

formation of the canonical variables {t ,PA . Such a transfor
mation does not change the physical state of the system. To 
single out a particular representative for each physical state, 
one can introduce a gauge fixing condition 

<P ({t ,PA ) = O. (9.9) 

Here, <P is any function which yields a unique value of the 
gauge coordinate l/J when Eqs. (9.3) and (9.5) are taken into 
account. 

We can write now the standard prescription for the 
quantum propagator as a path integral in the extended phase 
space I (t ,PA J of the gauge theory. The propagator has the 
form (4.13) with the classical propagator 

C(Q [Q,P) = (21T) - n8(<p )8(ll)[ [<P,ll] [eiS(t,Qlt.Q.PI, 
(9.10) 

corresponding to the skeletonized canonical action with the 
Hamiltonian (9.8). 

The prescription (9.10) is superficially similar in form to 
our result (6.14) for the classical propagator of a parame
trized theory. The gauge constraint II = 0 plays the role of 
the super-Hamiltonian constraint H = 0 and the gauge fix
ing condition (9.9) replaces the condition 

t (Q) - t (r) = 0, (9.11) 

which selects the parametrization of path. [Due to Eq. (6.15), 
the factor A in the measure (6.17) has the meaning of the 
Poisson bracket between the expression (9.11) and the super
Hamiltonian H]. However, there are two important differ
ences: 
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(I) The gauge fixing condition does not need to contain 
any reference to time. On the other hand, the condition (9.11) 
selecting the parametrization must introduce a prescribed 
function t (1') of 1'. 

(II) In gauge theories, any function (9.9) ofthe extended 
coordinates and momenta is permissible. On the other hand, 
in a parametrized theory t (Q) is a definite function on the 
extended configuration space. For our Newtonian system, 
the time function t (Q ) is obtained by the reconstruction pro
cedure discussed in Sec. 2. 

To see that the distinction (I) is vital, let us blindly apply 
a condition (9.9) appropriate for a gauge theory to our para
metrized theory. In the simplest case, this is achieved by 
puttingt (7) = Oand identifying t (Q ) with <P (Q,P). Of course, 
our derivation ofEqs. (6.16)-(6.17) for the quantum propa
gator is no longer valid because t (7) = 0 implies t I = 0 = t /I • 

When we insist that the expression (6.16)-(6.17) represents 
the quantum propagator from t I to t /I > t I even for t (7) = 0, 
we predictably end with an absurd result. On the other hand, 
when we put t (7) = 0 and simultaneously restrict ourselves 
to t '= 0 = t 1/, the expression (6.16)-(6.17) for the quantum 
propagator equally predictably yields a correct triviality: It 
reduces to the delta function because the dynamics is frozen 
at a single instant of time. 

The distinction (I) reflects the fundamental physical dif
ference between gauge theories and parametrized theories. 
The constraints which follow from gauge invariance gener
ate gauge changes of the extended phase space variables. 
These are unobservable; the physical state of the system is 
unchanged. The constraints which follow from reparametri
zation invariance generate the dynamics of the system. They 
are observable and the physical state does change. It makes 
sense to fix a gauge to get one representative to a physical 
state. It makes no sense to fix the time. 

The distinction (II) is more subtle. It means that the 
slices of a constant label time 7 coincide with the leaves of the 
absolute time foliation. Such a restriction follows naturally 
from our derivation of Eqs. (6.16)-( 6.17) for the quantum 
propagator. There is no simple modification of this deriva
tion which would introduce a different foliation, e.g., 

<P(Q,T) = o. (9.12) 

In fact, the Schrodinger equation ceases to be a first-order 
equation in the foliation label when we allow the general 
foliation (9.12) and the Hilbert space interpretation loses 
thereby its meaning. We thus consider it highly unlikely that 
the general foliation (9.12) would yield the correct quantum 
propagator when used instead of the absolute time foliation 
(9.11) in the expressions (6.16)-(6.17) for the path integral. 
We emphasize yet again that the choice of the time variable is 
a central decision in forming quantum theories and that, 
once made, it cannot be easily altered without altering the 
theory. 

10. SUMMARY 

The representation of the quantum propagator by a 
path integral of the exponentiated canonical action on the 
physical phase space is a natural starting point for quantum 
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mechanics. The measure in the space of paths is induced by 
the invariant Liouville measure in phase space. The geome
trically privileged transport of momentum by actual classi
cal paths of the system leads to the skeletonization of the 
canonical action by the chain of phase-space principal func
tions. This privileged skeletonization removes the ambiguity 
connected with the factor ordering. 

Unfortunately, not all classical theories are easily for
mulated in terms of the true physical degrees of freedom. 
Both gauge theories and parametrized theories use redun
dant variables. The dynamical evolution of the system takes 
place in extended spaces of variables. General relativity is 
the most prominent example of a system in which the simul
taneous presence of gauge and parametrization makes it ex
tremely difficult to return back to the physical phase space. 
It is thus essential to represent the quantum propagator by 
integrals over paths in such extended spaces of variables. 

We have accomplished this program for parametrized 
Newtonian systems moving in curved configuration spaces. 
Our point of departure was the path integral in the physical 
phase space of the system. We arrived at equivalent path 
integrals in alternative spaces by extending or restricting the 
variables. 

The extension of variables was always done so that inte
gration over the new variables yielded the integral we have 
started from. Typical devices for ensuring this property are 
delta functions introduced into the measure or representa
tions of known functions by integrals over a parameter. The 
restriction of variables was always carried out by integrating 
over them. Typically, the integrals involved were Gaussian 
integrals in the momenta which can be explicitly evaluated. 
Such integrals lead to nontrivial measures in spaces of re
maining variables. 

We summarize our results in Table III, which is a con
tinuation of our Table II for the alternative forms of the 
action. In the first column, we write down a symbolic expres
sion for the path integrals. The symbolic expression is inter
preted by skeletonizing the measure and skeletonizing the 
action. In the second column, we enter the measure associat
ed with a segment of skeletonized path between the gate 
dX = dXIKI at X = X IKI and the gate dX = dXIK + II at 
X = X IK + II in the space ! X 1 of appropriate variables. The 
total measure is the product of such elementary measures at 
all gates, K = 0, I , ... ,N - 1. In the following column, we give 
the number of the equation which introduces this measure in 
the main text. Some of the measures are quite complicated 
and do not follow a clearly recognizable pattern. On the oth
er hand, the classical action is always skeletonized in the 
same manner: For each step of the skeletonized path, we 
write the initial value LIK I of the appropriate Lagrangian 
and multiply it by the intervaL::1 TIK I = 71K+ II - 71KI of time. 
The initial values of velocities which enter into the Lagran
gian must be expressed in terms of the configuration data at 
the boundaries of each step. This is achieved by using the 
appropriate Hamilton principal function obeying the stan
dard Hamilton-Jacobi equations. Moreover, in the phase 
space versions ofthe theory, the initial metric entering into 
the Lagrangian must be replaced by a tensor-scalar coeffi
cient which takes into account the geodesic deviation trans-
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TABLE III. Alternative forms for path integrals. 

Quantum propagator represented 
Type of action by the path integral 

Physical canonical (t",q"lt',q') d"q' 
action = $ Dq Dp eis(q·p] 

Physical Lagrangian (t·,q·~',q') d"q' 
action = $ Dqeis(q] 

Extended canonical (Q"IQ')8(t(Q') - t') d"+ I Q' 
action, =$ DQDPeiS[Q.P] 
conditional 

Extended Lagrangian (Q"IQ')8(t(Q') - t') d"+ 1 Q' dN' 
action, with = $ lJQ DP DN eiS[Q. N] 

lapse multiplier 

Extended Lagrangian (Q"IQ')8(t(Q') - t') d"+ 1 Q' 
action, = $ DQ eiS[Q] 

homogeneous 

Extended Lagrangian (Q "IQ')8(t(Q') - t') d"+ I Q' dN' 
action, with = $ DQ DN eiS[Q. N] 

lapse multiplier 

port of momenta. The classical action is skeletonized by the 
sum ~~:6 L(K) ..::ir(K) of such contributions. Because the 
procedure follows a well-defined algorithm, there is no need 
to enter the skeletonized action into our table. We refer 
merely to the equation where it is discussed in the paper. 

While the measures are often complicated, they have 
one feature in common-the occurrence of {j (t (Q) - t (1')) 
which fixes the integrations to the leaves of absolute time 
that flows from the initial instant t ' to the final instant t " . The 
specific form of this delta function is characteristic of para
metrized theories and reflects the privileged role time plays 
in quantum mechanics. 
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APPENDIX A: INTEGRABILITY CONDITIONS ON THE 
DEGENERATE METRIC GAB 

A degenerate metric GAB with signature (0; + '''., + ) 
has a unique degeneracy direction, i.e., the solutions TA to 
the equation 

GABTB = 0 (AI) 

fill a ray. The ray determines a foliation if and only if it is 
surface forming, 
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Skeleton-
ized Skeletonized 

Elementary measure measure: action: 
of a segment of path Eq. number Eq. number 

d" q d" p(21T) - " (4.12) (4.11) 

d" q (21Ti LIt) - "/2 gl 12(t, W, q) (5.14) (5.13) 

d"+ I Qd" + I P(21T) -" A (Q) (6.17) (6.18) 
8(t(Q) - t(r))8(H(Q IQ, P)) 

dn+ I Qd"+ I PdN LIt A (Q) (6.23) (6.24) 
(217') -("+ I) 8(t(Q) - t (r)) 

d"+ I Q [21TiTC!Q)Qc Llrj- "/2 (7.24) (7.23) 
D -1/2(Q IQ) A (Q)8(t(Q) - t(r)) 

dt d" q[21Tii (r)..::lrj- "/2 g(t, iii t, q)8(t - t (r)) (7.28) (7.29) 

D" + I Q dN( _ N -2)(217')- I (8.13) (8.12) 
(21TiTc!Q )Qc Llr) -In - 1)/2 

D - 112(Q IQ)(G'<B(Q)e' QR)112 

A (Q)8(t(Q) - t(r)) 

dtd"qdN( _N(O)-2)(21T)-1 (8.20) 
(21Tii (r)..::lr) -In - 1)/2 gll2(t, lilt, q) 
(gab(q)i/"i!" )1/28(t - t (r)) 

MABC-TA T 1B.C 1+ TBT1c.A I + TcTIA.B 1= O. (A2) 

To be so, the metric GAB cannot be arbitrary, but it must 
satisfy certain integrability conditions which we are now go
ing to derive. 

Note that the equation 

TAXA =0 (A3) 

has n linearly independent solutions Q ~, a = 1 ,,,.,n and that 
the metric GAB is non degenerate on the vector subspace 
spanned by Q ~: 

(A4) 

Let UA be an arbitrary vector linearly independent of Q ~, 
i.e., 

(A5) 

The vectors! UA ,Q ~ J form a basis. Because Gab is nonde
generate, any equation MA = 0 can be replaced by an equi
valent set of equations 

GABMB = 0, UBMB = O. (A6) 

Handling each index of the completely antisymmetric tensor 
M ABC in this way, we can replace Eq. (A2) by an equivalent 
system of equations: 

G KAG LBG MCMABC = 0, 

GKAGLBUcMABC = O. 

(A7) 

(A8) 

Due to Eq. (A 1), the condition (A 7) is identically satisfied. 
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Further, because of Eqs. (AI) and (A5), the condition (AS) 
reduces to 

G KAG LBT[A.B 1 = O. (A9) 

Using Eq. (AI) again, we cast Eq. (A9) into the form 

G A [K.L lTA = 0, 

where 

G AK.L =G AK.B G BL. 

From Eqs. (A3) and (A5) we see that 

3 H KLa: G A [K.Ll = HKLaQ~. 

An alternative way of writing Eq. (AI2) is 

(AlO) 

(All) 

(AI2) 

{j G A [B.C1GA,B'· .. GAnBn = O. (AI3) 
AA., .. A" 

Here {j AA , ... An is a completely antisymmetric tensor density of 
weight - 1 with {jOI2 ... n = 1. Note that in a Newtonian 
space-time we cannot introduce the more usual Levi-Civita 
pseudotensor EAA, ... An because the metric GAB is degenerate. 

Equation (AI3) is equivalent to the condition (AI2) 
which is a necessary and sufficient condition for the degener
acy covector TA determined by Eq. (AI) to be surface-form-
ing. 

APPENDIX B: DETERMINANTS WITH DEGENERATE 
METRICS 

The metric GAB is degenerate, and its determinant thus 
vanishes. However, we can project GAB into the subspace 
orthogonal to the degeneracy direction TA and take the de
terminant of the projected metric. 

For a given GAB and UA, Eqs. (2.21) and (2.24) have a 
unique solution TA . Furthermore, the equation 

UAXA =0 (BI) 

has n linearly independent solutions Q ~, a = l, ... ,n: 

UAQ~ = O. (B2) 

The covectors I TA ,Q ~ I form a cobasis. Of course, Q ~ can 
be changed by a transformation 

Q~' =A nQ)Q~. (B3) 

We introduce the alternating symbol {jan ... an which trans
forms as a tensor density of weight - I under theA transfor
mations (B3). Besides it, we have at our disposal the alternat
ing symbol ~A, ... An, which transforms as a tensor density of 
weight 1 under transformations of extended coordinates. 

The projection 

Gab=GABQ~Q~ (B4) 

of the degenerate metric GAB is nondegenerate, and we can 
write its determinant as 

(B5) 

In terms of the original metric, 

G -I = (l/n!){ja, ... anQ~', ... Q:: 

G A B GAnBn{j Qb, Qbn X I I... b., .. b
n 

B. ••• Bn' (B6) 

Study now the expression 

D=(I/nll)\ UAUBGA,B, .. ·GAnBn{j . 
°JVAA.···An BBI,··B" 

(B7) 
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The tensor density UA {j AA, ... A n has two properties: (I) It is 
completely antisymmetric in A 1' ••• .,4n' and (2) it is orthogo
nal to UA 

• As a consequence, we must have 

(B8) 

To determine the proportionality factor J -I, we multiply 
Eq. (BS) by {jBA,··-An. Because 

(B9) 

we get 

n!UB = J -I{j Qa, ... Qa. {jBA, ... An. 
al,··o" A I An (BlO) 

Multiplication by TB yields 

J= (l/n!){j T Qa, '''Qan{jAA, ... An. (BII) 
Ql"'O" A AI An 

By introducing Eqs. (BS) and (BII) into the expression (B7), 
we learn that 

(BI2) 

Any covector ilA can be split into a part along TA and a 
part perpendicular to UA 

, 

(B13) 

Equation (B 13) can be considered as a transformation from 
the variables illl ,ila to the variables ilA . The Jacobi matrix 
of this transformation is 

alilA I II TA II 
alilll,lla I = Q~ . 

(B14) 

We see thatJis nothing else but thelacobian of the transfor
mation (B 13). 

We can replace the metric GAB by the tensor-scalar 
coefficient GAB and introduce appropriate quantities (B4), 
(B5), and (B7). We place bars over symbols denoting these 
quantities: G ab,G,D. The modified quantities are again con
nected by the equation 

G -I = J 2D. (BI5) 

Mutatis mutandis, the same line of reasoning applies to 
nondegenerate metrics. Take a regular metric Gab, 
a = l, ... ,n, and a vector it'. Let Q:, a = l, ... ,n - 1, be a 
basis in cotangent space orthogonal to it' : 

QaQ: = O. (BI6) 

Project the metric Gab, 

Gall GabQ:Q~. (BI7) 

The projected metric Gall is again regular, and we can intro
duce its inverse Gap. Greek indices are raised by GaP and 
lowered by Gap. Similarly, Latin indices are raised by Gab 
and lowered by Gab' With this convention, 

Gab = GaIlQ:Q~ + Q -2QaQb' (BI8) 

with 

Q2 gabQaQb. 
We take the determinant ofEq. (BI8). Because 

Gap Q : Q ~ and Qa Qb are degenerate matrices, 
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G = (l/n!)8aa , ... a. - 'G G ... G 8bb, ... b. - I 
ab a.b. a" _ Ibn _ I 

= [l/(n _I)!]Q-28aa, ... a.-18bb, ... b.-1 

XQ' 8aa , ... a._ IQa, •.• Qa._ 1 
a Q. an_I 

As in Eqs. (BS) and (B 11), 

(B2I) 

with 

1= [l/(n _I)!]8aa , ... a.- IQ· Qa, ... Qa.- 18 . (B22) 
a o. On_I Q'.,··an_1 

As a result, 

(B23) 
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We multiply Eq. (BI2) by Eq. (B23) and conclude that 

lJ dee /2 Gap = (GAB(;t (;;t )1/2D -1/2. (B24) 

'The literature on the implementation of quantum dynamics by path inte
grals for nonrelativistic and relativistic systems in curved and flat configu
ration spaces is extensive and too large to be cited here. A useful general 
survey with extensive references to the original literature is L. S. Shulman, 
Techniques and Applications of Path Integration (Wiley, New York, 1982). 

2K. Kuchar, J. Math. Phys. 24, 2122 (1983). 

3L. Faddeev, Toor. Mat. Fiz. 1,3 (1969); L. Faddeev and V. Popov, Phys. 
Lett. B 25,30 (1967); L. Faddeev and V. Popov, Usp. Fiz. Nauk Ill, 427 
(1973)[Sov. Phys. Usp.16, 777 (1974)]; E. S. Fradkin, and G. A. Vilkovisky 
"Quantization of Relativistic Systems with Constraints, Equivalence of 
Canonical and Covariant Formalisms in the Quantum Theory of the Gra
vitational Field," CERN Report TH-2332, 1977; L. Faddeev and A. Slav
nov, Gauge Fields: Introduction to Quantum Theory (Benjamin, Reading, 
MA,1980). 

4K. Kuchar, Phys. Rev. D 22, 1285 (1980). 
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Quantum energy-entropy inequalities: A new method for proving the absence 
of symmetry breaking 
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(Received 25 January 1983; accepted for publication 10 June 1983) 

For quantum systems we develop a new method, based on a general energy-entropy inequality, to 
rule out spontaneous breaking of symmetries. The main advantage of our scheme consists in its 
clear-cut physical significance and its new areas of applicability; in particular we can handle 
discrete symmetry groups as well as continuous ones. Finally a few illustrations are discussed. 

PACS numbers: 03.65. - w, 05.50. + q, 02.20. + b 

I. INTRODUCTION 

In the case of classical lattice systems we derived recent
ly I correlation inequalities expressing the balance between 
energy and entropy for an equilibrium state. These inequal
ities were shown to reproduce easily the sharpest results con
cerning spontaneous magnetization in long range Ising mod
els2 and they gave a more direct and intuitive understanding 
of the underlying physics. Maybe even more important is the 
applicability to continuous as well as to discrete symmetry 
groups. In particular we proved translation invariance for 
one-dimensional systems under very weak conditions on the 
potential. I 

Here we are concerned with the quantum-mechanical 
situation. The well-known method to prove absence of sym
metry breaking is based on the Bogoliubov inequality. The 
first results along this line are the celebrated theorems of 
Mermin-Wagner3 and Hohenberg. 4 Recently there was a 
revival of interest in the field. The best results along this line 
can be found in Ref. 5. It is important to remark that this 
method is restricted to continuous symmetry groups as the 
occurrence of an infinitesimal generator is essential for the 
method. On the contrary our method allows also for discrete 
symmetries. To stress this fact we will concentrate on the 
applications to discrete symmetries. 

Our main tool is the correlation inequality [see formula 
(2) below] which has a clear physical significance as being an 
expression for the change of free energy under a dissipative 
perturbation of the equilibrium state. l

.
n 

One should mention here also the results based on rela
tive entropy considerations. 7 This technique as well allows 
for the treatment of discrete symmetries; however, our meth
od based on the inequality seems to us more direct and intu
itive. 

II. ABSENCE OF SYMMETRY BREAKING 

Let (sf',a t ) be a C *-dynamical system, i.e., sf' a C *
algebra and at (tER) is a strongly continuous one-parameter 
group of*-automorphisms of .w. A state OJ of.if satisfies the 
KMS condition for the evolution at at inverse temperature 
/3, if OJ(x ai{j(Y)) = OJ(Yx) for all X,Y in a norm dense, at-in
variant *-subalgebra of sf'. LetS) be the GNS representation 
space of the state OJ and flE~) the cyclic vector; we denote by 

., Bevoegdverklaard navorser NFWO, Belgium. 
bl Aangesteld navorser NFWO, Belgium. 

, II the von Neumann algebra sf''' and by H the infinitesimal 
generator of the time evolution on,S). As OJ is time invariant 
we have flEg (H) (domain of H) and Hfl = O. 

If 

H = JX x A dE (A ) 

is the spectral decomposition of the Hamiltonian H, define 
for all xEJ( the measures on R 

df-lx (A ) = (xfl,dE (A )xfl ), 

dVx(A) = (xfl,dE( -A )x*fl). 

As OJ is a KMS state the measuresf-lx and Vx are equiva
lent with Radon-Nikodym derivative 

df-lx (A ) = e{3,l 

dVx(A) 

(see, e.g., Ref. 8, Proposition 5.3.14), 

(1 ) 

We start with an easy derivation of an inequality for 
KMS states which was stated implicitly for the first time in 
Ref. 9. 

For all XEd such that xflE!iJ (H), 

/3 (xfl,Hxfl) S /3A df-lx (A) 

(xfl,xfl) S df-lx (A) 

_ In exp _ S /3A df-lx (A) 

S df-lx (A ) 

Se-{3,l d (A) 
;;, -In f-lx 

S df-lx (A) 

= _ In S dv x (A ) 
S df-lx (A ) 

= In (xfl,xil ) 

(x*fl,x*fl) 

by the Jenssen inequality. Hence 

/3OJ(x*Hxfl );;'OJ(x*x)ln(OJ(x*x)/OJ(xx*)). (2) 

Lemma Il.l: Let I be a finite interval of R, If for 
O#xEJ(n!iJ ([H,.])supp f-lx CI then if OJ satisfies the KMS 
condition, 

OJ(x*x) 
O</3OJ(x*Hx) - OJ(x*x)ln --</3OJ(x*x)..1, 

OJ(xx*) 

where..1 is the length of the interval I. 
Proof Let I = [A I ,A 2], A;ER; using (1) and (2) we com-

pute 
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0<J3w(x*Hx) - w(x*x)ln w(x*x) 
w(xx*) 

= /3 fA d/-l x (A) - f d/-l x (A )In f d/-l x (A) 
f e- f3Ad/-l x (A) 

</3A2 f d/-l x (A) - f d/-lx (A )In _I_ 
e -f3AI 

= /3 (A2 - Ad f d/-lx (A ). • 
Now we proceed to our main objective, namely, the de

velopment of a theory for the absence of spontaneous sym
metry breaking. We suppose that we have a symmetry repre
sented by a *-automorphism r of sff satisfying the following 
conditions: 

(a) r is approximately inner, i.e., there exists a sequence 
(un )n>1 of unit aries in sff such that for all xEsff, 

lim Ilr(x) - u~xun II = o. 
n~oo 

This condition implies 

lim w(u:xun) = w(r(x)) (3) 
n~oo 

for all states w of sff. This notion of approximately inner 
automorphism has been introduced in Ref. 10. As far as the 
physics is concerned it means that the automorphism can be 
approximated by local unitary transformations. 

(b) As r represents a symmetry ofthe system we have 
[a"r] = 0 for all tER. Furthermore, we suppose that the lo
cal approximations almost commute with at in the sense 
that for all m: umEg)([H,.]) and 

K = sup II [H,u!] II < 00. (4) 
m 

This is essentially the condition used in Ref. 7. 
Theorem 112: Let w be a KMS state with respect to the 

evolution at at inverse temperature/3; let r be a symmetry as 
above. Then there exists a constant C such that for all xEsff, 
w(xx*)<Cw(r(xx*)) holds. 

Proof ForfEC ;'(R) (the space of infinitely differentia
ble functions with compact support) and for any XEsff we 
denote 

x(f) = f dt/(t )at(x), 

wheref(A) = f dt/(t )eitA . 

For E> 0 one finds a decomposition of the identity by a 
sequence (h n )n> I of positive functions in C;' such that 
pointwise 2n> I h ~ = 1 and such that the support of each hn 
is contained in an interval of length E. 

By a straightforward computation one gets 

w(xx*) = f dvx ( -A) = ~ f hn(A fdvx ( -A) 

= L w(x(hn )x(hn )*). (5) 

Substitute in the correlation inequality (2) the observable x 
by u!x(hn) for each n such thatx(hn)#O; adding and sub
tracting a term and using time in variance 
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w(x(h )*x(h ))In w(x(hn )x(hn )*) 
n n w(u!x(hn )x(hn )*u",) 

- /3w(x(hn )*um [H,u! ]x(hn)) 

<f3w(x(h
n
)*Hx(hn)) - w(x(h

n 
)*x(h

n 
))In w(x(hn )*x(hn)) 

w(x(hn )x(hn )*) 

</3Ew(x(h n )*x(hn )), 

where the last inequality is obtained from Lemma 11.1 as the 
support of hn is contained in an interval oflength less than E. 

Hence by (4), 

w(x(hn )x(hn )*)<eIK + E)f3w(u!x(h n )x(hn )*um), 

and by (3) 

w(x(hn )x(h n )*)<eIK + E)f3w(r(x(h n )x(hn )*)). 

As [r,a t ] = 0 one has r(x(f)) = (rxHf); hence after summa
tion over n, using (5) one gets 

w(xx*)<e f3IK + E)w(r(xx*)). • 

At this point it might be interesting to remark that this 
result of absolute continuity of states is obtained through the 
use of the correlation inequality. It is worthwhile to mention 
the work of Araki II and of Sakai. 12 They are interested in the 
problem of unicity of KMS states. Sakai is also working 
towards a result expressing absolute continuity of states but 
by explicit calculations using the Gibbs form of the state. 
Araki's technique is based on the notion of relative entropy 
and leads to quasiequivalence of states. 

Finally one gets as an easy consequence the invariance 
of the equilibrium states under the symmetry group. 

Corollary 113: Under the conditions of Theorem 11.2 

Proof It is sufficient to prove the corollary for extremal 
KMS states. Suppose that w is such an external state. Then, 
as [r,a t ] = 0, wOr is also an extremal KMS state. By 
Theorem 11.2 and a well-known property (Ref. 8, Theorem 
5.3.29) there exists TEsff"nsff' such that 

w(r(x)) = (flw I Txflw ). 

As w is extremal T = 1 and therefore w = wOr. • 

III. ILLUSTRATION 

We prove the absence of breaking of translation sym
metry in one-dimensional lattice systems for long-range in
teractions. This result was announced in Ref. 13. The alge
bra of observables is the usual tensor product algebra 

generated by the local algebras sff A = ® 86' (S»), where S) is 
kEA 

a finite-dimensional Hilbert space. 
Consider the local Hamiltonian 

N 

HN = 2: L J rs (Ii - jl)d;" oj + L hr L d;", 
- N,i < j<N rs r i = - N 

where {d;" I r = 1, .. . ,d} are the spin matrices for the lattice 
site i; the interaction energies Jrs (k ) satisfy 

oc 

L IJrs(k)1 < 00. 
k~1 

(6) 
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This condition guarantees a good thermodynamic behavior 
of the system. 

Now we want to apply Theorem 11.2. The symmetry '1' is 
the translation over one lattice site, i.e., '1'( if;) = if; + I . Note 
that '1' is approximately inner since it can be approximated by 
'1' m standing for the cyclic translation of the lattice interval 
[- m, + m] such that 

'1'm (if;) = if;+ I if - m<i<m, 

Tm(a'm) =a'_m, 

Tm(oj) =oj ifUI>m. 
It is easy to check that there exist unitary operators um such 
that T m (x) = u! xUm for all elements of .xl. Clearly for all 
XEUA.xI A one has 1"(x) = '1' m (x) when m is large enough. 
Therefore formula (3) holds. Furthermore, because of condi
tion (6) the time evolution automorphisms at are well de
fined as8 

() 1· -itHN -irHN at x = 1m e xe 
N 

on the C· -algebra generated by U A .xl A and clearly 
[ap '1'] = O. Suppose now that for all r,s = 1, .. . ,d, 

"" L k IJ,..(k) -Jrs(k - 1)1 < 00; 
k~1 

then 

supH (H,u! ] II = supHum [H,u! 111 
m m 

<? {2 ktl k IJrs(k) -J,s(k - 1)1 

+ 12 ktIIJ,s(k)l} < 00. 

(7) 

Hence (4) is satisfied and by Theorem 11.2 each KMS state w 
satisfies 
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w(XX*)';;;; CW(1"(xx*)). 

By Corollary 11.3 w = W 0 '1' and we proved that any equilibri
um state of the system is translation invariant if the interac
tion energies satisfy condition (7). It is instructive to realize 
that in the ferromagnetic or antiferromagnetic case [i.e., the 
Jrs (k) have the same sign] condition (7) follows from condi
tion (6) if the function k_Jrs(k) is monotonic for large k. 

Finally we remark that, although we considered here 
only a one-dimensional system, our method extends to high
er-dimensional ones, e.g., it provides a short proof of the 
absence of breaking of internal symmetries in two-dimen
sional quantum lattice systems. 7 Furthermore, the proof of 
Theorem 11.2 relies on an estimate for w(x*u m [H,u! Jx) 
given by condition (4). Depending on the particular model 
under consideration more refined estimates might be ob
tained weakening condition (4) on the interaction and hence 
extending the range of applicability of the theorem. 
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The purpose of this paper is to provide a basis of theory of measurements of continuous 
observables. We generalize von Neumann's description of measuring processes of discrete 
quantum observables in terms of interaction between the measured system and the apparatus to 
continuous observables, and show how every such measuring process determines the state change 
caused by the measurement. We establish a one-to-one correspondence between completely 
positive instruments in the sense of Davies and Lewis and the state changes determined by the 
measuring processes. We also prove that there are no weakly repeatable completely positive 
instruments of nondiscrete observables in the standard formulation of quantum mechanics, so 
that there are no measuring processes of nondiscrete observables whose state changes satisfy the 
repeatability hypothesis. A proof of the Wigner-Araki-Yanase theorem on the nonexistence of 
repeatable measurements of observables not commuting conserved quantities is given in our 
framework. We also discuss the implication of these results for the recent results due to Srinivas 
and due to Mercer on measurements of continuous observables. 

PACS numbers: 03.65.Bz, 02.50. + s 

1. INTRODUCTION 

In the last decade, some attempts were developed to 
construct a satisfactory theory of the quantum mechanical 
measurement of an observable with continuous spectrum. 1-9 

However, we have found no satisfactory solution of the fun
damental problem to determine the state changes caused by 
measurements of continuous observables. In spite of these 
difficulties in continuous spectrum, the theory for discrete 
spectrum has a conventionally accepted solution since the 
pioneering work of von Neumann. 10 

LetA = .I; A; P; be an observable with simple discrete 
spectrum AI' A2,··. Then von Neumann iO showed the fol
lowing: 

(1) By the repeatability hypothesis, the state change 
p_p' caused by the measurement of A is determined as 
p' = .I;P; pP;. 

(2) The above state changep-p' is compatible with the 
Hamiltonian formalism in the description of the measuring 
process in terms of the time evolution of the composite sys
tem of the observed system and the measuring apparatus. 

In the present paper, we shall show the following: 
(1) The description of measuring processes has a satis

factory generalization to continuous observables. 
(2) Every measuring process determines a state change 

caused by the measurement. 
(3) There are no measuring processes of a nondiscrete 

observable whose state changes satisfy the repeatability hy
pothesis. 

In order to clarify the present situation, we shall review 
some developments on the problem so far. In the early stage, 
Umegaki and Nakamura ll showed that the state change 
p---+p' = .IjPj pPj is just an example ofUmegaki's noncom
mutative conditional expectations12 onto the von Neumann 
algebra generated by A, and they conjectured that the state 
change caused by the measurement of a continuous observa-

ble would also be such a noncommutative conditional expec
tation. However, it is shown by Areveson 13 that such condi
tional expectations do not exist for continuous observables. 

In view of these results, Davies and Lewis I established the 
mathematical concept of instruments which enables us to 
treat statistical correlations of outcomes of successive mea
surements, and formulate the repeatability hypothesis for 
continuous observables. They conjectured the nonexistence 
of repeatable instruments for continuous observables and 
proposed the more flexible approach to measurements of 
continuous observables abandoning repeatability hypothe
sis. Recently, Srinivas8 generalized the concept of instru
ments and showed the existence of such generalized instru
ments for continuous observables which satisfy the 
repeatability hypothesis. He proposed a generalized collapse 
postulate which determines such repeatable generalized in
struments to describe the state changes caused by measure
ments of continuous observables. More recently, Mercer9 

considered a wider class of state transformations than condi
tional expectations and proposed the state change should be 
described by such a transformation with the locality intro
duced by him. It is a remarkable fact that these attempts are 
concerned only with the first half of von Neumann's work 
cited above. An operator theoretical analysis on von Neu
mann's second result was done by Kraus. 14 He established 
the complete positivity of state changes caused by the gen
eral measuring processes, but his result is concerned only 
with the yes-no measurements. 

In this paper, we shall show that the state changes de
termined by measuring processes naturally correspond to 
completely positive instruments and vice versa. We prove 
Davies and Lewis's conjecture for completely positive in
struments, i.e., completely positive instruments cannot be 
weakly repeatable unless the corresponding observable is 
discrete. These results show that Srinivas's generalized col-
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lapse postulate cannot be compatible for continuous obser
vables with the Hamiltonian description of measuring pro
cesses. We shall also show that if they can be realized by 
some measuring processes, Mercer's local transition maps 
correspond to repeatable measurements, and hence they 
cannot exist for continuous observables. 

The nonexistence of repeatable measuring processes of 
continuous observables suggests that we should investigate 
the approximately repeatable measuring processes as models 
of measurements in quantum mechanics. Moreover, this di
rection of investigation is appropriate not only for contin
uous observables. Indeed, even in measurements of discrete 
observables, it is known that the repeatable measurement is 
impossible unless observed quantity commutes with con
served quantity under some conservation law (see Refs. 15 
and 16, also Sec. 8). The author believes that, in future inves
tigations on really existing approximately repeatable mea
surements, our framework of measuring processes will pro
vide a nice basis. However, we shall discuss these problems 
elsewhere. 

In Sec. 2, we give some preliminaries on semiobserva
bles and conditional expectations. Our concept of observed 
quantities allows the non orthogonal resolutions of identity, 
called semiobservables. In Sec. 3, we generalize von Neu
mann's measuring processes to continuous observables and 
show that every measuring process determines the state 
change caused by the measurement. In Sec. 4, we provide a 
dilation theorem and a decomposition theorem of complete
ly positive instruments which are useful in the later sections. 
In Sec. 5, we shall establish the one-to-one correspondence 
between measuring processes and completely positive in
struments. If the observed quantity is a usual one, the ob
tained correspondence is reduced to very simple form by the 
decomposition theorem, that is, measuring processes are de
termined by their transitionp--+p'. In Sec. 6, we study the 
repeatability hypothesis and prove the nonexistence of 
weakly repeatable completely positive instruments for non
discrete observables in the standard formulation of quantum 
mechanics. In Sec. 7, we study the local transition maps and 
prove the nonexistence oflocal transition maps correspond
ing to measuring processes of nondiscrete observables. In 
Sec. 8, we shall give a proof of the Wigner-Araki-Y anase 
theorem in our framework, which states the nonexistence of 
repeatable measuring processes of the observables which do 
not commute with the conserved quantity. In Sec. 9, we shall 
give a characterization of the measuring processes discussed 
in the conventional measurement theory among our general 
measuring processes. 

2. OBSERVABLES AND CONDITIONAL EXPECTATIONS 

Let eW' be a Hilbert space. Denote by .!f (J¥) the algebra 
of bounded operators on eW' and by Y(J¥) the space of trace 
class operators on eW'. A state p on eW' is a positive trace one 
operator on eW'. Denote by ~ (J¥) the space of all states on 
eW'. Let (IJ,!!lJ) be a Borel space. A semiobservable X on eW' 
with value space (IJ,!!lJ) is a positive operator valued measure 
X: !!lJ--+.!f(J¥) such thatX(IJ) = 1. An observable Xis a se
miobservable which is projection valued. Denote by !!lJ (R" ) 
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the Borel u-field ofR" . By the spectral theory, we shall iden
tify an observable X on eW'with value space (R" ,!!lJ(R")) and 
the corresponding mutually commutable family I x\, ... ,x" J 
of self-adjoint operators on eW'such that 

Xi = ( A.X(RX"·Xd~ X···XR). JR I 

(2.1) 

An observableXwith value space (R,!!lJ(R )) is called bound
ed if X = f R A. X (dA. ) is bounded. Let X be a semiobservable 
on eW' with value space (IJ,!!lJ). If the system is in the state p 
at the instant before a measurement of X, then the probabil
ity distribution Prob( X E B;p) of the outcomes of this mea
surement is given by 

Prob( X E B;p) = Tr[ pX(B)], (2.2) 

for any B in !!lJ. For a semiobservable X, we shall denote by 
X (!!lJ) the range of X, i.e., X (!!lJ) = I X (B );B E !!lJ J. A condi
tional expectation Ton .!f(J¥) onto a von Neumann algebra 
JI on eW' is a normal completely positive linear map Ton 
.!f(J¥) with rangeJl such that T(axb) = aT( x)b foralla,b 
in JI, x in .!f(J¥).1t is known\7 that an ultraweakly contin
uous linear map Ton .!f(J¥) is a conditional expectation if 
and only if it is a projection of norm 1 onto JI. 

Let JV be another Hilbert space. Let u be a state on JV. 
Then the formula 

Tr[ pEa ( x)] = Tr[(p ® u).x], (2.3) 

where x E .!f (eW' ® JV) and p E Y(J¥), defines a normal 
completely positive linear map Ea: .!f(eW' ® JV)--+.!f(J¥) 
such that Ea(a ® 1) = a for any a in .!f(J¥). Thus the for
mula x--+Ea( x) ® 1, for x in .!f(eW' ® JV), defines a condi
tional expectation on .!f(eW' ® JV) onto .!f(J¥) ® 1(;1. It is 
easily seen that the mapEa is theadjointofthemapp--+p ® u 
from Y(J¥) into Y(eW' ® JV). The formula 

Tr[Ey(tP)a] =Tr[tP(a®l)], (2.4) 

where tP E Y(eW' ® JV) and a E .!f(J¥), defines a completely 
positive linear map Ey: Y(eW' ® JVl-Y(J¥), which is 
called the partial trace over JV. The partial trace E y also 
satisfies that for any S,1/ in eW', and any orthogonal basis 
{ tfJi J, we have 

(2.5) 

for any p in Y(eW' ® JV). It is easily seen that the adjoint of 
Ey is the map a-a ® 1 from .!f(J¥) into .!f(eW' ® JV). 

The following lemmas can be verified by easy computa
tions. 

Lemma 2.1: Let p E Y(J¥), u E Y(eW' ® JV), and 
bE .!f(JV). If we have Tr[ap] = Tr[(a ® b )u] for any 
a E .!f(J¥), then we have 

p = Ey [(1 ®b jul. (2.6) 

Lemma 2.2: Let T: Y(J¥)--+Y(J¥) be a bounded linear 
map, and let U E .!f(eW' ® JV), bE .!f(JV), and u E Y(JV). 
Then 

T(p) =Ey [U(p®u)U*(l ®b )], 

for any p in Y(J¥) if and only if 

T*(a) = Ea [U*(a ® b)U], 
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for any a in .2"(JY). 
Lemma 2.3: Let a- = ~)'i lSi) (Si I be the spectral de

composition of a- in ~ (JY). Then 

(2.9) 

for any A in .2"(dY' ® %), where the sum is convergent in the 
weak operator topology. 

3. MEASURING PROCESSES 

In order to determine the possible transformations of 
states associated with the measurement of an observable, we 
shall consider the description of the measuring process in 
terms of the interaction between the observed system and the 
apparatus, which is a generalization of von Neumann's de
scription of the measuring process for an observable with 
discrete spectrum (Ref. 10, Chap. IV), Our mathematical 
formulation of the measuring process is as follows, 

Definition 3.1: Let dY' be a Hilbert space and X be a 
semiobservable on dY' with value space (fl,f:%J). A measuring 
process M of X is a 4-tuple M = (% ,X,a-, U) consisting of a 
Hilbert space %, an observable X on % with value space 
(fl,f:%J), a statea-on%, and a unitary operator UondY' ® % 
satisfying the relation 

X(B) =Eu [U*(l ®X(B))U] (3,1) 

for any B in f:%J. 
Now we shall explain the physical interpretation of the 

measuring process M = (% ,X,a-, U) of a semiobservable X 
of a Hilbert space dY' with value space (fl,f:%J). The Hilbert 
space dY' and % describe, respectively, the measured system 
I and the apparatus II. The semi observable X is to be mea
sured by this measuring process. The observable X is to show 
the value of X on a scale in the apparatus which is actually 
measured by the observer, i.e., X is the position of the pointer 
on this scale, The state a- is the initially prepared state of the 
apparatus. The measurement is carried out by the interac
tion between the observed system and the apparatus during a 
finite time interval from time 0 to t. The unitary operator U 
describes the time evolution of the composite system, i.e., 

U = exp[ - it(H I ® 1 + 1 ®H II + Hint)], (3.2) 

where H I and H II are Hamiltonians of the observed system I 
and the apparatus II, respectively, and Hint represents the 
interaction. Suppose that at the instant before the interaction 
the measured system is in the (unknown) state p. Then the 
composite system is in the state p ® a- at time 0 and by the 
interaction it is in the state U (p ® a-) U * at time t. Thus the 
probability distribution Prob(X E B;p) of the outcomes of 
this measurement must coincide with the probability distri
bution Prob(X E B;t ) of the observable X at time t. Since 
Prob(X E B;p) = Tr[pX(B)] and Prob(X E B;t) = Tr[U(p 
® a-)U *1' (B )], we should impose the requirement 

Tr[ pX(B)] = Tr[ U(p ® a-)U*1' (B )] (3.3) 

for any B in f:%J ,p in ~ (JY). It is easy to see that the require
ment (3.3) is equivalent to the requirement (3.1) in Definition 
3.1. 

We shall now show that the measuring process 
M = (% ,X,a-, U) determines a unique state change caused 
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by this measurement. Suppose that a measuring process 
M = (% ,X,a-, U) of X is carried out in the initial state p of 
dY'. Let B E f:%J • Denote by pB the state, at the instant after 
the measurement, of the subensemble of the measured sys
tem in which the outcomes of the measurement lie in B. In 
order to determine the state pB , suppose that the observer 
were to measure the simultaneously measurable observables 
A in I andX in II, whereA is an arbitrary bounded observable 
with value space (R,f:iJ (R)). Then we have the joint probabil
ity distribution of their values: 

Prob(A E dA.'x E dcu) 

= Tr[ U(p ® a-)U*(A (dA.) ®X(dcu))]. (3.4) 

Thus, ifProb(X E B )#0, we have also the conditional prob
ability distribution of A conditioned by the value of X lying in 
B, 

Prob(A E dA. IX E B ) 

= Prob(A E dA.'x E B )lProb(X E B ) 

= Tr[ U(p ® a-)U*(A (dA.) ®X(B ))]lTr[ pX(B )],(3.5) 

and the conditional expectation Ex(A IX E B ) of A condition
ed by the value of X lying in B, 

Ex(A IXEB) 

= 1 A. Prob(A EdA.IXEB) 

= Tr[ U(p ® a-)U*(a ®X(B ))]lTr[ pX(B)], (3.6) 

where a = S R A.A (dA. ). On the other hand, by the probabilis
tic interpretation of the statepB, the statepB must satisfy the 
relation 

Prob(A E dA. IX E B) = Tr[ pB A (dA.)] 

or, equivalently, 

Ex(A IX E B ) = Tr [ pB a]. 

(3.7) 

(3.8) 

By the arbitrariness of A, we can determine the state pB 
uniquely by Eqs. (3.6) and (3.8). That is, by Lemma 2.1, we 
have 

pB = !l/Tr[ pX(B )llE,;. [U(p ®a-)U*(l ®X(B ))], 
(3.9) 

where E;,: Y(dY' ® %)-Y(JY) is the partial trace over 
%. In particular, we have 

p[]=Ey[U(p®a-)U*]. (3.10) 

Therefore, we have determined the state change p_pB 
caused by the measuring process M = (% ,X,a-, U) of the 
semiobservable X on dY' with value space (fl,f:%J). 

Let M = «~ ,X,a-, U) be a measuring process of a se
miobservableX. For any a in .2"(JY), EXM (aIB;p) will denote 
the conditional expectation of the outcome of a measure
ment of a at that instant after the measuring process M under 
the condition that the measuring process M of X has been 
carried out in the initial statep on dY' and its outcome lies in 
B E f:%J. Then from the above discussions, we have 

EXM (aIB;p) = Tr[ pB a] 

= (lITr[ pX(B)ll 

XTr[ U(p ® a-)U*(a ®X(B ))]. (3.11) 
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Conclusion: Every measuring process 
M = (% ,%,0", U) of a semiobservable X determines a state 
change p-+pB caused by the measurement, where pB is the 
state, at the instant after the measurement, of the subensem
ble of the measured system in which outcomes of the mea
surement in the initial state p lies in B E fJJ . 

4. COMPLETELY POSITIVE INSTRUMENTS 

From the investigations of von Neumann's repeated 
measurements, Davies and Lewis 1 introduced a mathemat
ical notion of instruments which represents statistical corre
lations of outcomes of successive measurements. For the the
ory of instruments, called operational quantum probability 
theory, we refer the reader to Refs. 1 and 4. In the present 
section, we shall provide some general results on instru
ments imposed complete positivity. 

Our setting for operational quantum probability theory 
consists of a von Neumann algebra j( on a Hilbert space JY 
and a Borel space (fl,fJJ). A state p of j( is a normal state on 
j/. Denote by j( * the predual of j( and by L (j() the space 
of all normal states on j(. A semiobseruable X in vI( is a 
semi observable on £' whose range is contained in j(. A 
subtransition map Ton j( is a normal completely positive 
linear map T: j( ---+j( such that 0< T (I) < I. A transition map 
Tis a subtransition map such that T(I) = I. We define the 
right action of a subtransition map Ton j( * by the duality 

(p,Ta) = (pT,a), (4.1) 

forallainj(,p inj( *. A CPinstrument f onj( with value 
space (fl, fJJ) is a sub transition map valued measure on 
(fl,fJJ) such that (i) for each countable family I Bi l of pair
wise disjoint sets in fJJ , 

(p,f(~Bi)a) = I (p,f(Bi)a), 
I 

(4.2) 

for all a in j(, p in ~I( * and that (ii) f(fl ) 1 = 1. The condi
tion (i) is equivalent to countable additivity of the right ac
tion in the strong operator topology on x(j( *,j( *). In 
what follows we shall also use the notation f(.,.) for a CP 
instrument f in such a way f(B,a) = f(B)a for all B in fJJ, 
a in j(. By the same argument as in Ref. 1, Theorem 1, we 
can prove the following. 

Proposition 4.1: For every CP instrument f on j( with 
value space (fl, fJJ) there is a unique semiobservable X in j( 
with value space (fl, fJJ) such that X (B ) = fIB, 1) for all B in 
fJJ. Every semiobservable is determined in such a way by at 
least one CP instrument. 

Let f be a CP instrument. We say that a semiobserva
ble X is the associate semiobseruable of f, if X (B) = fIB, 1) 
for any B in fJJ and that a transition map T is the associate 
map of f if T(a) = f(fl,a) for any a in j(. Let Xbe a se
miobservable. A CP instrument f is called X-compatible if 
X is the associate semiobservable of f. A transition map Tis 
called X-compatible if the range of T is contained in X (fJJ)'. 

The following proposition is very useful in dealing with 
CP instruments which is a modification of the Stinespring 
theorem on completely positive maps.18 

Proposition 4.2: For any CP instrument f of j( with 
value space (fl, fJJ) there is a Hilbert space £'0' a spectral 
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measure E: fJJ---+x(JYo), a nondegenerate normal*-repre
sentation 1T: j( ---+x(JYo) and a linear isometry V: JY ---+JYo 
satisfying 

f(B,a) = V*E(B)1T(a)V, (4.3) 

E (B )1T(a) = 1T(a)E (B), (4.4) 

for any B in fJJ and a in j(. 
Proof Denote by B (fl ) the space of all bounded fJJ -mea

surable functions on fl. Consider the algebraic tensor pro
duct B (fl ) ® j( ® JY. We define a sesquilinear form (.,.) on 
B (fl ) ® j( ® £' as follows: 

(s,1]) = ~ L gj(w)*I;(w)(f(dw,b ja;)Si,1]j), 

for S = Li I; ® ai ® Si' 1] = Lj gj ® bj ® 1]j in 
B (fl ) ® j( ® JY. Then we can prove that (S,S );;;'0 by just a 
similar way as the proof of Ref. 18, Theorem 4, and thus 
s---+llsll = (s,s )1/2 is a seminorm. Define actions 1Tof j( and 
E of fYJ on B (fl ) ® j( ® £' as follows: 

1T( x)s = II; ®xa i ® 5;, 
i 

E(B)S = IXB I; ®ai ® S;. 
I 

for x in j/, B in fJJ, and S = Li I; ® ai ® Si' Then we have 
that 111T(x)sll<llxllllsll and IIE(B)sll<llsll. Thus the 
both actions are well defined also on the II'II-completion £'0 
of the quotient space B (fl ) ® j( ® £' / .. /V, where 
.r = lsi lis II = 0l· Define a map V: £' ---+£'0 as 
V ifJ = (1 ® 1 ® ifJ ) + c' V, for any ifJ in £'. Then the assertions 
can be checked in a routine manner (Ref. 18 and Ref. 19, p. 
194). QED 

A CP instrument f is called decomposable if it is of the 
formf(B,a) = X(B )T(a) for allB in fJJ, a inj(, where Xis 
the associate semi observable of f and Tis the associate map 
off. 

Proposition 4.3: A CP instrument f is decomposable if 
its associate semiobservable X is projection-valued or if its 
associate map Tis homomorphic [i.e., T(a*a) = T(a)*T(a) 
for all a in j(]. 

Proof First suppose that Tis homomorphic. We can 
suppose that f is of the form f(B,a) = V*E(B )1T(a) Vas in 
Proposition 4.2. Since T(a) = V*1T(a)V and V* V = 1, we 
have 

(1T(a)V - VT(a))*(1T(a)V - VT(a)) 

= T(a*a) - T(a)*T(a) = 0. 

Thus1T(a)V = VT(a) for all a inj(, and hence we obtain that 
f(B,a) = V*E(B)1T(a)V= V*E(B)VT(a)=X(B)T(a)forany 
Bin fJJ, a in j(. The proof for the case that X is projection
valued is similar. QED 

Proposition 4.4: LetXbe an observable in j( with value 
space (fl,fiJ). Then there is a one-to-one correspondence 
between X-compatible CP instruments f on j( and X-com
patible transition maps Ton j(, which is given by 
f(B,a) = X(B )T(a) for any B in fJJ, a in j(. 

Proof If a CP instrument f is decomposable, then its 
associate map T is X-compatible, since X (B )T(a) 
= (X(B )T(a))* = T(a)X(B) for any a;;;'O in j(, B in:!iJ. 

Masanao Ozawa 82 



                                                                                                                                    

Conversely, if T is an X-compatible transition map then it is 
easy to check that the relation f(B,a) = X (B )T(a), where 
a E J( and B E f!ll, defines an X-compatible CP instrument. 
Thus the assertion follows immediately from Proposition 
4.3. QED 

5. CLASSIFICATION OF MEASURING PROCESSES 

Let JIt" be a Hilbert space and X be a semiobservable on 
Jlt"with value space (fl,f!ll). We say that two measuring pro
cesses Ml and M2 of X are statistically equivalent if 

ExM, (aIB;p) = ExM, (aIB;p), (5.1) 

for any a in .2"(eW}, B in f!ll, p in ~ (eW). Since every two 
statistically equivalent measuring processes give the same 
state change, it is desirable to classify these equivalence 
classes by more tractable mathematical objects concerned 
only with the observed system. In this section, we shall carry 
out such classification. 

Let M = (% ,1',0', U) be a measuring process of X. 
Consider the following relation: 

f(B)a = Ea [U*(a ®X(B ))Ul. (5.2) 

for any B in f!ll, a in .2"(eW}. Then it is not hard to check that 
Eq. (5.2) defines an X-compatible CP instrument f on 
.2"(eW}. By Lemma 2.2, Eq. (5.2) is equivalent to 

pf(B) = E~" [U(p ®O')U*(l ®X(B ))], (5.3) 

for all B in f!ll, pin Y(eW}. By Eqs. (3.1) and (3.9), we have 

X(B) = f(B,l), (5.4) 

pB = (lITr[pf(B)])Pf(B), 

whenever Tr[ pX(B)] #0, (5.5) 

for allp in ~ (eW), B in f!ll. Thus the CP instrument f defined 
by Eq. (5.2) retains the all statistical data of the measuring 
process M, that is, the probability distribution of outcomes 
of the measurement and the state change caused by the mea
surement. The following theorem shows that every CP in
strument on .2"(eW} arises in this way. 

Theorem 5.1: Let X be a semiobservable on JIt" with 
value space (fl,f!ll). Then there is a one-to-one correspon
dence between statistical equivalence classes of measuring 
processes M of X and X-compatible CP instruments f on 
.2"(eW}, which is given by the relation 

Tr[ pf(B)]ExM(aIB;p) = Tr[ pf(B )a], (5.6) 

for all B in f!ll, p in ~ (eW), a in .2"(eW}. 
Proof: Let M = (% ,1',0', U) be a measuring process of 

X. Then it is easy to see that the CP instrument f defined by 
Eq. (5.2) is a unique CP instrument which satisfies Eq. (5.6). 
It follows that the statistically equivalent measuring pro
cesses determine the same CP instrument by Eq. (5.2). Now 
it suffices to construct a measuring process of X which deter
mines by Eq. (5.2) a given X-compatible CP instrument. Let 
f be an X-compatible CP instrument on .2"(eW} with value 
space (fl, f!ll). Let ,}Yo, E, 7T, and V be such as obtained in 
Proposition 4.2 for the CP instrument f. Since every nonde
generate normal*-representation of .2"(eW} is unitarily equi
valent to the multiple of the identity representation (Ref. 4, 
Lemma 9.2.2), there is a Hilbert space Jlt"1 such that 
,}Yo = JY' ®,}YI and that 17(a) = a ® 1 for any a in .2"(eW}. 
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Then by Eg. (4.3) and by the commutation theorem of von 
Neumann algebras, for any Bin f!ll there is a projection E 1 (B ) 
in .2"(JIt"tJ such thatE (B) = 1 ® E1(B). Obviously, thecorre
spondence E I: B-+E I (B ) is a projection-valued measure from 
f!ll to .2"(,}YtJ. By Eq. (4.3), we have 

f(B,a) = V*(a ®E1(B ))V, 

for any B in f!ll, a in .2"(eW}. Let 1]0 be a unit vector in Jlt"o and 
1]1 be a unit vector in Jlt"1' Define an isometry Vo on 
JIt" ® [1]1] ® [1]0] into JIt" ® Jlt"1 ® Jlt"o by the relation 

Vo(s ® 1] 1 ® 1]0) = Vs ® 1]0' 

for any 5 in JIt". Then, since dim(JIt"o) = dim(JIt" ® Jlt"1)' by 
the usual computations of cardinal numbers, it is easy to 
show that 

dim(cW'®JIt"I ®cW'0 - cW'® [1]1] ® [1]0]) 

= dim(JIt" ® cW'1 ® £"0 - Vo(JIt" ® [1] I] ® [1]0]))' 

It follows that there is a unitary operator U on 
JIt" ® Jlt"1 ® Jlt"o which is an extension of Vo. Now let %,0', 
and X be such that 

%=JIt"I®JIt"O' 0'= 11]1 ®1]0)(1]1 ®1]ol, 

and X(B)=E 1(B)®1 on Jlt"1®JY'0' 

for any B in f!ll. Then we shall claim that (JY ,1',0', U) is a 
measuring process which determines the CP instrument f 
by Eqs. (5.2). For any a in .2"(eW}, 5 in JY', and Bin f!ll, we 
have that 

(f(B,a)s,s) = (V*(a®E1(B))VS,S) 

= ((a ® EdB ))VS, VS) 

= ((a ® E1(B)) Vs ® 1]0' Vs ® 1]0) 

= ((a ® E1(B) ® I)U(S ® 1]1 ® 1]o),U(s ® 1]1 ® 1]0)) 

= (U*(a ®X(B ))U(S® 1]1 ® 1]o),S® 1], ® 1]0) 

= Tr[ U*(a ®X(B))u(IO(s I ®O')] 

= Tr[ Is > (5 lEa [U*(a ®X(B))U]] 

= (Ea [U*(a ®X(B ))U]S,S)' 

It follows that 

f(B,a) = Ea [U*(a ®X(B))U], 

for any a in .2"(eW} and B in f!ll. Therefore, (% ,1',0', U) is a 
measuring process of X which determines f by Eq. (5.2). 
QED 

We say that a measuring process M is a realization of a 
CP instrument f if M and f satisfies Eq. (5.6). The above 
theorem asserts that every CP instrument has its realization. 
In the conventional theory of quantum mechanics, it is al
ways assumed that the Hilbert space is separable and the 
value space is a standard Borel space, i.e., a Borel space 
which is Borel isomorphic to a separable complete metric 
space.20 Thus it is desirable that the realization is also with a 
separable Hilbert space in such circumstances. We say that 
realization M = (JY ,1',0', U) of a CP instrument f is sep
arable if the Hilbert space JY is separable. 

Corollary 5.2: Let f be a CP instrument on .2" (eW) with 
value space (fl,f!ll). If cW'is separable and (fl, f!ll) is a standard 
Borel space, then there is a separable realization of f. 
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Proof (the notations are the same as in the proof of 
Theorem 5.1): It is easy to see that we can assume that JY'0 in 
Proposition 4.2 is spanned by {E (B )1T(a) Vs; B E f)J , 

a E .2"(jf'), and S E JY'}. Since JY' is separable, there is a 
countable family {an} of an in .2"(jf') which is dense in 
.2"(jf') in the strong operator topology. Let {Bn } be a count
able generator of f)J and {s n } be a countable dense subset of 
JY'. Then it is easy to see that the countable family {E (B; ) 
X 1T(aj ) Vsk; i,j,k = 1,2,.··} spans JY'0, so that JY'0 is separa
ble. Since JY' ® % = JY'0 ® JY'0, % is separable. QED 

We say that a measuring process M = (%,X,(J,U> is 
pure if (J is pure state, i.e., there is a unit vector t in % such 
that (J = Is> (t I. In the conventional argument of quantum 
measurement, the assumption that the prepared state of the 
apparatus is pure has been justified in some contexts. The 
following is one of such justification from a most general 
point of view. 

Corollary 5.3: Every measuring process is statistically 
equivalent to a pure measuring process. 

Proof The assertion is immediate from the construction 
of the measuring process in the proof of Theorem 5.1. QED 

Let M = (% ,X, 17J > ( 7J I, U > be a pure measuring pro
cess. Define an isometry V: JY' ---+JY' ® % by Vt = U (S ® 7J) 
for aIlS in JY'. Let f be the corresponding CP instrument. 
Then it is easy to see that 

f(B,a) = EO" [U*(a ®X(B ))U] = V*(a ®X(B ))V, 

for all a in .2" (jf'), B in dJ . 
The following result justifies our postulate, which is 

tacit in Eq. (2.2), that semiobservables can be measured. 
Corollary 5. 4: For any semiobservableX, there is a mea

suring process of X. 
Proof By proposition 4.1, for any semiobservable X, 

there is an X-compatible CP instrument f. Then any real
ization of f obtained by Theorem 5.1 is a measuring process 
ofX. QED 

Consider the case that X is an observable. In this case 
the classification of measuring processes is surprisingly 
simpler, that is, the measuring processes of X are determined 
by their total state changes p---+pfl . 

Theorem 5.5: Let X be an observable on JY' with value 
space (fl,dJ). Then there is a one-to-one correspondence 
between statistical equivalence classes of measuring pro
cesses M of X and X-compatible transition maps Ton 
.2"(jf'), which is given by the relation 

Tr[ pX(B )]ExM(aIB;p) = Tr[ pX(B )T(a)], (5.7) 

for any a in .2"(jf'), p in ~ (jf'), B in dJ. 
Proof The assertion follows immediately from Proposi

tion 4.4 and Theorem 5.1. QED 

6. REPEATABILITY 

Consider von Neumann's repeatability hypothesis (Ref. 
10, pp. 214, 335): 

(M) If the physical quantity is measured twice in succes
sion in a system, then we get the same value each time. 

Let M = (% ,X,(J, U > be a measuring process of a se
miobservable X. If X is discrete, then it is easy to see that (M) 
is equivalent to 
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(M') ExM(X({A lllf,u};p) =0",1" 

for all p in ~ (jf') and all A,,u in fl, whenever 
Tr[ pX ({,u ) )] i= O. We say that a measuring process M of X is 
weakly repeatable if 

(R) ExM(X(C)IB;p) = Tr [pX(BnC)]!Tr[ pX(B)], 

foranypin~ (jf'),B, CindJ, whenever Tr[pX (B )]#0. Then 
it is easy to see that if X is discrete the condition (M') and (R) 
are equivalent. The condition (R) appeared first in Ref. 1 for 
instruments. We say that a CP instrument f is weakly re
peatableiff(B )X(C) = X(BnC)forallB,Cin f)J, whereXis 
the associate semiobservable of f. It is easily seen that a 
measuring process M is weakly repeatable if and only if the 
corresponding CP instrument f is weakly repeatable, In 
Ref. 1, p. 247, it is conjectured that the existence of repeata
ble instruments for continuous observables is doubtful even 
in the case of standard quantum theory. In the present sec
tion, we shall prove this conjecture, that is, we shall prove 
that there is at least one X-compatible weakly repeatable CP 
instrument on !./'(JY') if and only if X is discrete. 

Let j( be a von Neumann algebra on JY' and (fl, dJ ) be a 
Borel space. Let f be a weakly repeatable CP instrument on 
ji with value space (n,dJ), X its associate semiobservable, 
and Tits associate map. We can assumethatf is of the form 
f(B,a) = V*E(B )17'(a) V for any Bin dJ ,ainji, asinPropo
sition 4.2. 

Lemma 6.1: For any B,C in 9J. a in j(, we have 
(1) T(X(B)2) =X(B), 
(2)f(BnC,a) =f(C,aX(B)) =f(C,X(B)a), 
(3)f(B,a) = T(aX(B)) = T(X(B)a). 
Proof Sincef(B,x (B)) = X (B) by the weak repeatabil

ity of f, a routine computation leads that 

(17'(X(B))V - E(B )V)*(17'(X(B))V 

-E(B)V) = T(X(B)2) -X(B), (6.1) 

for any Bin f)J. Thus we have T(X(B n;;,X(B). On the other 
hand, we have X (B )2.;;X (B ), since O.;;X (B ).;; 1. By weak re
peatability, T (X (B )) = X (B ), so that X (B) = T (X (B )) 
;> T (X (B )2). Thus we have the relation (1). It follows that the 
left-hand side ofEq. (6.1) is 0, so that we have 
1T(X(B))V = E(B )Vand V*17'(X(B)) = V*E(B). Thus for any 
B,Cin 9J, a in ji, we have f(BnC,a) = V*E(BnC)17'(a)V 
= V* E (B)E (C )17'(a)V = V*17'(X (B))E (C )17'(a)V 
= V*E(C)17'(X(B)a)V =f(C,X(B)a). By the analogous 
way we can show that f(BnC,a) = f(C,aX(B )). Thus we 
obtain the relation (2). The relation (3) is obtained by putting 
C = fl in (2). QED 

Let p be the least projection in X (dJ )" such that 
T(p) = 1. 

Lemma 6.2: For any x in ji, T( x) = T( xp) 
= T(px) = T(pxp). 

Proof For any S, 'Tj in JY', we have 
I(T( x - px)s,'Tj) I = 1(V*1T(1 - p)17'( x)Vs,7J) I 

= 1(17'(X)Vt,17'(1-p)V7J)/';;//17'(X)VS// //1T(I-p)V7J11 
= 1117'( x)Vsll 11(V*17'(1 - p)V7J,7J)111/2 
= 1117"( x)Vsll(T(l - p)7J,7J)1/2 = O. 
Thus we have T( x) = T(px). The rest of the assertions 

are immediate. QED 
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Lemma 6.3: For every x in X(BB)" with x;;;.O, if 
T( x) = 0, thenpxp = O. 

Proof Let e be the range projection ofx. Since e is a limit 
of polynomials of x not containing the constant term in the 
strong operator topology, we have T(e) = O. Thus 1 - e;;;.pso 
that ep = pe = O. It follows that pxp = O. QED 

Define a positive operator valued measure P: 
BB -x (BB)" by the relation P (B ) = pX (B Jp for all B in BB. 

Lemma 6.4: P is a projection valued measure such that 
P (B ) = pX (B ) = X (B Jp for any B in BB . 

Proof By Lemma 6.2, we have T(P(B)) = T(pX(B Jp) 
= T (X (B )). By Lemmas 6.1 and 6.2, we have 
T(P(B f) = T(pX(B JpX(B )p) = T(X(B )pX(B)) 
=J(B,pX(B)) =J(BnR,p) =J(B,p) = T(pX(B)) 
= T(X(B)). It follows that T(P(B) - P(B )2) = O. Since 

P(B) - P(B f belongs toX(BB)", we haveP(B)2 = P(B )by 
Lemma 6.3. Thus P is a projection-valued measure. We have 
T ((P (B) - X (B Jp)*{P (B) - X (B Jp)) = 0, by the routine 
computations. Thus, by Lemma 6.3, P (B) = X (B Jp, since 
P(B) -X(B)p is inX(9J)". By the positivity, we have 
P(B) =pX(B). QED 

Theorem 6.5: For any weakly repeatable CP instrument 
Jon JI with value space (n,:!J), there is a projection-val
ued measure P: 9J -X (BB)" such that 

J(B,a) = T(aP(B)) = T(P(B)a) 

and that 
P (B) = P (n )X (B) = X (B )P (n ), 

for any B in :!J, a in 2'($). 
Proof The assertion follows immediately from Lemmas 

6.1 and 6.4. QED 
We suppose for the rest of this section that the value 

space (n,:!J ) is a standard Borel space and that the Hilbert 
space JY is separable. We say that a positive operator valued 
measure P is discrete if there is a countable set no c;;;. n such 
that P (n \. no) = 0 and that a CP instrument is discrete if the 
associate semi observable is discrete. 

Theorem 6.6: Let (n, BB) be a standard Borel space, and 
let JY be a separable Hilbert space. Then every weakly 
repeatable CP instrument J on 2'(JY) with value space 
(n,.%') is discrete. 

Proof Let Pbe a projection-valued measure obtained in 
Theorem 6.5. BytherelationX(B) = J(B,I) = T(P(B ))for 
every Bin.%', we have only to show that Pis discrete. By Ref. 
4, Lemma 4.4.1, there is a countable set Bo such that 
B_P (BnRo) is a discrete projection-valued measure with val
ues in 2'(P (Bo)JY) and B_P (B \.Bo) is a continuous projec
tion-valued measure with values in 2'(p(n \.Bo)JY). Let Q 
be such that Q = P (n \.Bo). Then it suffices to prove that 
Q = O. Let Tbe the associate map of J and To be such that 
To(a) = QT(a)Q forallain2'(QJY). Then To(Q ) = QT(Q)Q 
= QT(X(n \.Bo))Q = QX(n \.Bo)Q = Q, and hence To is 

a transition map on 2'(QJY). Thus there is a trace-preserv-
ing linear map S: Y(QJY)--+Y(QJY) such that S * = To. For 
any a in 2'(QJY), B in BB, pin Y(QJY), we have 

Tr[aP(B \.Bo)S(p)] = Tr[To(aP(B \.Bo))p] 
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= Tr[QT(aP(B \.Bo))Qp] = Tr[QT(P(B \.Bo)a)Qp] 

= Tr[To(P(B \.Bo)a)p] = Tr[P(B \.Bo)aS(p)]. 
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It follows that P (B \.BoJS ( p) = S (p)P (B \.Bo) for any 
B in .%', p in Y(QJY). Since B--+P (B \.Bo) is a continuous 
projection-valued measure, we can conclude that S = 0 (see, 
Ref. 4, Theorem 4.3.3), and hence Q = To(Q) = O. QED 

7. LOCALITY 

Let JY be a Hilbert space and JI a von Neumann alge
bra on JY. Let X be an observable in JI with value space 
(n, BB). A transition map Ton JI is called X-local if 
T(X(B)) = X(B) for any Bin.%'. It is easy to see that TisX
local if and only if Tx = x for any x in X (BB)" . 

Let! x)!" .. ,xn J be a mutually commutable family of 
self-adjoint operators on JY corresponding to a family of 
simultaneously measurable observables of a quantum sys
tem. Suppose that X is the joint spectral measure of 
! x P ... 'Xn J on JY with value space (Rn ,BB (Rn)). Recently, 
Mercer9 proposed that the total state changep-p' caused by 
a simultaneous measurement ofx i, ... ,Xn should be described 
by an X-local transition map Ton 2'(JY) in such a way 
p' = pT (see Ref. 9, p. 244). However, we should notice that 
the X-locality is not sufficient for describing state transfor
mations caused by measurements. In fact, the identity trans
formation on 2'(JY') is obviously an X-local transition map 
for any observable X, in spite of the fact that we cannot mea
sure any nontrivial quantum observable unchanging every 
state of the system. Thus we have to impose some further 
requirements for eliminating such physically irrelevant X
local transition maps in order to describe a state change 
caused by the measurement of X. A moderate one of such 
requirements seems the existence of a measuring process for 
observables xi,. .. ,xn , whose state change is the given X-local 
transition map. The following result is an easy consequence 
of the results obtained in the previous sections, but shows 
that such requirement cannot be fulfilled unless all observa
bles x i" •• 'Xn are discrete. 

Proposition 7.1: Let JI be a von Neumann algebra on a 
Hilbert space JY and X an observable in JI with value space 
(n,BB). There is a one-to-one correspondence between X
compatible X-local transition maps Ton JI and X-compati
ble weakly repeatable CP-instruments J on JI, which is 
given by 

J(B,a) =X(B)T(a), (7.1) 

for any Bin BB, a in JI. 
Proof It is known in the proof of Ref. 1, Theorem 7, that 

a decomposable CP instrument J is weakly repeatable if 
and only if 

T(X(B)) =X(B) and X(BnC) =X(B)X(C), 

for any B,C in BB. Since every X-compatible CP instrument 
is decomposable, the assertion follows immediately from 
Proposition 4.4 QED 

Theorem 7.2: Let X be an observable on a separable 
Hilbert space JY whose value space is a standard Borel space 
and Tbe an X-local transition map on 2'(JY). If there is a 
measuring process M = (.5Y ,x,CT, U > of X such that 
pn = pTforanypin~ (JY)[seeEq. (3.10)], then Xis discrete. 

Proof It is obvious that T is the associate map of the CP 
instrument J determined by the measuring process M. 
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Thus, by Proposition 7.1, the CP instrument f is weakly 
repeatable and hence by Theorem 6.6 the corresponding ob
servable X is discrete. QED 

8. THE WIGNER-ARAKI-YANASE THEOREM 

It was pointed out by Wigner l5 that the presence of a 
conservation law puts a limitation of the measurement of an 
operator which does not commute with the observed quanti
ty. A proof of the above assertion was given by Araki and 
Yanase l6 in the conventional framework of measurement 
theory. In this section, we shall give another proof in our 
framework and under somewhat general assumptions. Our 
assertion is the following. 

Theorem 8.1: Let Xbe an observable on a Hilbert space 
2with value space (fl,,qg). LetM = (% ;X,u,U) bea weak
ly repeatable measuring process of X. Suppose that there is 
Ll in .2"(£") and L2 in .2"(%) such that [U,L] = 0, where 
L =L 1 ® 1+ 1 ®L2. ThenL I EX(,qg)'. 

For the proof we use the following. 
Lemma 8.2. Let M = (% ,X,u, U ) be a measuring pro

cess of an observable X on 2, and u = I-;A; 11];) (1]; I be the 
spectral decomposition of u. Then for any i, M; = (%,X, 
11];) (1]; I, U) is a pure measuring process of X such that 

E,,[U*AU] = LA;EI11)(11,1 [U*AU], (8.1) 

for any A in .2"(2 ® %). If Mis weakly repeatable, then M; 
is also weakly repeatable for every i. 

Proof The formula (8.1) is obtained from Lemma 2.3. 
Let B E ,qg. Then 

X(B) = Eu [U*(l ®X(B))U] 

= LA;E1'1,) ('II [U*(l ®X(B))U]. 
; 

Since any projection is an extreme point of the positive part 
of the unit sphere of .2"(£,,), we have that 

X(B) = Ei'I,) ('II [U*(1 ®X(B))U], 

for any i. Thus M j is a measuring process of X. Since Mi is 
weakly repeatable if X(B) = EI'I),) <'1),1 [U*(X(B) ® l)U] for 
any B in ,qg by Proposition 7.1, the assertion for the weak 
repeatability follows from the same reasoning. QED 

Proof of Theorem 8.1: By Theorem 5.5, there is an X 
compatible transition map T such that 
Eu[U*(a ®X(B ))U] = X(B )T(a)foranyBin,qg ,ain.2"(£"). 
Then we have 
T(Ld + Eu [U*(l ®L2)U] 

= Eu [U*(LI ® 1 + 1 ®L2)U] 

=Eu[Ll®1 + 1®L2] 

= Ll + [Tr(uL2)] 1. 

Since T is X-compatible, T (L I) E X (,qg)'. Thus we have only 
to show thatEu [U*(1 ®L2)U] EX(,qg)'. By Lemma 8.2, we 
can assume without any loss of generality that there is a unit 
vector 1] in % such that u = 11]) (1] I, so that there is an 
isometry V:2~2®%such that Eu[U*AU] = V*AV 
for all A in .2" (2 ® %), where Vs = U (S ® 1]) for any S in 
2. Let B E ,qg. Since the CP instrument f such that f(B,a) 
= V*(a ®X(B))V is weakly repeatable, we have 
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v *(X (B) ® 1) V = f(fl,x (B )) = X (B). Thus by the simple 
computations we have 

((X (B) ® 1)V - VX(B ))*((X(B) ® 1)V - VX(B)) = 0, 

and hence (X(B) ® 1)V = VX(B) and V*(X(B) ® 1) 
= X (B )V *. It follows that 

V*(l ®L2)VX(B) = V*(X(B)®L2)V=X(B)V*(1 ®L2)V. 

Thus we conclude that Eu[U*(1 ®L2)U] EX(,qg)'. QED 

9. CONVENTIONAL MEASURING PROCESSES 

In the conventional theory of quantum measurement, 
the only class of measuring processes studied at all seriously 
is as follows. Let 2 be a separable Hilbert space and X be a 
discrete observable on 2 with value space (R,,qg (R)). Let 
ISij J be a complete orthonormal set of eigenvectors of X 
where the eigenvalue of Sij isA;. Let % be another separable 
Hilbert space with complete orthonormal vectors I 1]i J. Let 
1] be a unit vector of % and U be a unitary operator on 
JY ® % satisfying 

U(Sij®1])=Sij®1]; (9.1) 

for any i,j. ThenM = (% ;X, 11] ) (1]I,U) isameasuringpro
cess of X, where X = I-;A; 11];) (1]i I. In the sequel, we call 
this measuring process a conventional measuring process of 
X. The total state change corresponding to M is of the form 

p~p' = L P; pPi , 

where P; = XUA; j), i.e., Pi = I-j ISij) (Sij I. In fact, for 
p = I-ijkl flijkllSij) (Ski I in ~ (£,,), we have 

p' = E~ [U(p ® 11]) (1]I)u*] 

L flijklEy [ISij ® 1]i) (Ski ® 1]k I] 
ijkl 

Lflijkl(1];,1]k)ISij) (Ski I 
ijkl 

= LP;pP; 
; 

(9.2) 

[see Eq. (3.10)]. Conversely, every state change given by Eq. 
(9.2) is realized as the above measuring process M as shown 
by von Neumann (see Ref. 10, p. 442). By Eq. (9.2) the corre
sponding CP instrument f is of the form 

f(B,a) = L PiaP;, (9.3) 
AlE B 

for any B in ,qg (R), a in .2" (£,,), and the corresponding transi
tion map T is a conditional expectation onto X (,qg (R))'. 

In the present section, we shall give a characterization 
of the above conventional measuring processes up to statisti
cal equivalence. A similar problem is considered in Refs. 1 
and 21 in different methods. 

Definition 9.1: Let X be a semiobservable on 2 with 
value space (R,,qg (R)). A measuring process M of X is called 
standard if it satisfies the following three conditions. 

(WR) (Weak repeatability) M is weakly repeatable. 
(MD) (Minimal disturbance condition) The set 

I p E ~ (£");pR =/p J is minimal in the set inclusion among all 
measuring process of X. 
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(ND) (Nondegeneracy condition) For any B in !!IJ (R) 
with X (B ) =1= 0, there is some p in ~ (In such that 
Tr[ pRX (B)] =1=0. 

Let Mbe a measuring process of X Denote by F (M ) the 
set of all nondisturbed states, i.e., F(M) = I p E oiJn;pll 
= p J . Obviously, M satisfies (MD) if and only if for any 

measuring process M' of X, F (M) ~ F (M ') implies 
F(M')~F(M). 

Proposition 9.2: Let Mbe a conventional measuring pro
cess of a discrete observable X Then M is standard. 

Proof It is well known that M is weakly repeatable. The 
condition (ND) is easy to check. Thus we shall prove that M 
satisfies the condition (MD). Let M' be a measuring process 
of X such that F(M)~F(M'). Denote by T and S the 
transition maps corresponding to M and M', respectively. 
Let p E Y(Jn be such that pS = p. Then it suffices to show 
thatpT = p. Since Tis a conditional expectation onto 
X (!!IJ (R))' and by the X-compatibility of S the range of Sis 
contained in X (!!IJ (R))" we have TS = S. Since T2 = T, we 
have( pT)T = pTsothatpT E F(M). Thusbytheassumption 
that F(M)~F(M'),pTEF(M'). It follows that 
pT = pTS = pS = p. This concludes the proof. QED 

Theorem 9.3: Let cW' be a separable Hilbert space and X 
be a semiobservable on cW' with value space (R,!!IJ (R)). Let M 
be a standard measuring process of X Then X is a discrete 
observable, and M is statistically equivalent to a convention
al measuring process of X 

Proof Let J be the CP instrument corresponding to a 
standard measuring process M of X Since J is weakly re
peatable, by Theorem 6.6, X is discrete and, by Theorem 6.5, 
there is an orthogonal family I p;. ;A E R J of projections in 
X (!!IJ (R ))" such that 

J(B,a) = T (I p;. ap;.), 
;'EB 

(9.4) 

for allB in!!IJ, a in .2"(Jn. Let Qbea projection inX(!!IJ(R))" 
such that Q = 1 - ~;. E R p;.. Then we have T(Q) = O. Itfol
lows from the condition (ND) that Q = 0 so that ~;. E R p;. 
= 1. ThusbyLemma6.4wehaveX(B) = ~;'EB p;. foranyB 

in !!IJ (R). It follows that X is an observable. Let M' be a con
ventional measuring process of X and J' be the correspond
ing CP instrument. Then 

J'(B,a) = I p;. aP;., (9.5) 
AEB 

for any B in !!IJ, a in .2"(Jn. Denote by T and S the corre
sponding transition maps of M and M', respectively. Since T 
is X-compatible, we have T(a) = ~AER p;. T(a) 
= ~A E R p;. T(a)P;. = ST(a), for any a in .2"(Jn. On the 

other hand, by Eq. (9.4) we have T = TS. It follows that 
T = ST = TS. For any pin Y(Jn, if pT = p, then 
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pS=pTS=pT=p and henceF(M)~F(M'). Thus by the 
condition (MD),F(M') = F(M). Letp E Y(Jn. Then since 
S 2 = S,pS E F (M 'I, so thatpST = pS. It follows thatS = ST. 
Thus we have T = S. Therefore, by Theorem 5.5, Mis statis
tically equivalent to a conventional measuring process M' of 
X QED 
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The Darboux transformation, a method used to transform a Schrodinger-type equation to a 
Schrodinger equation with a new potential, is discussed. An exactly solvable double-well potential 
model for the one-dimensional Schrodinger equation is obtained. 

PACS numbers: 03.65.Ge, 02.30.Em, 31.90. + s 

I. INTRODUCTION 

Much effort has been made to look for exactly solvable 
models for the one-dimensional Schrodinger equations. 
Double-well potential problems occur in the quantum the
ory of molecules. Because the Fokker-Planck equation is 
closely related to the Schrodinger equation,) the solution of 
the above problem can be directly applied to the problem of 
diffusion in a bistable potential field. Recently, great atten
tion has been put on constructing exactly solvable bistable 
models. 

In general, there are four ways to devise potentials. The 
first is to use piecewise potentials),2 such as the double 
square well and the double oscillator, this being the most 
common method. Its main difficulty, however, is that to ob
tain eigenvalues from the matching conditions, one needs to 
solve transcendental equations, for which analytic solutions 
of eigenvalues are not available unless in some limiting cases 
expansion formulas can be applied to find approximate solu
tions for the low-lying eigenvalues. The second3 is to con
struct potentials from the wave functions which are solu
tions to two or more Schrodinger equations with simple 
potentials at the same eigenvalue. Since the potentials are 
made to fit given wave functions, a set of different eigenfunc
tions cannot be obtained in this way. The third4 is to solve the 
Schrodinger equation directly for specially chosen poten
tials; for example, the potential with three parameters, /3, 5, 
and a positive integer n: 

V(x) = (fz2/3 212m) [~5 2 cosh 4/3x 

- (n + 1)5 cosh 2/3x - is 2]. (1) 

For this potential, the low-lying eigenfunctions can be found 
analytically in a form of finite-term summation of simple 
functions. The fourth method is to transform the Schro
dinger equations to be solved to known solvable differential 
equations. There are many examples of this given in text
books5

; so far it appears that no example dealing with a dou
ble-well potential has been solved in this way. 

In this paper two systematic methods, the Darboux 
transformation6 and a new one, will be presented for trans
forming known solvable Schrodinger-type equations to 
Schrodinger equations with new different potentials. As an 
example, a double-well potential model will be obtained 
from the Weber equation,? and other interesting applica
tions of the transformations will be given. 

a) Supported in part by the Robert A. Welch Foundation. 
b) On leave of absence from the Institute of Theoretical Physics, Academia 

Sinica, Beijing, China. 

II. THE DARBOUX TRANSFORMATIONs 

The Darboux theorem: If the general solution cp = cp(x) 
of the equation 

d 2 --f + k - U(x)]cp = 0 (2) 
dx 

is known for all values of £ and for a particular value of 
£ = £0' the particular solution is cp = CPo{x). Then the general 
solution of the equation 

d2~ + [E- V(x)]¢=O (3a) 
dx 

with 

d
2 

( 1 ) V(x) = CPo(x) -2 -- , 
dx CPo(x) 

E=£-£o 

for E #0 is 

¢(x) = CPo(x)(cp (x)/CPo(x))' 

cp~(x) 
= cp'(x) - -- cp (x). 

CPo(x) 

(3b) 

(3c) 

(4a) 

(4b) 

The Darboux transformation (4a) was previously used 
to transform the Schrodinger equations with the potentials 
given by Eq. (1).4 It should be emphasized that the Darboux 
transformation is very general in the sense that the original 
equation (2) need not be a physical Schrodinger equation. 

As an example, we consider the Weber equation? 

d
2
y (X2 ) 

dx2 - 4 + a y = O. (5) 

For any given parameter a, this equation has the particular 
solution 

y)(a,x) = e -x'/4 )F)(a/2 + !;!;x2/2), (6) 

where )F)(a; /3;x) is a Kummer function. Here we have 

Eo = 0, U(x) = x2/4 + a. (7) 

From the asymptotic behavior of the Kummer function, we 
know that the positive definite functiony)(a,x) does not 
satisfy the natural boundary conditions, i.e., it does not van
ish at infinity, so it is not a "physical" solution. Equation (5) 
is only a Schrodinger-type equation. According to Eq. (3b), 
the transformed potential is 
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= 2[Y; (a,x)] 2 _ (X2 + a) . (8) 
Yl(a,x) 4 

This potential has been considered in the discussion of the 
Fokker-Planck equation for diffusion of a Brownian particle 
with a particular initial a-function distribution peaked at 
X=0.8 

The curvature of Va (X) at x = 0 is 

V;(X)/x=o = 4a -! 

{ 

>0, 
X =0, 

<0, 

a > 1/2v2 or a < - 1/2v2, 

a = ± 1/2v2, (9) 

- 1/2v2 < a < 1/2v2. 

The shapes of the symmetric functions Va (X) are shown for 
different values of a in Fig. 1. One can see that for / a I = 0.5, 
Va (x) is a single well; for a = - 0.25, Va (x) has a double-well 
structure; for a = 0.25, the shape of the curve is relatively 
complex. 

The generated Schrodinger equation for the trans-
formed potential Va (x) is 

d
2

7/1 + {E_2[y;(a,x)]2 +(X2 +a)} 7/1=0. (10) 
dX2 Yl(a,x) 4 

It is easy to verify that function [Yl(a,x)]-l satisfies Eq. 
(10) for E = O. The function [YI(a,x)]-1 has no node (as long 
as a is not less than - 0.5) and is a square-integrable func-

-0.5 

v(x) 

0.5 a zOO 

0.25 

0.25 

o~----~~~--+-~----

-0.25 

-05 

FIG. I. Shape of V(x). 
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tion (see Sec. IV) satisfying the natural boundary conditions, 
so it is the ground state of Eq. (10). The higher eigenvalues 
and eigenfunctions can be obtained from Eqs. (3c), (4a), and 
(5): 

En = n + a +!, n = 0,1,2,···, (Ila) 

(Ilb) 

where the Weber function D n (x) can be expressed in terms of 
the Hermite polynomial Hn (xf 

Dn(x) = 2 -nI2e -X'/4H n(xlv2). (12) 

We have thus found all the eigenvalues and eigenfunctions of 
Eq. (10). Furthermore, the normalization factor for 7/1 n (x) can 
be obtained analytically (see Sec. IV). 

III. A NEW TRANSFORMATION 

The solutions to Eq. (3a) can also be given in another 
form: 

1 JX 7/1(x) = -- qJ (x)qJo(x) dx. 
qJo(x) 

(13) 

By substituting 1/qJo into Eq. (3a), one can directly verify 
that it is the solution to Eq. (3a) for eigenvalue E = O. If we 
reinterpret Eq. (3a) as the original untransformed equation, 
then from the Darboux theorem we have the transformed 
potential 

- 1 d 2 

V(x) = - ---.!£2.. = U(x) - Eo 
qJo dX2 

and the transformed equation 

d 2¢ _ 
dX2 + [(E + Eo) - U(X)] 7/1 = 0, 

(14) 

which is the same as Eq. (2) if one notices E = E - Eo. Thus, 
from Eq. (4a), we obtain 

(I5a) 

or 

(I5b) 

To guarantee 

')p'- 1 ')p' = ')p' ')p'- I = ..F, 

where..F is the identity operator, we should choose the lower 
limit Xo for integration in Eq. (15b) such that qJ(xo) = O. How
ever, the undetermined constant in the indefinite integral 
(13) is of no importance because the eigenvalue correspond
ing to 1/ qJo equals zero. 

IV. DISCUSSION 

(1) From the two forms of7/1(x), Eqs. (4a) and (13), we 
have the general relation 

Lx [(qJ (X))' ] qJn(x)qJO(x) dx = C qJo(x) _n - - d qJo(x), (16) 
o qJo(x) 

where 
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d = 970(0) (97n(X))' 
97o(X) x=o 

and c is a constant independent of x. By differentiating both 
sides ofEq. (16), we reobtain Eq. (2); thus the constant c is 
determined as c = - 1/ En. 

(2) Calculation of the normalization factor for rPn de
fined by Eq. (4a) is as follows: 

In == f: '" tfn (x) dx 

= - 2En L'" [970(:: r] 
X [~o (LX 97n97odx' + d)] dx 

= - 2En {[ :: (LX 97n97odx' + d)] I: -L'" 97~dX} 
= 2E [97n(O) d + ('" 2dX]. (17) 

n 970(0) Jo 97 n 

Thus for the example given in Sec. II we have 

From 

Dn(O).D ~(O) = 0, 

YI(a,O) = 1, Y; (a,O) = 0, 

and 

L'" D~(x)dx = ~n!(21T)1/2, 
we obtain finally 

In = (n + a + ~)n!(21T)1/2. (18) 

(3) Calculation of the normalization factor for the 
ground state is as follows: For the ground state E = 0, from 
Eq. (11), we have 

n= -a-!, 
1 _ k ( ) d (D_ a_ 1I2 (X) -D_ a- I/2( -X)) 

---- yla,x - , 
YI(a,x) dx 2YI(a,x) 

(19) 

where k is a constant. Because 

( 0) 1 D ) _ 2v /2 + 112 /ii YI a, =, ~(O = 
F( -212)' 

(20) 

we have, from Eq. (19), 

k = - 2al2 - 114F (a/2 + l)l /ii. (21) 

Therefore 

f'" dx 

- '" ~(a,x) 
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=2k ('" d(D-a-1I2(X)-D-a-I/2(-X)) 
Jo 2YI(a,x) 

D (x)-D (-x) I'" = 2k -a-1I2 -a-l/2 

2YI(a,x) 0 

= _ k lim (D_ a _ I/2( -X)) 
x~'" YI(a,x) 

= V2F (a/2 + A) 
F(a/2 +~) 

(22) 

This result was derived previously in a quite different way.9 
To our knowledge, this integral is not found in tables. 

(4) The exact solutions obtained by means ofthe trans
formations can be used to test approximate methods of solu
tions. For example, applying the WKB approximation to the 
energy levels below the top of the barrier in a symmetric 
double well, 10 one can find that at low transmission the ener
gy levels appear in close pairs. The spectrum of our model is 
one in which all the energy levels higher than the lowest two 
are equally spaced. Thus the model is an example where the 
WKB approximation fails. 

(5) Choosing a linear combination of aYI(a,x) + /3Yz(a,x) 
instead ofYI(a,x) for 97o(X), one can construct an asymmetric 
potential similarly. The discussion will be made elsewhere. 

(6) The methods can be applied to solve the Fokker
Planck equation II and other problems. In addition, the ex
actly solvable double-well potential model has some peda
gogic value. 
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1. INTRODUCTION 

In Ref. 1 it is shown how Gel'fand-Levitan (GL) equa
tions can be obtained by minimizing a certain quadratic 
functional Q (t,K). The motiviation to consider Q (t,K) came 
from a problem in optics2 involving a feedback mechanism 
and statistical averaging but no motivation could be pro
vided within scattering theory to consider Q (t,K). Thus the 
process producing GL equations appeared to simply involve 
a mathematical trick which was naturally considered to be 
"unsatisfactory" in Ref. 1 and the "meaning" of such proce
dures seemed to be worth pursuing further. In the present 
article we will provide an interpretation of such minimizing 
processes in the context of transmutation theory which leads 
us eventually to minimize a quadratic functional essentially 
the same as Q (t,K). This involves a characterization of trans
mutation kernels themselves in terms of a minimization pro
cedure, and we sketch the development for a classical situa
tion (a more extensive and general treatment for operators 
and transmutations as in Ref. 3 is clearly indicated and will 
appear later). Let us remark that there is a discrete version 
(which does not directly generalize) of a related minimiza
tion in the context of orthogonal polynomials, but without a 
connection to Q (t,K) nor any explicit link to transmutation. 4 

Although our characterization of transmutation kernels via 
a minimization is of interest in itself, and moreover provides 
"motivation" for some constructions in Ref. 1, there seem to 
be some deeper relations still beneath the surface. In particu
lar, one knows that various connections between spectral 
measures, transmutation, autocorrelation functions, sto
chastic analysis, least squares optimization, etc., are all in
volved here.4-8 Thus, hopefully this article will provide a 
contribution toward unifying some of this material as well. 

2. BASIC CONSTRUCTIONS 

In classical (half-line) inverse scattering theory in quan
tum mechanics,9.lo one connects eigenfunctions of the 
Schrodinger operator Q = D 2 - q(x) (q real here) with eigen
functions of D 2 via certain (triangular) transmutation kernels 
oftheformp (.v,x) = 8 (x - y) + K (.v,x), whereK (.v,x) = Ofor 
x> y (such K will be called causal here). Thus let rp ¥(x) [resp. 
(J ¥(x)] be solutions of 

Qu = -A 2U (2.1) 

satisfying rp ¥(O) = 1 and D x rp ¥(O) = 0 [resp. (J ¥(O) = 0 and 
Dx (J ¥(O) = 1]. We will writes(A,x) forrp ¥ or(J ¥ and think of 

connecting S(A,x) to a(A,x) = cos AX or a(A,x) = sin AX/ A by 
a formula 

S(A,y) = (1 + K)a = a(A,y) + J: K (.v,X)a(A,xjdx, (2.2) 

which we know to be valid for the GLkernelK = Ko. We can 
assume Ko exists here and our procedure is designed to char
acterize it via minimization. For simplicity now let us think 
of S = (J ¥ and a = sin AX/A, and remark that a systematic 
theory of transmutation operators B: P-+Q can be developed 
for much more general differential operators P and Q (Ref. 
3); the techniques of this article will be correspondingly ex
tended at another time. Now one knows that associated to Q 
and the eigenfunctions (J ¥ = S is a spectral measure 
dO) = dO)Q which we assume here for convenience to be of 
the form dO) = 0) dA (no bound states). Thus one can sup
pose, e.g., 

fO (J ¥(x)(J ¥(.v)dO)(A ) = 8(x - y) (2.3) 

(acting on suitable functions) and we write 
dO) = dO" + U 2dA I1rwithSO'a(A,x)a(A,y)dO" = n (x,y). Thus 

m(x,y) = fO a(A,x)a(A,y)dO) 

= 8(x - y) + n (x,y) = (1 + n )(x,y), (2.4) 

where a = sin AX/ A [we write 1 for the identity operator 
with kernel 8 (x - y)]. Now consider the expression (Tarbi
trary and fixed) 

E(T,K) = iT f'" 1 [(1 + K)a(A,.)] (.v) - s(A,yWdO)(A )dy. 

(2.5) 

Note that when K is the GL kernel Ko [which makes (2.2) 
correct], then formally E(T,K) = O. We can think here ofQ, 
s, a, and dO) as given and the (causal) kernel K (.v,x) in (2.5) as 
unknown. It will be shown formally that: 

Theorem 2.1: The kernel K is obtained by minimizing 
E (T ,K ) over a suitable class of admissible causal kernels sat
isfies the GL equation and represents the transmutation ker
nel Ko connecting S and a via (2.2). 

3. FORMAL ARGUMENTS 

We proceed formally and refer to standard sources3•9.10 

for information about natural properties of K (.v,x), etc. Thus, 
from (2.5), for causal K, 
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E(T,K) = iT fO { [a(A,y) -S(A,y)]2 

+ 2a(A,y) I: K (y,x)a(A,x)dx 

- 2s(A,y) J: K (y,x)a(A,x)dx 

+ I: K (y,x)a(A,x)dx 

X I: K (Y,s larA,s )ds } dW(A )dy. (3.1) 

Now one integrates in A, using (2.4), and the convention 
f~fJ (y,y)dy = Tr fJ, for example, to obtain (note that the 
trace Tr depends on T) 

B(T,K) = B(T) + 2 Tr K + 2 iT I: K(y,x)fJ (x,y)dx dy 

- 2 iT I: K (y,x).8 (y,x)dx dy 

+ iT I: I: K (y,x)K (Y,sll8(x - s) 

+ fJ (x,s)}ds dx dy, (3.2) 

where we have written E(T) = f~{ a(A,y) - S(A,y)}2dw dy 
which we know makes sense [in fact 

B(T) = f~fo(KrP)2dw dy = f~fbf~Ko(y,x)Ko(y,sll8(x - s) 
+ fJ (x,s)}ds dx dy = Tr{Ko(1 + fJ )K~}-seecalculations 

below]. Here the term,8 (y,x) = (S(A,y),a(A,x) w is a standard 
object in general transmutation theory3 which !ppears in 
extendedGLequations [e.g., (f3 (y,! ),&(t,x) = /3 (y,x)] and in 
particular,8 (y,x) = 0 for x <y (Le., it is anticausal) wi.th a 
8 (x - y) term arising along the diagonal. 11 Thus the/3 term 
contributes - 2f~K (y,y)dy = - 2 Tr K to (3.2). We can 
write now 

KfJg(y) = I: K (y,x) 1'0 fJ (x,s)g(s)ds dx 

= 1'0 g(s) {I: K (y,x)fJ (X,S)dX} ds (3.3) 

(for suitable g) so that Tr KfJ = f~{f~K (y,x)fJ (x,y)dx}dy. 
Similarly ker K * = K (·,x) on [x, 00 ) since 
fog(y)f~K (y,x)h (x)dx dy = fo h (x)f;'g(y)K (y,x)dy dx, and 
hence 

KK *g(y) = I: K (y,x) 1'0 K (s,x)g(s )ds dx 

= LX' g(s)iminIY,si K(y,x)K(s,x)dxds. (3.4) 

Consequently Tr KK * = f~{ f~K (y,x)K (y,x)dx }dy. Finally 
we have 

KfJK *g(y) = I: K (y,x) L" fJ (x,s) 
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X 1'" K (s,s)g(s )ds ds dx 

= I: K (y,x) Loo g(s) f fJ (x,s)K (s,s)ds ds dx 

= .r g(s) {I: K (y,x) is fJ (x,s)K (s,s)ds dX} ds· 

(3.5) 
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It follows that Tr KfJK * = f6{ f~K (y,x)f!; 
fJ (x,s)K (y,s)ds dx Jdy. Now go back to (3.2) and inser!. the 
information just derived from Eqs. (3.3)-(3.5) plus the/3 con· 
tribution, to obtain 

Lemma 3.1: The expression E (T,K) defined in (2.5) can 
be written 

E(T,K) =B(T) + Tr{K(I + fJ )K* + KfJ + fJK*}. 
(3.6) 

Proof One obtains from (3.2), E(T,K) = B(T) 
+ Tr {2KfJ + KK * + KfJK * J. But K (1 + fJ )K * 
= KK * + KfJK * with Tr KfJ = Tr fJK * (note fJ * = fJ ). 

Q.E.D. 
Written in the form (3.6), B (T,K) is essentially in the 

same form as the expression Q (t,K )(orD ) in Refs. 1 and2. We 
now formally examine a variational argument to minimize 
E = B(T,K). Thus [noteB;;.O from (2.5)] we know there is a 
minimizing K = Ko in some additive class oR' of admissible 
(causal) ker~els. Then consi~er K = Ko + EL in 
E(T,K) = E(T) + EK(T) [E(T) is independent ofK] for L E oR' 
and E a real number. Formally we set DeEk (T)le ~ 0 = O. 
This leads to Tr {L (1 + fJ )K~J + Tr{Ko(1 + fJ)L *J 
+ Tr LfJ + Tr fJL * = 2 Tr{ [Ko(1 + fJ) + fJ ]L *} = 0 

for L E oR'. If we write now A = Ko( 1 + fJ ) + fJ with kernel 
A (y,x), then evidently ker AL * = f~inls,YiA (y,x)L (s,x)dx [cf. 
(3.4)] and Tr AL * = f~{ fbA (y,x)L (y,x)dx Jdy. The state· 
ment that Tr AL * = 0 for all L E oR' will be true if A (y,x) = 0 
for x <y, and heuristically we conclude here the converse. 

Theorem 3.2: The (unique) minimizing kernel Ko satis· 
fies the GL equation Ko(Y,x) + fJ (y,x) + f!;Ko(Y,S)fJ (s,x)ds 
= o for x <yo 

One knows that the GL equation has a unique solution 
and this is the transmutation kernel of (2.2).3 Hence 
Theorem 2.1 is verified formally. 

Remark 3.3: Let us note also the following calculation 
which will specify (again) the minimum Eo of E (T,K) 
achieved at the G L kernel Ko. Thus given the G L equation in 
Theorem 3.2 we can say Ko + fJ + Krfl = B *, where B is a 
causal operator. It follows easily that 1 + B * = (1 + Ko) 
(1 + fJ), and thus 

(1 +B*)(I +K~)=(I + Ko)(1 +fJ)(1 +K~) (3.7) 

which is formally self·adjoint. But the left side of (3.7) is 
1 + an anticausal operator so both sides of (3.7) must be 1 (cf. 
Ref. 1). Hence [recal1~(T) = Tr{Ko(1 + fJ )K~J], 
Eo = min E (T,K ) = E (T) + min E K (T) 

= Tr{2Ko(1 + fJ )K~ + Krfl + fJK~J 
= Tr{2(1 + Ko)(1 + fJ)(I + K~) - 2(1 + fJ) - 2Ko 
- 2K~ - Krfl- fJK~J = - Tr{2fJ + 2Ko + 2K~ 
+ Krfl + fJK~J = - Tr{B + B * +Ko + K~J 
= Tr{B ·K~ + KoB J = 0 (sinceKo andB are causal-cf. 
Ref. 1). This is the desired conclusion. 12 
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INTRODUCTION 

Our goal here is to solve the inverse scattering problem 
for the Schrodinger equation in two dimensions. That is, we 
recover the potential from the scattering data, which we take 
to be the entire scattering amplitude as a function of the 
energy and two angles. 

Actually, there are a number of aspects to the inverse 
scattering problem: uniqueness, reconstruction, construc
tion, and characterization. The uniqueness problem deals 
with the question, "Does the scattering amplitude uniquely 
determine the potential?" The reconstruction problem is the 
problem of constructing a potential from scattering data that 
are known to come from an underlying potential, whereas 
the construction problem is to construct the potential with
out this knowledge. And finally, the characterization prob
lem is to determine what scattering data actually arise and to 
correlate properties of the potential with properties of the 
data. 

In the one-dimensional case, solutions to all these ques
tions via the Gel'fand-Levitan and Marchenko methods are 
well known. Moreover, in the 25 years since their discovery, 
one-dimensional inverse scattering techniques have been 
found to have important applications not only to particle 
physics but also to geophysics and to certain classes of non
linear differential equations, the so-called soliton equations, 
which themselves describe a wide range of phenomena. 

The popularity of one-dimensional inverse scattering 
has inspired much interest in the construction ofhigher-di
mensional inversion theories; nevertheless, the uniqueness 
question was for many years the only one of the higher-di
mensional inversion questions that was answered satisfacto
rily: although in the one-dimensional case additional bound 
state information is needed for uniqueness, in three dimen
sions the scattering data alone do indeed determine the po
tential uniquely. The other three inversion questions, how
ever, are so much more difficult than their one-dimensional 
counterparts that for 25 years attempts to solve even the 
simplest one, the reconstruction problem, met with only par
tial success. 

The first of these reconstruction attempts was made by 
Kay and Moses,1.2 whose generalization of the Gel'fand
Levitan method accomplished inversion in a class of poten
tials which includes those that are nonlocal (i.e., are not mul
tiplication operators) in the angular variables. This class, 

-) This is based on the author's Ph.D. thesis, "Quantum Mechanical Scatter
ing and Inverse Scattering in Two Dimensions," Indiana University, 
1982. 

however, was never shown to include the local potentials. 
Another attempt, made by Faddeev3 and Newton,4 depend
ed on a new, direction-dependent Green's function which 
had been constructed by Faddeev.s.6 This Faddeev-Newton 
method, however, was awkward and cumbersome, and was 
hampered by a number of unanswered questions concerning 
exceptional points. A third attempt at multidimensional in
verse scattering was made by Prosser,7-9 who attacked all 
three of the remaining inversion problems using essentially 
an iterative scheme that applies only to weak potentials and 
to scattering data that are small in a certain norm. Recently, 
Morawetz lO has found a generalization to higher dimensions 
of the Deift-Trubowitz one-dimensional method. II Her 
scheme, which is also iterative, has yet to be shown to con
verge for any specific class of potentials. Then, beginning in 
1980, Newton published a series of papers 12-14 containing 
successful and elegant generalizations of both the Gel'fand
Levitan and Marchenko methods to three dimensions. Both 
his methods solve the reconstruction problem; his Mar
chenko method, in addition, solves the construction problem 
and gives a partial solution to the characterization problem. 
In this paper, we shall adapt Newton's generalized Mar
chenko method to dimension two. 

Newton's ideas could, in fact, be applied to inverse scat
tering in any dimension provided that the relevant estimates 
hold; the success of Newton's inverse scattering techniques 
in two dimensions thus depends on estimates that can be 
considered part of the direct scattering problem. 

The first five sections therefore contain the necessary 
results concerning direct scattering. Section 1 sets up the 
problem and contains basic facts and definitions for scatter
ing in two dimensions. Also contained in Sec. 1 is a result on 
the behavior of the wave function for large energy. Section 2 
contains the investigation of the wave function's small ener
gy behavior. 

Knowledge of the energy dependence of the wave func
tion is crucial to our method of inverse scattering. In fact, the 
behavior at zero and infinity, which is heavily dimension
dependent, is the reason that later estimates must have 
proofs quite different from those of the corresponding esti
mates of Newton. 12.13 The behavior in two dimensions 
differs from that in three dimensions in its faster decay at 
infinity and in the presence of zero-energy singularities that 
appear in the derivatives. 

The properties of symmetry and analytic continuation, 
however, are exactly the same as in three dimensions. These 
properties are recorded in Sec. 3. 
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Another ingredient essential to inverse scattering is a 
good deal of spectral theory. Fortunately many of the needed 
results have already been proved by Agmon IS and are merely 
quoted in Sec. 4. These include not only the unitarity oftheS 
matrix but also the eigenfunction expansion theorem, which 
is used in Sec. 5 to prove that the scattering operator maps 
incoming to outgoing wave functions. This relation, when 
combined with the analyticity properties of the wave func
tion, forms a Riemann-Hilbert problem or a Wiener-Hopf 
factorization problem. This is the key to the Marchenko 
method of inversion. 

We arrive at Sec. 6 having proved all the estimates nec
essary for the generalized Marchenko method of inverse 
scattering. The inverse scattering results, therefore, are all 
contained in this section; in fact the reader interested only in 
the results might readjust Sec. 6, referring to Sec. 1 for nota
tion. Section 6 is intended merely to give the reader a taste of 
the inverse scattering theory that is more fully developed in 
Newton's series of papers and which is generally dimension
independent. Nevertheless, in Sec. 6, the uniqueness 
theorem is proved, the Marchenko equation is derived, and 
the potential is extracted from the solution of the Mar
chenko equation. Thus the results of Sec. 6 solve only the 
reconstruction problem; the reader interested in construc
tion should refer to Newton's work. 13.14 

Notation 

In what follows we denote by 11·lIp the usual L P norm; if 
confusion is possible, we will add as a superscript the vari
able with respect to which the L P norm is being taken. 

The symbollHlm.p denotes the norm ofthe Sobolev 
space W m

•p , the space of functions with m derivatives in L p. 

We shall writeH2 = W 2,2. 

The symbols fJ,fJ ',fJ" ,t/J, etc., in most places denote unit 
vectors, although occasionally they will be used as simple 
angles in carrying out integrations. Where confusion is pos-

sible, the unit vectors will be decorated with hats, e.g" O. 

1. PRELIMINARIES 

Two-particle scattering in the center of mass system is 
governed by the time-independent Schrooinger equation 

- ..::1tf!(k,x) + V(x)tf!(k,x) = k 2tf!(k,x). 

HerexE R 2, the potential V(x) is real-valued, and k is a posi
tive scalar, 

Scattering solutions are defined by the Lippmann
Schwinger equation 

tf!(k,fJ,x) = exp(ikfJ.x) + I G(k,lx - yllV(y)tf!(k,fJ,y) d 2y, 

(1.1) 

where fJ denotes a unit vector in R 2 and the function G is a 
fundamental solution of..::1 + k 2. We take G to be 

G(k,r) = - (i/4)H~)(kr), 

where Ho is the zero-order Hankel function and r = Ix I, 
In order to apply Fredholm theory, we multiply the 

Lippman-Schwinger equation by I V (x) II 12 and make the fol
lowing definitions: 
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s (k,fJ,x) = I V(X)11/2",(k,fJ,x), 

SO(k,fJ,x) = I V(X)11/2 exp(ikfJ.x), 

VI/2(y) = V(y)W(y)I-1/2, 

K(klf(x) = II V(X)11/2G(k,lx - yllVI/2(ylf(y) d 2y. 

With this notation, the Lippmann-Schwinger equation be
comes 

s (k,fJ,x) = s O(k,fJ,x) + K (k )S (k,fJ,x). (1.2) 

For k bounded away from zero, we recall l6 the follow
ing result concerning the operator K (k ): 

Proposition 1,1: Suppose VEL 2 with f f I V (x) V (y) I Ix 
- yl-I d 2x d 2y = M < 00. Then for each ko>O the esti

mate 11K (k )IIH.8. <ck -1/2 holds for k > ko, where c depends 
only on ko and on V. 

Henceforth we will usually assume that Vbelongs to 
L InL 2 because l6 this assumption allows us to apply Fred
holm theory to (1.2); we obtain a unique solution S (k,fJ,x) 
provided the operator K does not have the eigenvalue 1. Note 
that for k large enough, the operator norm of K (k ) is less than 
1, which certainly implies that (1.2) is uniquely solvable (by 
iteration, in fact). 

We recall 16 that for Vbelonging to L InL 2 with 
fW(x)llxI 4 d 2X < 00, the large x behavior of scattering states 
is given by 

I/J(k,fJ,x) = exp(ikfJ.x) 

+ exp( - 31Ti/4)(81T)- 1/2A (k,x,fJ) 

Xexp(ik Ixl)(k Ixl)-1/2 + h (k,fJ,x), (1.3) 

where x =xllxl, 

A (k,fJ,fJ') = I exp( - ikfJ.xlV(x)l/J(k,O ',x) d 2X, (1.4) 

and 

h (k,fJ,x)eL 2(X) uniformly in fJ. 

The quantity A (k,fJ,fJ ') is called the scattering ampli
tude; it essentially gives us the large x behavior of the wave 
function. We let the scattering amplitude act on L 2(S I) via 
(A (k If)(fJ') = f s,A (k,fJ,fJ 'If(fJ') dfJ;theoperatorA (k )isthen 
bounded 16 and linear on L 2(S I). We also define the scattering 
operator or S matrix S (k ) on L 2(S I) by 

S (k) = I - i(41T)-I(sgn k)A (k). 

In later sections we will also need the following infor
mation on the large k behavior of "'. 

Lemma 1.2: Let VeL 2n W2
,I and suppose that for some 

xo, I V(x - xo)l, IVV(x - xo)l, and 1..::1 V(x - xo)1 are all 
bounded by a decreasing positive radial function F (Ix I) with 

1"" F (r)r dr<cll V 112, I , 

and for some E> 0, F (r) < Mr - I + £ near r = O. Let ko be so 
large that, fork> ko, IIK(k )11 <a < 1. Thenfork> ko, we have 
the estimate 

ltf!(k,fJ,x) - exp(ikfJ.x)l<c k -(I +£/2)12, 

where c depends only on ko and V. 
Proof See Appendix A. 
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2. BEHAVIOR AT k = 0 

Since the kemal of the operator K (k ) contains a Hankel 
function with a logarithmic divergence at the origin, one 
might expect the operator K (k ) and the wave function f/!(k ) to 
diverge logarithmically in some sense at the origin. How
ever, as we shall see, the logarithmic divergence of K (k ) is due 
entirely to a rank-1 piece, and this prevents f/!(k ) from diverg
ing at k = O. 

We recall 16 that properties of the Hankel function allow 
us to write K (k ) = L (k ) + P log k, where 

L (k }fIx) = ~ i JIV(x) I 1/2 

X(H~)(klx-YI)-: logk) 

X V1/2( y}f( y) d 2y, 

Pf(x) = (21T)-11 V(X)II12(V1/2,J). 

If Vis inL I with SIV(x)llxl d 2x and SSIV(x)v(y)llloglx 
- y I 12 d 2X d 2y finite, then L is a Hilbert-Schmidt operator 

and is well behaved at k = O. 
To investigate the behavior of f/! for k near zero, we will 

need the followimg lemma and its corollary: 
Lemma 2. 1: Suppose VEL I with SlxI 2a lV(x)1 d 2X finite 

for some 0 <a < 1. Then II(exp(ikO.x) - 1)1V11/2112 <ck a for 
k near zero. 

Proof Note that exp(ikO.x) - 1 = (kO·xtha (kO·x), 
where ha(it) = (exp it - l)t - a. The function h is bounded 
because it is continuous and decays to zero for both large and 
small t. Thus 

II(exp(ikO.x) - 1)1 V 11/211~ 

= J(ko.x)2ah ~ (ikO.x) I V (x) I d 2X 

..;;k 2ac flxI2alV(x)1 d 2X. QED 

Corollary 2.2: Suppose VEL InL 2withSlxl2al V(x)1 d 2x 
finite for some 0 < a < 1, and suppose (I - L (0))-1 exists. 
Then for to(k) = exp(ikO.x) I V(X)11/2 and for k near zero, 

11(1 - L (k ))-ltO(k) - (I - L (k ))-11V1 1/2112..;;ck a. 
Proposition 2. 3: Let VEL InL 2withSlxllV(x)1 d 2x< 00, 

and suppose (I - L (0))-1 exists. Then t (k) satisfies 

t(k) = (I - L (k ))-ltO(k) 

(VI/2,(I - L (k ))-It O(k)) log k 
+ 21T - (V1/2,(I - L (k ))-11 V11/2) log k 
X (I - L (k ))-IIVI I12. (2.1) 

The L 2 norm is bounded by 

IIt(k)1I2";;c(logk)-1 ifao#O, 
..;;C ifao = 0, 

where ao = (VI/2,(/ - L (0))-11 V 11/2). 
Proof We shall solve the equation (I - K (k ))t = to as

suming that (I - L (k )) -I exists in a neighborhood of k = O. 
Rewriting the equation in terms of the operators PandL, we 
have 

(I - L (k ))t - (log k IPt = to. (2.2) 

Since P is a rank-1 operator, it will tum out that 
Pt = a I V (x) 11/2, where the constant a is given by 

a = (21T)-I(V1/2,t). (2.3) 

We will determine a at the end of our calculation. In the 
meantime, writing Pt = al V 11/2, we can solve Eq. (2.2): 

t = (I - L (k ))-1 [SO + a(log k)1 VII/2]. (2.4) 

It now remains to determine the value of a. To do this, we use 
(2.3) and (2.4): 

a = (21T)-1(V1/2,(I - L (k ))-I[tO + a(log k)1 VII12]) 

= (21T)-I(V1/2,(I - L (k )-ISO) 
+ a(21T)-I(log k )(VI/2,(I - L (k ))-11 VII/2). 

Solving this linear equation for a gives 

a = (V1/2,(I - L (k ))-ltO) 
21T - (log k)( VI/2,(I - L (k ))-11 V 11/2) 

Substitution of this value for a back into our expression for t, 
(2.4), gives us (2.1). 

We now compute the limit as k-D of (2.1). We write 
SO = 1V1 1/2 + (SO - 1V1 1/2);byCorollary2.2, the inner pro
duct in the numerator of (2.1) is (VI 12,(/ - L (k )) - II V 11/2) 
plus something that decays like k a as k-D. In the limit as 
k-D, we may therefore replace the tOby I VII12. We recall16 

that differentiability of (I - L (k )) - I allows us to write 
(V1/2,(I - L (k ))-11 V 11/2) = ao + alk, where 

ao = (VI/2,(/ - L (0))-11 V 11/2) 

and a I is bounded for small k. With this in mind we compute 

t (0) = (I - L (0)) -IIV 11/2 if ao = 0, 

= 0 ifao#O. 

We will also need a bound for Ilt(klllz. Equation (2.1) 
yields 

t(k) = (I - L (k ))-I(tO(k) - I V11/2) + (I - L (k ))-11 VI I/2 

(
1 [(V1/2,(/ - L (k ))-11 V11/2) + (V1/2,(I - L (k ))-I(tO -I V11/2))] log k ). 

X + 21T _ (V1/2,(I - L (k ))-IIV 11/2)log k 

Corollary 2.2 then gives 

..;; c(log k )-1 if ao#O 

..;; c if ao = O. 
QED 
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3. SYMMETRY AND ANALYTIC CONTINUATION 

So far the wave function 1/J has been defined only for 
positive k-the speed of the incoming particle. However, the 
Lippman-Schwinger equation makes sense for other values 
of k as well. 

Invariance of the fundamental solution and of the plane 
wave under simultaneous complex conjugation and substitu
tion of - k for k shows that the wave function satisfies 

1/1( - k,(),x) = 1/I(k,(),x). 

This equation defines the wave function for negative k. 
Similarly there is a relation between the incoming and 

outgoing waves 

1/J-(k,(),x) = 1/1( - k, - (),x). 

We will also need the reciprocity theorem, which is an 
expression of time reversal invariance of the scattering pro
cess. 

Proposition 3.1 (Reciprocity Theorem): Let VEL InL 2. 
Then A (k,(),() ') = A (k, - () " - () ). 

Proof See Appendix B. 
Next we tum to the analyticity properties of the wave 

function as a function of k, which we now consider as a 
complex variable. Since we obtain the wave function only by 
means of the Lippman-Schwinger equation, we must ana
lytically continue the integral equation. 

First we note that the operator GV is Hilbert-Schmidt 
in the open upper half k-plane. 

Proposition 3.2: Let VEL 2. Then for 1m k > 0 the opera
torG(k)VgivenbyG(k)Vf(x) = (- iI4)SHo(k Ix - yl)v(y) 
fly) d 2y is Hilbert-Schmidt, and IIG(k )VIIH.S. <clk I-I. 

Proof 

IIGVII~.s. = cf flHo(k Ix - yl)v(yW d 2xd 2y 

= cll VII~ flHo(k IzlW d 2z 

= cllVll~ Ik 1-2f IHo(lz'lk Ilk IW d 2z' 

<clk 1- 2
• QED 

Similarly we have: 
Proposition 3.3: Let VEL 2. Then the operator K (k) (de

fined in Sec. 1) is Hilbert-Schmidt for 1m k~O, k #0. 
Proof The proof is similar to that of Proposition 

3.2. QED 
However, the inhomogeneity in Eq. (1.2) is not in L 2 for 

1m k> 0; we multiply the equation by exp( - ik().x) to obtain 

X(k,(),x) = I V(X)11/2 + %(k )X(k,(),x), 

where 

X(k,(),x) = I V(X)11/21/J(k,(),x) exp(ik().x) 

and where %(k ) depends on (): 

97 

%(k )fIx) = ~ i f lV(x)11/2Hbl)(k Ix - yl)V1/2( y) 

X exp( - ik().(x - y))f( y) d 2y. 

Proposition 3.4: Let VEL 2 with 

J. Math. Phys .• Vol. 25, No.1, January 1984 

ff 
lV(x)v(y)1 d 2xd 2y< 00. 

Ix-yl 
Then the operator %(k ) defined above is Hilbert

Schmidt for 1m k~O, k # 0, and satisfies 
11%(k )IIH.S. <clk 1- 1/2. 

Proof We apply the definition of the Hilbert-Schmidt 
norm to the operator %: 

1I%(k)II~.s. = c f flV(X)v(Y)IIH~)(k Ix - ylW 

X exp(2 1m k().(x - y)) d 2X d 2y = c(II + 12), 

where II and 12 are the integrals over the sets Ik I Ix - yl < 1 
and Ik I Ix - yl > 1, respectively. 

First we consider II' We use the small-argument behav
ior of the Hankel function to bound II by 

II<f r I V(x)v(y)lllog k Ix - yW 
J1kllx-YI<l 

Xexp(2 1m k()·(x - y)) d 2x d 2y. 

Next we let z = x - y and note that for Ikzl < 1, 
1m k()·z< Ikzl < 1. Thus we have 

II<cfr lV(z+Y)V(Y)1110gklzI12d 2zd 2y 
J1kZi < I 

< cllV II~ r Ilog k Izl12 d 2Z < cllV II~ Ik 1-2. 
J1kzl <I 

We now tum to 12 , We use the large-argument behavior 
of the Hankel function to bound 12 by 

12<f r lV(x)v(y)lexp( - 2 1m k (Ix - yl 
J1kllx-YI>1 

+ ().(x - y)))(lk Ix - yl)-I d 2x d 2y. 

Note that the coefficient of - 2 1m k in the exponent is al
ways positive; thus the exponential is bounded by 1. Use of 
this fact gives us 

12<lk I-Iff lV(x)v(y) I d 2x d 2y<clk I-I. QED 
Ix-yl 

Corollary 3.5: Let VEL InL 2. Then, for each (), 
X(k,(),x) = I V (x) 11I21/J(k,(),x)exp(ik().x) is a meromorphic L 2_ 
valued function of k for 1m k > O. 

Remark 3.6: A similar argument shows that, for 
VEL InL 2andforeach(),x-(k,(),x) = I V(x)11/21/J-(k,(),x)exp
( - ik().x) is a meromorphic L 2-valued function of k for 
Imk<O. 

4. AGMON'S SPECTRAL THEORY RESULTS 

In this section we shall quote various results of Ag
mon 15 that will be used in the next section. 

Let L 2'S(R 2) denote the space of complex-valued func
tions u(x) on R 2 with (1 + Ixl2y12 u(x)EL 2(R 2), and let the 
weighted Sobolev spaces H m.s consist of L 2,s functions with 
the first m derivatives also in L 2,s. 

Agmon proves the following three theorems: 
Theorem 4.1: Let H = - Ll + V, where VEL ~ with 

V(x) = 0 (Ixl- I
- E) as Ixl~oo. Consider the resolvent 

(H - E) -I as an analytic operator-valued function on 
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C\a(H) with values in B (L 2",H 2. - ') for any S> !. Then for 
real E #0, the limits 

lim(H - E ± i€)-I 
E->O 

exist in the uniform operator topology of B (L 2",H 2, - '). 

Theorem 4.2: Let H = - A + V, where VeL ~oc with 
V(x) = 0 (Ixl- 3/2 - £) as Ixl-oo. Then there exist two fam
ilies t/J ± (k,O,x) of generalized eigenfunctions of H such that 
for every fixed k and 0, t/J ± (k,O,x) as a function of x belongs 
to C (R 2'y:lH ~oc (R 2) and satisfies the Schrodinger equation. 
Furthermore, for almost all fJES I, t/J ± satisfies 

t/J ± (k,O,x) - exp(ikO.x) 

= -lim(H - k 2 ± i€)-I(V(X) exp(ikO·x)). (4.1) 
E->O 

The eigenfunctions t/J are continuous in k,O, and x. 
Theorem 4.3: LetH = - ..1+ Vwhere VeL ~oc with 

V(x) = O(lxl - 3/2 - J as Ixl-oo, and let t/J ± be the above 
family of generalized eigenfunctions. Let P(a2,b 2) for a > 0 de
note the usual spectral projection. Then for any feL 2, 

(P(a'.b2!)(X) = (21T)-2fllt/J ± (k,O,x) 

X I t/J ± (k,O,y)f( y) d 2y dO k dk. 

We must now relate Agmon's generalized eigenfunc
tions t/J to our wave functions t/J ± . We first obtain a rela
tion bet~een the full and free resolvents by multiplying the 
relation - A + V + E = ( - A + E) + Von the left by 
(- A + E)-I and on the right by ( - A + V + E)-I. This 
gives us the relation 

(-A +E)-I = (-A + V+E)-I + (-A +E)-I 

XV(-..1+V+E)-I. 

Multiplication on the left by (I + ( - A + E) - I V) - I gives us 

(-A + V+E)-I = (I + (-A +E)-IV)-I 

X( -A +E)-I. 

In Agmon's notation this is 

- (H - k 2 ± i~)-I = (I - G( +k + i€)V)-1 

XG(+k+i€). 
Upon composition with the multiplication operator V1/2, 
this is 

- (H - k 2 ± i~)-IVI/2 
= (I - GV)-IIVI-1/21V11/2GVI/2 

= IVI- 1I2(I-K(+k+i€))-IK(+k+i€). (4.2) 

The formula (4. I) can then be expressed as (4.2) applied totO, 

t/J± (k,O,x) 

= exp(ikO.x) - lim(H - k 2 ± i€2) - I( V (x)exp(ikO.x)) 
£--+0 

= (lV(x)I-1/2I + lV(x)I-1/2(I -K =i=)-IK =i=)tO 

= lV(x)I-1/2(I + (I -K =i=)-IK =i=)r 

= 1V11/2(I-K=i=)-lr 

= IV 1I/2t =i=(k,O,x) 

=t/J=i=(k,O,x). 
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5. THE SCATTERING OPERATOR 

In this section we investigate some of the properties of 
the scattering operator. 

The Marchenko method of inverse scattering rests on 
the following theorem (see Ref. 17). 

Theorem 5.1: Let VeL ~oc with V(x) = 0 (Ixl- 2 - £) as 
Ix 1-00. Let the scattering amplitude act on L 2(S I) via 

A (k )f(0) = r A (k,O ',0 )f(O') dO', JSI 
and let the scattering operator S (k ) be defined as an operator 
onL 2(SI) by 

S(k) = I - i(41T)-1 sgn k A (k). (5.1) 

Then 

S(k )t/J-(k,O,x) = t/J+(k,O,x). (5.2) 
Remarks: The factor sgn k in (5.1) is needed to make 

(5.2) hold for negative k. 
We shall show that the equality in (5.2) holds in the 

sense of H 2, -, for some s > ~; however, we recall (Theorem 
4.2) that t/J+ and t/J- are continuous in x. Equation (5.2) 
therefore holds for each x. 

Proof We use Theorem 4.2 to write out the expression 

t/J+(k,O,x) - t/J-(k,O,x) = lim((H - k 2 + i€)-I 
£--+0 

- (H - k 2 - i€)-IHV(x)exp(ikO.x)), 

where the limit is in the H 2, -, norm for some x > !. By 
Stone's formula, 18 the jump in the resolvent is the spectral 
projection, which in tum is given by Theorem 4.3: 

- (H - k 2 - i€)-1)2k dk (V(x)exp(ikO·x)) 

= - P 2 8)') (V(x)exp(ikO·x)) 
(ko,(k.,+ 

= - (21T)_2{o+8 L t/J-(k,O',X)I t/J (k,O',y)V(y) 

X exp(ikO·y) d 2y dO' k dk. 

Because of the symmetry properties of the wave function and 
scattering amplitude set forth in Sec. 3, the y integral is pre
cisely A (k,O ',0). To remove the integration over k, we next 
multiply by 1/8 and take the limit as 8 approaches zero. 
Provided that the 8 and € limits are interchangeable, contin
uity in k gives us 

t/J+(k,O,x) - t/J-(k,O,x) 

= -i(41T)-d t/J-(k,O',x)A(k,O',O)dO'. JSI 
This proves the theorem, provided we can show that we 

may interchange the 8 and € limits. In other words, we must 
show that the following expression approaches zero as 8 goes 
to zero: 
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1(£5) 

= II~( ! ) f:+Il((H - k 2 - iE)-1 - (H - k 2 + iE)-I) 

x (V(x)exp(ikO.x))k dk 

_ 2k lim((H - k 2 - iE)-1 - (H - k 2 + iE)-I) 
E-oO 

X (V(x)exp(ikO.x)) 112,2, _.' 

where the norm is the H2, -s norm. We write the second 
term as the integral of a constant vector times 1/£5. Then 
continuity of the norm allows us to bring the E limit outside; 
since the k integral is a limit of sums, the triangle inequality 
tells us that we can only increase I (£5) by bringing the norm 
inside the integral. We shall consider only II, the - E term; 
the + E term is similar. We have 

IM)< ~ lim f III((H - k 2 - iE)-1 
£5E---+O 

- (H - k ~ - iE)-I)(V(x)exp(ikO,x))112,2,_s 

+ II(H - k ~ - iE)-I(V(x)(exp(ikO.x) 

- exp(ikoO.x))) II 2,2, _s}k dk 
<2lim max (lI(H - k 2 - iE)-1 

E---+O (1eo,1eo + III 

- (H - k~ - iE)-lllllVllo,2,s 

+ II(H - k~ - iE)-IIIIIV(x)(exp(ikO.x) 

- exp(ikoO.x)) 110,2, _ s), 

which goes to zero by continuity of the resolvent. [The hy
pothesis V(x) = O(lxl- 2 -, insures that II V(x)(exp(ikO.x) 
- exp(ikoO.x))lIo,2,s-o.] QED 

The following estimate on the scattering operator will 
allow us to define a Fourier transform in the next section: 

Proposition 5.2: Let VE W 2,1, and suppose that, for some 
xo, I V(x - xo)l, IVV(x - xo)l, and l.:i V(x - xo)1 are all 
bounded by a decreasing positive radial function F (Ix I) with 
fO'F(r)rdr<cll Vlb,l andF(r) <Mr- I 

+E near 0 for some 
!>E>O. Then 

Loo 00 (II(S (k ) -llfll!:I)2 dk<c(ilfll!:'f 

Proof Tum to Appendix C. 

6. INVERSE SCATTERING 

This section is devoted to methods discovered by New
ton 12 of extracting the potential V (x) from the scattering am
plitude A (k,O,O '). 

We note first that the scattering amplitude does indeed 
uniquely determine the potential: 

Theorem 6.1 (Uniqueness): Suppose the scattering am
plitudeA (k,O,O ') is constructed from a potc;...ntial V (x) belong
ingtoL InL 2. Then the Fourier transform Vcan be recovered 
by means of the formula 

V(x) = lim A (k,O,O '). (6.1) 

kIO-O'I=x 

This limit, an ordinary pointwise limit, is uniform in the 
sense that the difference 

V(k (0 - 0')) - A (k,O,O') (6.2) 
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goes to zero uniformly in both angles as k goes to infinity. 
Proof We write out the definition of each term of (6.2) 

and apply the Schwarz inequality: 

IV(k (0 - 0')) - A (k,O,O ')1 

= If exp(ikO.x)V(x)(exp(ikO '·x) - tP(k,O',x)) d 2X I 

<IIVIIIIIIVI I/2(t/I(k,O',x) - exp(ikO'·x))1I2· 

In the notation ofEq. (1.2), the second factor of this last 
expression is S - so. We write (1.2) as S = (1- K)-ISo 
= SO + K(I- K)-ISo. This allows us to bound (6.2) by 

IV(k (0 - 0 ')) - A (k,O,O ')1 

<IIVIII IIK(k )1111(1- K(k ))-IIIIIVIII' 
(6.3) 

By Proposition 1.1, the right side of(6.3) goes to zero as k 
becomes infinite. 

QED 
Remark: Formula (6.1) is the well-known Born approxi

mation. It gives a simple solution ofthe inverse scattering 
problem provided that the scattering amplitude is known for 
all k. In fact, this method of inversion depends exclusively on 
the high energy scattering data, which in practice may be 
known only approximately. There is, therefore, reason to 
investigate other inversion techniques, especially those 
whose dependence on high energy data might be less severe. 
One such technique is given in the following theorem. 

Remark 6.2 (Notation): We shall use the following nota
tion. We define the operator Q: L 2(S I)-+L 2(S I) by 
Qf(O) = I( - 0). We use.'7 for the vector-valued Fourier 
transform in k, 

.'7 J(a) = (21T) -1/2 f: 00 exp( - ikalf(k ) dk, 

where for I belonging to L 2(S I), the limit inherent in the 
integral is taken in the norm topology. 

We write,8(k,O,x) = t/I(k,O,x)exp( - ikO·x) and 
1](a,O,x) = .'7 k(f3 (k,O,x) - 1); we note that Lemma 1.2 im
plies that,8 - 1 is a square-integrableL 2(S I)-valued function 
of k, and thattherefore 1] is asquare-integrableL 2(S I)-valued 
function of a. 

We define the operator Y(k): L 2(S I)-+L 2(S I) by 

Y(k) = exp(ikO.x) S(k) exp( - ikO·x), where the exponen

tials act as multiplication operators and S (k ) denotes the 
integral operator whose kemal is the complex conjugate of 
that of S (k ). For any I belonging to L 2(S I), we write 
G (alf = .'7 k- 1((Y(k) -llf); by Proposition 5.2, G (alfis a 
square-integrableL 2(S I)-valued function of a. We note that 
G depends on x; this dependence will, however, be sup
pressed in what follows. Explicitly, G (a) is given by 

G(a)/(O) 

= (21T)- 1/2f: 00 exp(ik (a + O.x))i(41T)-I(sgn k) 

X r A (k,O ',0) exp( - ikO '.xlf(O') dO' dk. (6.4) JSl 
Theorem 6.3 (The Marchenko Equation): Suppose VEW2,I 
with V(x) = 0 (ixl- 2 -, as Ixl-+oo, and suppose that, for 
somexo, lV(x - xo)l, IVV(x - xo)!, and!.:i V(x - xo)! are all 
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bounded by a decreasing positive radial function F (Ix I) with 
SO'F(r)rdr<:;cll Vlb andF(r)<Mr- 1 Hnearzeroforsome 
0< E <!. Suppose further that -..::1 + V has no bound or 
half-bound states. Then in the notation of the above remark, 
the following equation in L 2(R + xS I) holds for positive a 
and for fixed x 

1/(a,O,x) = Loo G (a + {3 )Q7J(f3,O,x) d{3 + G (a) 1. (6.5) 

Remark: The above hypotheses on Vallow, for exam
ple, radial potentials with logarithmic singularities at Xo' Ab
sence of bound states can be ascertained by means of the two
dimensional Levinson theorem. 16 Inversion in the presence 
of bound states can be accomplished with the use of further 
dimension-independent techniques developed by New-
ton. 12-14 

Proof Theorem 5.1 gives us the relation 

S(k )lp-(k,O,x) = f/!+(k,O,x); (6.6) 

Sec. 3 allows us to eliminate f/!- from (6.6): 

S(k)Qf/!+( - k,O,x) = f/!+(k,O,x). (6.7) 

Note that f/!+(k) is analytic in the upper half-plane in k while 
f/!+( - k )isanalyticin the lower one; (6.7) is therefore a Wie
ner-Hopf factorization problem or a Riemann-Hilbert 
problem. We shall solve the problem by using the Fourier 
transform to convert it into an integral equation. 

In (6.7), we first put - k in place of k and use the fact 

that S ( - k) = S (k ): 

S (k )QtP(k,O,x) = f/!( - k,O,x); 

then multiplication by exp(ikO.x) gives, in the notation of 
Remark 6.2, 

Y(k )Q13 (k,O,x) = {3 ( - k,O,x). (6.8) 

In order to apply the Fourier transform to (6.8), we must 
subtract off the asymptotic values: 

{3( - k) - 1 = (Y(k) - I)Q(f3(k) - 1) 

+ Q({3(k) - 1) + (Y(k) - I)Q 1. 
(6.9) 

Application of the inverse Fourier transform to (6.9) now 
gives 

1/(a,O,x) = f~ 00 G (a - {3 )Q7J( - {3,O,x) d{3 

+ Q7J( - a,O,x) + G (a) 1. (6.10) 

Note that analyticity of {3 (k ) - 1 in the upper half k-plane 
implies that 1/(a,O,x) is zero for negative a. Consideration of 
positive a only in (6.10) gives us the Marchenko equation 
(6.5). 

Theorem 6.4 (Compactness): Let VEW 3
,1 with 

SlxliW(x)1 d 2x < 00 for i = 1,2,3,4, and suppose that for 
somexo, I V(x - xo)l, IVV(x - xo)l, and 1..::1 V(x - xo)1 are all 
bounded by a decreasing positive radial function F (Ix I) with 
SF(r) dr and SF(r)~/2 dr finite. Suppose also that 
(I - L (0)) -I exists. Then the integral operator ~ occuring in 
the Marchenko equation is a Hilbert-Schmidt operator on 
L2(R +XSI). 

Proof The proof will be given in a later paper. 
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Remark 5.6: Newton has shown13 that the spectrum of 
~ is in fact contained in the interval [ - 1,1]. Thus, if ~ has 
neither the eigenvalue 1 nor - 1, then ~ is a contraction 
and the Marchenko equation can be solved by iteration. 

The above theorem allows us to apply Fredholm theory 
to the Marchenko equation, and, if the spectrum of ~ does 
not contain the point one, to obtain a solution 1/(a,O,x) be
longing to L 2(R + X S I) for each x. We could then invert the 
Fourier transform to obtain the wave function, which could 
then be used in the formula 

V(x) = [(..::1 + k 2)f/!(k,O,x)]ltP(k,O,x). 

However, the following formal calculation gives a simpler 
method of recovering the potential. 

Weusef/!(k,O,x) = {3 (k,O,x)exp(ikO.x) in theSchrodinger 
equation, and find that the function {3 (k,O,x) satisfies the 
equation 

(..::1 + 2ikO· V)/J = V. 

Into (6.11) we substitute 

{3 (k,O,x) = 1 + :7;; 1(1/(a,O,x)), 

obtaining 

(6.11) 

fO (..::1 - V(x) + 2ikO,V)1/(a,O,x)exp(ika) da - V(x) = O. 

(6.12) 

Formal integration by parts of the third term of(6.12) leads 
to 

V(x) + 20,Vx 1/(0,O,x) 

+ fO eXP(ika)[..::1- V(x) - :a o,v]1/(a,o,x)da =0. 

For smooth 1/, the integral will go to zero for large k and 
leave us with 

[..::1 x - V(x) - (a/aa)O,Vx ]1/ = 0, 

V(x) = - 20,Vx 1/(0,O,x). (6.13) 

Equation (6.13) is known as the miracle. It is related to 
the characterization problem as follows. If the scattering 
amplitude with which we begin is known to come from a 
potential satisfying the hypotheses of Theorem 6.3, then the 
right side of (6.13) is guaranteed to be independent of O. 
However, if we begin with an inadmissible scattering ampli
tude (i.e., one that does not correspond to a potential), then 
the miracle will not be satisfied (i.e., the right side of (6.13) 
will depend on 0 ). By counting variables, it is easy to see that 
most randomly chosen scattering amplitudes will not lead to 
a miraculous solution of(6.5). This is because the scattering 
amplitude, a function of three variables, is being used to de
termine the potential, which is a function of only two varia
bles. At present, this miracle is the only known characteriza
tion of admissible scattering amplitudes. 
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APPENDIX A: LARGE k BEHAVIOR OF 1/J 

Lemma 1.2: Let Ve W 2
•
lnL 2, and suppose that for some 

xo, I V(x - xo)l, IVV(x - xo)l, and I.J V(x - xo)1 are all 
bounded by a decreasing positive radial function F (Ix I) with 
fO'F(r)rdr<cllVlb andF(r) <Mr- I H near r = 0, for 
some E> O. Let ko > 0 be so large that for k> ko, 
11K (k )11 <a < 1. Then, for k> ko, ltP(k,O,x) - exp(ikO·x) I 
<ck - (I + El2)l2, where c depends only on V. 

Proof The wave function 1/J is defined by Eq. (1.1). Pro
vided that k is not an exceptional point, this equation has a 
solution with S = I V II 12f/!eL 2. We split the integral in (1.1) 
into pieces corresponding to small and large arguments of 
the Hankel function: 

f Hgl(k Ix - yl)V(y)tP(k,O,y) d 2y = II + 12 + 13 + 14, 

where 

-us 2 II = -- log(k Ix - yl)V(y)1/J(k,O,y) d y, 
17' Ix - yl < k - , 

12 = r [Hgl(k Ix - yl) 
)Ix-yl <k-' 

2' ] + ; log(k Ix - yl) V(y)1/J(k,O,y) d 2y, 

13 = r 21/2(17'k Ix _ yl)-1/2 
)Ix-yl>k-' 

Xexp[ik Ix - YI- !i17'] V(y)tP(k,O,y) d 2y, 

14= r [Hgl(klx-yl)-21/2(17'klx-yl)-1/2 
)lx-YI>k-' 

X exp(ik Ix - yl - !i17')] V( y)tP(k,O,y) d 2y. 

Application of the Schwarz inequality to II gives 

1111< ~ (L-YI<k-' Ilog k Ix - yWIV(y)ld
2
y )1/211s 112' 

(AI) 

For k> ko, the second factor of (A 1) is bounded by 

lis 112«1 + 11K II + 11K 112 + "')lIsOIIz 
«1 - a)-IIIVIII' (A2) 

where the notation is as in Eq. (1.2). In the first factor of (AI ), 
we let x - y = r,p with,p = (x - y)llx - yl and r = x - y: 

r rk
-' Ilog krI21V(x-r,p)lfdrd,p 

)s')o 
k -, 

<217' 1 (kr) -1- E/2F(lr - Ix +xolllrdr 

<217'k -1-E/2lk-'F(lr_lx +xolllr- E/2 dr. (A3) 

The integral converges ifit converges when the singularities 
coincide; therefore (A3) is bounded by 

k -, 

ck - I - El2l r - I + El2 dr<ck - I-E. 
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Thus we have 1111<cllVlllk -(I H)/2. 
We treat 12 the same way and obtain the same bound: 
1121<cllVlllk -(IHI/2. 

Next we consider 13, We replace 1 V 11/21/J by 

lV(y)11/21/J(k,O,y) = lV(y)11/2exp(ikO.y) 
+ K ( k)[ IV( y)11/2tP(k,O,y)]. 

This splits 13 into 13 = Is + 16, where 

Is = r 21/2(17'k Ix _ yl)-1/2 
)Ix -yl>k-' 
Xexp[ik Ix - yl-!i17' + ikO.y] V(y)d2y, (A4) 

16 = r 21/2(17'k Ix - yl)-1/2exp [ik Ix - YI- i17'/4] 
)Ix-yl >k-' 
X VII2( y)K (k)[ lV(y)11/2tP(k,O,y)] d 2 y. (AS) 

First we consider Is. Letting z = x - yin (A4) gives 

Is = ( ~ ) 112 exp( -4
i17'

) 

X r exp[ik Izl + ikO.(x - z)] 
)Izl > k-' 

X(k Izl)-I1 2 V(x - z) d 2z. 

With z written in polar coordinates as z = r~, Is becomes 

Is = ck -1/2exp ( - i17' + ikO.x) L'" r l/2 
4 k-' 

Xexp(ikr) i exp( - ikr cos,p )V(x - r~) d~ dr, (A6) 
s' 

where the unit vectors are now adorned with hats and,p is the 
angle between the vectors ~ and O. We can now apply the 
stationary phase approximation (Appendix D) to the angular 
integral: 

i exp( - ikrcos,p )V(x - r~) d~ 
S' 

= M(kr)-1/2(aV(x - rO) + bV(x +,0)) + R, 

where 

IR I <M(kr)-Irp.ax[ I V(x - ~ )1,IVV(x - r~ )1, 
¢€S' 

I.J V (x - r~ ) J . 

We note that over the range of integration in (A6), we have 
(kr)-I < 1. This allows us to combine the leading term and 
remainder term: 

Next we consider 16, We apply the Schwarz inequality 

1161«~ r lV(y)1 d2y)1I2I1K(k)(IVII/21/JlII2 
k )IX-yl>k-' Ix - yl 

<ck -1/2(J 1V(~zl z)1 d 2z )1I2I1K (k )11 lis liz 

<ck- I, 

where we have used the estimate IIK(k )1I<ck -1/2. 

Margaret Cheney 101 



                                                                                                                                    

Finally we consider 14, Application of the Schwarz ine
quality and use of information about the asymptotic behav
ior of Hbl

) gives 

1141«L_YI>k_' c(k Ix - yl)-31V(y)1 d Zy)1I2111V11/z¢IIz. 

(A7) 

Since k Ix - yl > 1, some of the factors of k Ix - yl in the de
nominator can be replaced by 1; we also use inequality (A2) 
to estimate the second factor of (A 7). 

1141 < (Ck - I - <12 

X ( ( lV(x + rtp )lr-I-</2rdrdtP)1/2 Elh. 
JS,Jk-' I-a 

<ek -(I H12)/Z( i~, F(lr - Ix + xoII)r-<12 dryl211V111 

< ell V II Ik -(I + </2)12. 

APPENDIX B: THE RECIPROCITY THEOREM 

Proposition 3.1: Let V belong to L InL z. Then 
A (k,O,O') = A (k, - 0', - 0). 

Proof We recall that the scattering amplitude is given 

by A (k,O,O') = f exp(ikO·x) V(x)¢(k,O',x) d 2X. We now use 
the Lippman-Schwinger equation (1.1) to write the exponen
tial in terms of the wave functions: 

A (k,O,O') = J ¢ (k,O,x)V(x)¢+(k,O',x) d Zx 

-J J G (k,lx - yl)v(y)¢ (k,O,y) d 2y 

X V(x)¢+(k,O',x)d 2x. 

Next we use the symmetry properties mentioned at the be
ginning of Sec. 3: 

A (k,O,O') = J ¢+(k, - O,x)V(x)¢+(k,O ',x) d 2X 

-J ¢+(k, - O,y)V(y)J G +(k,lx - yl) 

X V(x)¢+(k,O ',x) d 2X d Zy. 

Again we use the Lippmann-Schwinger equation to obtain 
an exponential: A (k,O,O') = N+ (k, - O,x) V (x) 
X exp(ikO ' ·x) d 2X = A (k, - 0', - 0). The interchange of x 
and y integration in the third step is justified by absolute 
convergence of the iterated integral: 

J JIG -(k,lx - yl)V(y)¢-(k,O,y)l d 2y 

X lV(x)¢+(k,O',x)1 d 2x 

<fl(Kt)(k,O,x)llt(k,O',x)1 dZx 

< 11K II "tll~· QED 

APPENDIX C: STRONG SQUARE INTEGRABILITY OF 
s-/ 

Proposition 5.2: Let VEW2,1, and suppose that for some 
xo, lV(x - xo)l, IVV(x - xo)l, and 1.1 V(x - xo)1 are all 
bounded by a decreasing positive radial function F (Ix I) with 
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and 

F(r) <Mr - 1+< near zero, 

where O<€<!. Then 

J: 00 (il(S(k) - Ilfll~))Z dk<e(ilfll~)t (Cl) 

[The superscript 0 reminds us that this is the L Z(S I) norm.] 
Sketch of Proof (Details may be found in Cheneya)): Let 

us fix ko>!, and split the left side of(Cl) into small-k and 
large-k pieces. 

The small-k piece is easy: the results of Sec. 2 show that 
liS (k) - I II is bounded for Ik I < ko, which implies that 

J~okoll(S (k) - I lfll~ dk<ellfll~· 

Now we consider Ik I > ko. The difficulty we face is to 
extract from the integrand enough negative powers of k to 
make the k integral converge. In order to obtain explicit 
formulas, we write out the first few terms of the Born series: 

I V Il/z¢ = (I - K )-1(1 V 11/2exp(ikO '.x)) 

= (I + K + (I - K)-IK Z)(1V1 1/2exp(ikO'.x)). 
(C2) 

This allows us to write the kernel of S (k ) - I as 

(S(k) -1)(0',0) 

= - i(41T)-J exp( - ikO·x)V(x)¢(k,B',x) d Zx 

=D1 +Dz+D3, (C3) 

where 

DI(k,B',B) = - i(41T)-JeXP( - ikO·x)V(x) 

X exp(ikO ' ·x) d 2X, (C4) 

D2(k,0 ',0) = - i(41T)-J exp( - ikO·x)Vl/z(x) 

X ~ J W(X)11/2 

XHo(k Ix - yl)Vl/z(Y) 
X lV(y)II/Zexp(ikO '.y) dZy d 2x, (C5) 

D3(k,0 ',0) = - i(41T) - J exp( - ikO,x)Vl/2(x) 

XII _K)-IKZ 

x(1 VII/2exp(ikO '.x)) dZx. (C6) 

Because we know from Sec. 1 that 11K II behaves like 
Ik I-liZ for large k, it is fairly easy to see that 

i IIDdll~ dk<cllfll~· 
Ik I >ko 

The terms corresponding to Dl and D z, however, require 
more work. 

First we consider the part of the (CI) integral corre
sponding to DI 
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16r ( II ( DI(k,B,B ')f(B') dB' 112 dk 
Jlkl>ko JSI 2 

= ( (( I exp( - ik (B' - B ).x) 
Jlkl>koJs,Jsl 

X V(x) d 2xf(B') dB' i,I exp(ik(B"-B).y) 

X V(y)d 2y f(B ") dB" dB dk. (C7) 

The absolute convergence of the B integral allows us to do 
the B integration first: 

( exp(ikB·(y - x)) dB = 211"Jo( Ik I Ix - yi). (CS) 
Js, 

Next we let z = x - yin (CS) and use the asymptotic expan
sion for Jo to split up (C7) into pieces corresponding to 
Izl < Ik I-I and Izl > Ik I-I, respectively. 

The piece corresponding to Iz I < I k 1- I is fairly easy be
cause Jo is bounded near the origin. We obtain the necessary 
k decay by using the inequality I < Ikzl- I and by noting that 
the domain of z integration shrinks as k grows. 

The piece of (C7) corresponding to Izl > Ik I-I is harder 
to estimate. We shall consider in detail only the leading term 
of the Jo asymptotic expansion; the remainder term already 
contains a factor of(lkzl)-3/2 and is therefore easier to esti
mate. We write the leading term as 

F=211" L'>ko ili,LI>lkl~II V(z+y) 
X21/2(11"lkzi)-I12cos(lkzl - A11") 

X exp(ikB '.z) d 2Z V( y)exp(ik (B " - B ').y) 

X d 2y f(B') dB' f(B ") dB" dk. (C9) 

We letz = r¢> in the innermost integral of(C9); thezintegral 
is then 

(00 (V(r¢> + y)21/2(11"lk Ir)-1I2 
Jlkl~1 JSI 

X cos( I k I r - A11") exp(ik cos ¢ )d¢> r dr, 

where the unit vectors are now adorned with hats and ¢ is the 
angle between the vectors ¢> and 0 '. 
Use of the stationary phase approximation (Lemma D.I) on 
the ¢ integral gives 

( VIr¢> + y) exp(ik cos ¢) d¢> = R + U(k,r,O ',y), 
Js' 

where 

U(k,r,O',y) = MI(lk Ir)-1/2(aV(rO' + y) + bV( - rO' + y)) 
(ClO) 

and 

IR I<M2(lk Ir)-I 

Xrpax{ I VIr¢> + y)I,IVV(r¢> + y)l, 1.::1 VIr¢> + Y)ll· 
¢eS' 

(Cll) 

This application of the stationary phase approximation to 
(C9) gives 
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F=211" ( (( ( V(y) 
Jlkl>ko JsIJs,Jlkl~1 

X exp(ik (B" - B ').y)21/2(11"rk )-1/2 

X cos(lk Ir - !11"j(U(k,r,B ',y) + R) 

xrdrd 2yf(B')dB' fIB") dB" dk, (CI2) 

where we have once again dropped the hats on unit vectors. 
Next we split up the y integral in (CI2): F = FI + F2, where 

I i i 1 1
00 

F I =(S11")1/2 V(y) 
Ikl>ko S' S' lyl<lkl-< Ikl~1 

X exp(ik (B" - B ')oy) cos(lk Ir - !11") 

x(lk Ir)-1/2(U(k,r,O',y) + R )rdrd 2yf(O') 

dO' f(O ") dO" dk, (C13) 

(same integrand). (CI4) 

To estimate FI , we use the bounds (ClO) and (CII) in 
(C 13) to obtain decay of I k 1- I. We obtain additional decay 
by using the hypotheses on the potential and by noting that 
the domain of y integration shrinks as k grows. 

Next we consider F2 [Eq. (CI4)]. We splitF2 into pieces 
corresponding to integration over different parts of S 1. We 
write S I = S < uS> , where S < corresponds to 
10 ' - 0 "I < I k I - I + 2E and S> corresponds to 
10' - 0"1> Ik I-I +2E. ThusF2 = CI + C2 , where 

1 i i 1 1
00 

CI = (S11")1/2 V(y) 
Ikl>ko s' s< lyl>lkl~< Ikl~' 

X exp(ik (0" - 0 ').y) 

X(lk Ir)-1/2cos(lk Ir - !11"j(U(k,r,O ',y) + R) 

xrdrd 2yf(O') dO' f(O") dO" dk, (CI5) 

C - (S11")1/2 ( (( ( ("" 
2- Jlkl>koJSIJS)IYI>lkl~EJlkl~1 

(same integrand). (CI6) 

First we consider CI: (ClO) and (CII) applied to (CI5) 
give us 

ICII«S11")1Iz( (( ( (00 (Ik Ir)-1/21V(y)1 
Jlkl>k)S' Js< JIYI>lkl-E Jlkl~' 

xl (211")1/2(lk Ir)-1/2F(lrO' + Xo + yl) 

+ (211")1/2(lk Ir)-1/2F(I- rO' +xo + yl) + 4M2 

x(lk Ir)-IF(lr¢o +xo + yIJlrdrd 2yl/,((}')1 

XdO' If(O")1 dO" dk. (Ct7) 

Over the range of integration r> I k 1-1, we can bound 
(Ik Ir)-I by (lk Ir)-1/2. We also use the fact that 
I ± rB' + Xo + yl and Ir¢o + Xo + yl can be bounded below 
by IIxo + yl - rl to simplify (Ct7); we obtain 
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lell <c ( Ik I-d ( f lV(y)1 
Jlkl>ko JS.JS< 

x (00 F(jlxo + yl _ rlJ dr d 2y 
Jlkl-' 

X [((0')1 dO'[((O")1 dO" dk. 

Carrying out the rand y integrations gives us 

lell< ( Ik I-I ( ( IIVIII 
Jlkl>ko Js' Js< 

X [((0 ')ldO '[((0 ")1 dO" dk. 

We next apply the Schwarz inequality to the 0' integral, ob
taining 

X [((0 ")1 dO" dk. (CIS) 

The 0' integral of (CIS) is the measure of the angle sub
tending the chord oflength I k I - I + 2E between the unit vec
tors 0' and 0". It is not hard to show that the measure of the 
angle also behaves like Ik 1- I + 2E for large k. This gives us 
the additional k-decay we need in order to show leI I <cl[(II~. 

We now turn our attention to e 2 [Eq. (CI6)]. The right 
side of(CI6) contains two pieces, one corresponding to U 
and the other to R. By (CII), the term corresponding to R 
already contains a factorof(lk Ir)-3/ 2

; in order to make both 
the r integral and the k integral converge, we replace 
(Ik Ir)- 3/2 by (Ik Ir) - I - E/2. This trick disposes of the remain
der term, and we are left with the term corresponding to U. 
This term we write as 

e3 = (S1T)1/2 ( (1(0 ') 
Jlkl>k)S' 

X( 1(0")( (00 V(y) 
Js> JIYI>lkl-<Jlkl-' 

X exp(ik (0 " - 0 ').y) 

X(lk Ir)1/2 cos(lk Ir -1T/4)MI (lk Ir)-1/2 

X [aV( - rO + y) + bV(rO' + y)] 
Xrdrd 2ydO'dO"dk. (CI9) 

We note that they integral of(C19) can be done first because 
the inner two integrals (r and y) converge absolutely. The y 
integral of(CI9) can then be evaluated by lettingy = s¢J and 
applying the stationary phase approximation to the ¢J inte
gral as follows. For notational convenience we define 

W(s¢J,rfJ ') = V(s¢J )[aV( - rfJ' + s¢J) + bV(rfJ' + s¢J)] 
and 

0= (0' - 0")/10' - 0"1. 

Then the y integral is 

(00 1 W(s¢J,rO ')exp(iksIO' - 0" I cos ¢J) d¢J s ds. 
Jlkl-< s· (C20) 

Application of the stationary phase approximation (Lemma 
0.1) to (C20) gives us 
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(00 !MI (l k lsI0'-0"1)1/2 
Jlkl-< 

X [aW(sO,rO ') + bW( - sO,rO ')] + R '}s ds, 

where 

IR 'I<M2(lk IsIO' - 0 "/)-1 

Xmax! I W(s¢J,rO ')I,lvw(s¢J,re ')1,1.1 W(s¢J,rO ')I}· 
<PES' 

We use this in (CI9) to obtain 

le3 1<c ( Ik I- d [((0')1 
Jlkl>ko Js' 

X 1> [((0 ")1 

X (00 (00 !M
I
(lklsI0'-0"1}-1/2 

Jlk 1-< Jlk 1-' 
X laW(sO,rO ') + bW( - sO,rO ')1 + IR '1 J 

XdrsdsdO'dO"dk. (C21) 

In (C21) we use the assumptions on the potential 

I W(sO,rO ')1 <F(js - IXolDF(IIIxol - sl- rl)· 

A similar bound holds for V Wand .1 W. This allows us to 
estimate the right side of(C21) by 

le3 1<c ( Ik I-I ( [((0")1 
Jlkl>ko Js' 

X( [((0')1(00 
Js> Jlk 1- < 

X (00 [!lk lsI0'-0"1)-1/2+(lklsI0'-0"1)-I] 
JIW ' 

XF(ls - IXoll)F(IIIxol - sl- rl) 

X dr s ds dO ' dO " dk. (C22) 

We now carry out the r integration and use the fact that over 
the range of integration, we have Ik I slO' - 0" I> Ik IE. We 
can therefore bound the right side of (C22) by 

le31<c ( Ikl- I ( [((0")1 ( [((0')1 
Jlkl>ko Js· Js> 

X (00 F(s _ IXol)lk I-E/2 

Jlk 1- < 

XS ds dO' dO " dk<cl[(II~. 

We have now shown that the right side of(C7) is bound
ed by cl[(l1~ ; in other words, we have disposed of the D I term. 
Next we must consider the D2 term. 

We write out the piece of the (Cl) integral correspond
ing to D2 [(C5)] 

16r r II r D2(k,fJ,fJ ')f(fJ ') dfJ' 112 dk 
Jlkl>ko Js' 2 

= r r ( JJ..!...- V(x)Ho(lk Ilx - yl)v(y) 
Jlkl>kjS' Js' 4 

X exp( - ik [O'·y - O.x])y d 2xl(0')dO' 

xL. J J( - i/4)V(z) Ho(lk liz - wl)v(w) 

xexp( - ik [O·z - 0 ".w]) d 2w d 2zf(0 ")dO" dOdk. 
(C23) 
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In the right side of (C23), we make the substitutions 
i = x - y and w' = z - w, and note that the 0 integral is 
absolutely convergent. The 0 integral can therefore be done 
first: 

( exp(ikO.(z - xl) dO = 21TJo(lk liz - xl), 
Js· 

and so (C23) is 

1~ ( IID2/112 dk 
Jlk I >ko 

= !!... ( (1(0 ') I I ( 1(0") 
8 Jlkl>kJS' Js· 

x I I Jo(lk (z - x) 1)V(x)Ho(lky'I)v(x - y') 

xexp[ - ikO '.(x - y')] d 2y' d 2x dO' VIz) 

X Ho(lkw'l) VIz - w') exp[ - ikO" .(z - w')] 

Xd 2w'd 2zdO"dk. (C24) 

We shall obtain the sought-after k-decay from the spa
tial integrals. We therefore estimate they' (or w') integral of 
(C24) first; we write 

I Ho(lky'I)V(x - y') d 2y' = II + 12, 

where II and 12 correspond to integration over the sets 
I ky' I < 1 and I ky' I > 1, respectively. 

Use of the small-argument behavior of Ho to estimate I I 
gives 

IIII<e ( Iloglky'!V(x - i)1 d 2y'. (C25) 
JlkY'1 <I 

We apply HOlder's inequality to (C25), obtaining 

To (C26) we apply Lemma D.2: 

( i 'k'-' )(1 + EI-' 
IIII<e 21kl- 1 

0 F(r)I+Edr 

<e(lk 1- 1- .-')(1 H)-'. 

Use ofthe large-argument asymptotic behavior of Ho to 
estimate 12 shows 

II21<e ( Iky'I-1/2!V(X-y')ld 2y' 
JIY'I>lkl-' 

<elk 1- 1/2 (oo F(lx-y+xol)lyI I /2dIYI 
J1kl-' 

<elk 1- 1/2. 

Thus the y' integral of (C24) can be estimated for large k by 

If Ho(lky'I)V(x - y') d 2y' I <elk 1- 1/2. 

This shows that the right side of (C24) is bounded by 
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e ( Ik 1-lllflli 
Jlkl>ko 

xI IIJo(Jk(Z - x)I)1 !V (x) I !V(z) I d 2x d 2zdk. (C27) 

It remains to do the x andz integrals of(C27); to do this 
end, we let z' = z - x, and split the z' integral into pieces 
corresponding to integration over Ikz'l < 1 and Ikz'l > 1, re
spectively. We obtain extra k-decay in the small-argument 
piece because the domain of integration shrinks as k----. 00 • 

Decay is obtained in the large-argument integral from the 
Ikz'I-1/2 behavior of Jo at infinity. QED 

APPENDIX D: TECHNICAL LEMMAS 

Lemma D.l (Stationary phase approximation): Let 
Q E C 2(R 2). Then 

( Q (r~ )exp(ikr cos ¢ ) d¢ 
Js' 

= MI(Jk Ir)-1/2(aQ(r~) I + bQ(r~) I ) + R, (D1) 
</>=0 </>=11" 

where 

IR I<M2(lk Ir)-Itp.ax (IQ(r~ )I,IVQ(r~ )I,IAQ(r~ )11; 
</>ES' 

(D2) 
here ~ = (cos ¢, sin ¢ ), a and b are constants of modulus 1 
and the M; are positive constants independent of Q. 

Proof The prooffollows Erdelyi. 19 Our first task is to 
split up the integral 

1= ( Q (r~ )exp(ikr cos ¢ ) d¢ (D3) 
Js' 

so that we consider only one stationary point at a time. To 
this end, we write I = II + 12, where II is the integral over 
[0,1T] , 12 the integral over [1T,21T]. First we consider II' which 
we split into II = A + B, where 

A = [ Q (r~ )exp(ikr cos ¢ )1](¢ ) d¢, (D4) 

B = i11" Q (r~ )exp(ikr cos ¢ ) [1 - 1](¢ )] d¢, (D5) 

and where 1] is an infinitely differentiable cutoff function 
with 

1](¢) = 1 

=0 
for 0<¢<1T14, 

for 31T14<¢<1T. 

We consider A first. In (D4) we make the change of 
variable t 2 = 1 - cos ¢; 

A = exp(ikr) fOl' Q(r~) 
X exp( - ikrt 2)il(t )2t [1 - (1 - t 2)2] -112 dt, (D6) 

where il(t ) = - 1](arccos( 1 - t 2)). Integration by parts of 
(D6) [differentiation of 2Q (r~ )il(t )(2 - t 2) - 112 and integra
tion of exp( - ikrt 2)] gives 

A = (ikr) [ 2Q (r~ )il(t )h l(t)(2 - t 2)- 1/21r" 

_ (2
01

' ~(2Q(r~)il(t)(2-t2)-1/2)hl(t)dt], (D7) 
Jo at 
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where 

hl(t) = - exp( - isgn k : ) 

X Loo exp [ - ik{t + 0" exp( - i sgn k : ) y] dO". 

To compute the first term of (07), we need to evaluate hI at 
zero: 

hl(O) = - exp( - i sgn k : ) L
oo 

exp[ - Ik Ir~] dO" 

= - 11'1/2(1k Ir)-1/2exp( - i sgn k : ). 

We substitute this expression into (07) and recall that 
ii(21/2) = 0. Equation (07) is then 

A = (211')1/2(1k Ir)-1/2exp(ikr) 

Xexp( - i sgn k 11'/4)Q(r¢ )I~=o + Rp 

where 

R I = - exp(ikr) 

X (" ~ [2Q (r¢ )ii(t)(2 - t 2)-1/2]h l (t) dt. 
Jo at 

We have now found the leading term of(OI); our next 
task is to obtain the correct decay for the remainder. To this 
end, we integrate R I by parts; this gives us 

R I = - exp(ikr) 

X ~ [2Q (r¢ )ii(t)(2 - t 2)-1/2]h2(t )Ir' + R 2, (08) 
at 

where 

R2 = exp(ikr) 

X (" a
2

2 [2Q (r¢ )ii(t )(2 - t 2) -1/2] h2(t ) dt (09) 
Jo at 

and where h2' given by 

h2(t) = - exp( - i sgn k : ) 

X 100 

O"exp[ -ik{t+O"exP( -isgnk: )y] dO", 

(010) 

is the primitive of h I satisfying 

h2(0) = - exp( - i sgn k : ) 100 

0" exp( - Ik Ir~) dO" 

= - (Ik Ir)-Iexp( - i sgn k : ). (011) 

To estimate h2(t) for t > 0, we note that along the path of 
integration, the quantity 

- ikr(t + 0" exp( - i sgn k 11'/4)f + Ik Ir~ 

= - ikr[t 2 + 2to" exp( - i sgn k 11'/4) 

+ (sgn k )i~ - i sgn k~] 

= - ikrt [t + 20" exp( - i sgn k 11'/4)] 

has negative real part; thus 

exp[ - ikr(t + exp( - i sgn k 11'/4)0")2] <exp( - Ik Ir~). 

With this estimate, we have 
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With this information, a bound on R I can be obtained as 
follows. We writep(t) = ii(t)(2 - t 2)-1/2. Then we compute 
the derivatives appearing in (08) and (09) [' = (d /dt)]: 

a A A A A 

at [Q(r¢)p(t)] = Q(r¢)p'(t) + VQ(r¢).¢'p(t) 

and 

~ A 

at 2 [Q(r¢}Jl(t)] 

= Q(r¢ )p"(t) + 2VQ(r¢ ).¢ 'p'(t) 

+ VQ(r¢ ).¢ "p(t) + VQ(r¢ lIl¢ '112p(t). 

Let 

M2 = 6 max IIp'(t)I,lp''(t)I,I¢ 'p(t)I,12¢ 'p'(t)l, 
0<1«1 + 2 - 0/21'" 

Then 

IR I I<M2(1k Ir)-I 

1¢"p(t)III¢'1I2Ip(t)IJ· 

X max IIQ(r¢ )1,I~Q(r¢ )1,I~Q(r¢)1 J. 
0<1«1 + 2- 112)112 

This concludes the estimate for A; now for D, the change 
ofvariablest 2 = cos ¢ + 1 gives a similar estimate; and in 12 
the change of variables.B = ¢ - 11' converts 12 to an integral 
ofthe form II' 

Lemma D.2: Let F (r) be a positive non increasing func
tion on [O,b ], b > 0. Then for a > ° and a > 0, 

f F(la - rl)t' dr<2b a lb F(r) dr. (012) 

Proof In the left side of (012) we note that r<b, and 
then we use the definition of absolute value 

1= f F(la-rl)t'dr<b a f F(la-rl)dr 

L
min,a.b) lb 

=b a F(a-r)dr+b a F(r-a)dr. 
o minla,b) 

In the first integral let s = a - r; in the second let s = r - a. 

Then 

I<b
a 

[_minla.bIF(S) ds + b
a fi~a~bl_aF(S) ds. 

Case a <b: 

I<b a [F(S)dS+b a f- a 

F(s)ds 

<2b a fF(S) ds. 

Caseb<a: 

I<b a [-b F(s)ds<b a f F(s)ds. 
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Eigenvalues and eigenfunctions associated with the Gel'fand-Levltan 
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It is shown here that the solutions of the Gel'fand-Levitan equation for inverse potential 
scattering on the line may be expressed in terms of the eigenvalues and eigenfunctions of certain 
associated operators of trace class. The details are sketched for the case of rational reflection 
coefficients, and carried out for the simplest class of examples. 

PACS numbers: 03.80. + r, 03.65.Nk 

1. INTRODUCTION 

The Gel'fand-Levitan equation plays a central role in 
solving inverse scattering problems in one dimension. 1 In the 
case where the problem involves a scattering potential V (x) 
defined for - 00 < x < + 00, for example, we know that 
V(x) may be recovered from the reflection coefficient r(k), 
defined for - 00 < k < + 00, as follows: set 

R (x, y) = r(x + y) = _1_ J + 00 e - ikxr(k )e - iky dk, (1) 
21r - 00 

and then solve for K (x, y) the Gel'fand-Levitan equation 

K (x, y) + R (x, y) + f~ 00 K (x,z)R (z, yJdz = O. (2) 

Then the potential V(x) appears as 

V(x) = 2~K (x,x). (3) 
dx 

(See Ref. 2 for a general discussion of this procedure.) 
In order to study the behavior of the solutions of(2), it is 

useful to consider the associated equation, to be solved for 
K(x,y,w): 

K (x, y,w) + R (x, y) + f~ 00 K (x,z,w)R (z, yJdz = O. (4) 

Evidently K (x, y,x) = K (x, y). Now (4) may be expressed in 
operator form with w as a parameter: 

K(w) + R + K(w)P(wlR = o. (5) 

Here R, K (w), and P (w) are integral operators with kernels 
R (x, y), K (x, y,w), and P (x, y,w), with 

P(x,y,w)=8(w-x~(x-y). (6) 

Here 0 (z) is the Heaviside function, and 8(z) its derivative. 
Now (4) yields 

K(w)(I +P(wlR) = -R, (7) 

and hence, whenever (I + P(wlR) is invertible, 

K(w) = -R(I+P(w)R)-I. (8) 

Now suppose that the reflection coefficient r(k) is such 
that its Fourier transform r(z) is smooth and integrable. Then 

"Research Sponsored in part by AFOSR Grant No. 81"()2S3A. 

it follows that the operator P (wlR is of trace class for each w, 
and 

tr P(w)R = f~ 00 r(2zJdz. (9) 

One can then define the Fredholm determinant.d (w) of the 
operator (I + P(wlR) by (cf. Ref. 3, p. 255ft) 

.d (w) = det(I + P(w)R) 

= exp tr 10g(I + P(w)R). (10) 

Evidently 

log.d (w) = tr 10g(I + P(wlR) (11) 

and so 

d .d '(wI 
- log.d (w) = -
dw .d (w) 

= tr P'(w)R (I + P(wlR )-1 

= - tr P'(w)K(w). (12) 

Here we have used (8). But P '(w)K (w) has kernel 
8(w - x)K (x, y,w), so 

- tr P '(w)K (w) = - f~ 00 8(w - x)K (x,x,wJdx 

= -K(w,w,w) 

= -K(w,w). (13) 

Hence by (3) 

d 
V(w) = 2-K(w,w) 

dw 

d 2 

= - 2-
2 

log.d (w). 
dw 

(14) 

This formula, which gives V directly in terms of R, first 
appears in Ref. 4, and has since been rediscovered by several 
authors, including us.s In one sense, this formula by-passes 
the Gel'fand-Levitan equation, since it gives V directly in 
terms of R, and once Vis known everything about the scat
tering problem is known, at least in principle. 

In another sense (14) is no better than (4), since the cal
culationofthedeterminant.d (w)of(I + P(wlR )isnotusual1y 
an easy matter in practice. One possible approach is to calcu-
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late the eigenvalues An (w) of the operator P (w)R and use them 
to calculate A (w): 

00 

A (w) = IT (1 + An (w)). (15) 
n=l 

We indicate here how this might be done in the case where 
the reflection coefficient r(k ) is a rational function of k. (This 
case has already been treated by other methods in Refs. 6 and 
7.) 

Accordingly, we assume now that r(k ) has the form 

r(k) = p( - ik )/q( - ik), (16) 

where p and q are polynomials with real coefficients, chosen 
so that degree p < degree q, and so that r(k ) is regular in the 
upper half k-plane. If r(k ) is to be a reflection coefficient, then 
we should require that I r(k ) I..;; 1 and r(0) = - 1, but these 
requirements will play no role in solving (4). 

It follows from our assumptions that R (x, y) = r(x + y) 
vanishes if x + y < 0, and satisfies an ordinary differential 
equation if x + y > 0, of the form 

q(D )R (x, y) = p(D )8(x + y), (17) 

whereD = d /dx. 
The eigenvalues An (w) ofthe trace-class operator P (w)R 

are discrete and the corresponding eigenfunctions t/Jn (w) sa
tisfy 

P(w)Rt/Jn(w) = An (w}cPn(w). (18) 

It follows that tPn(w) = P(w)tPn(w) and, hence, that 

R (w)tPn(w)=P(w)RP(w)tPn(w) = An (w)tPn(w). (19) 

Moreover, it is easy to verify from (1) that if I r(k ) I ..;;M, then 
the operator R 2 is positive and satisfies O..;;R 2..;;M2/. It fol
lows that the same is true of R (wf Hence we have 

O";;A ~(W)..;;M2. (20) 

Since R (w) is of trace class, we also have, after a suitable 
rearrangement, 

M2;;;'A ~;;;'A ;;;;'''';;;'A ~ to, (21) 
00 

L An(W) = tr(P(w)RP(w)) = tr(R (w)), (22) 
n= 1 

00 

IT (l + An(W)) = A (w). (23) 
n=l 

Now Eq. (19) may be written, for - 00 <x..;;w, 

J~ 00 R (x + y)tPn (y,w)dy = An (w)tPn (x,w). (24) 

Applying (17) to (24), we get, for - w..;;x..;;w, 

An (w)q(D )tPn (x,w) = J~ 00 q(D)R (x + y)tPn (y,w)dy 

= p(D )tPn ( - x,w). (25) 

It follows that, for - w..;;x..;;w, 

A ~ (w)q( - D )q(D )tPn (x,w) = An (w)P(D )q( - D )tPn ( - x,w) 

= p(D)P( - D )tPn (x,w). (26) 

Thus we see that the eigenfunctions t/Jn (x,w) of the operator 
R (w) = P (w)RP (w) satisfy an ordinary differential equation 
of even order with constant coefficients. By inserting the 
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known form of the solutions of this equation back into (24), 
we may determine the integration constants and the admissi
ble values of An(W). Specifically, the solutions of(26) all have 
the form 

m 
A. ( ) - ~ (A ikt" B - ikt") 'l'n X,W - ~ je + je , (27) 

j=l 

where the ± kj are the 2m solutions of the equation 

r( - k )r(k) = A ~(w). (28) 

Here m is the degree of the polynomial q. Note that if kj is a 
solution of this equation, then so is - kj' and so is kj . We 
assume here that these solutions are all distinct, and that 
Im( + kj);;;.O. 

Now if we insert (27) back into (24), do the integration, 
and equate coefficients of the various resulting exponentials, 
we get 2m - 1 equations relating the A j and Bj' and one 
equation determining the admissible values of An (w) for giv
en w. Details are presented in the next section. 

Once the eigenvalues An (w) and eigenfunctions tPn (x,w) 
ofthe operator R (w) = P(w)RP(w) are known, then we can 
calculate the determinant A (w) by (15). Moreover, we can 
also calculate the kernel of K (w), since if the eigenfunctions 
tPn(w) are normalized by 

then we have, for - 00 < x, y..;;w, 
00 

R (x,y,w) = L An(W)tPn(x,w)tPn(y,w), 
n= 1 

and so, by (8), for - 00 <X,y";;W, 

00 - An(W) 
K(x,y,w) = n~l 1 + An(W) tPn(x,w)tPn(y,w) 

and 

G'.) -An(W) 2 

K (W,W,W) = n~l 1 + An (w) tPn (w,w) . 

But from (12) and (13) we have 

d 
K (w,w,w) = - -log A (w) 

dw 

= _ i: A ~(w) . 
n=l 1 +An(W) 

(29) 

(30) 

(31) 

(32) 

(33) 

Comparing (32) and (33), we see that when x = w, we have 

tPn (W,W)2 = A ~ (w)/ An (w). (34) 

On the other hand, since R (x + y) = ° if x + y < 0, we see 
from (24) that, when x = - w, we have 

tPn ( - w,w) = 0. (35) 

Thus we see that the eigenfunction tPn (x,w) of R (w) vanishes 
unless Ixl ..;;w, and then is a real exponential polynomial 
which vanishes at x = - wand takes the value (A ~ (w)/ 
An (WW /2 atx = + w. 

It is not clear to us yet what role these eigenvalues and 
eigenfunctions may play in a further study of the Gel'fand
Levitan equation, nor what physical significance, if any, may 
be attached to them. We note here only that Eq. (4) admits an 
iterative solution 
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K (w) = - R (w) + R (W)2 - R (W)3 + ... (36) 

which converges in operator norm, according to the Fred
holm theory, if and only if the eigenvalues An(W) of R (w) all 
satisfy 

(37) 

This condition provides a natural obstacle to the conver
gence of any iterative procedure. In the physically interest
ing case lr(k)1 < 1, and so (20) implies (37). We conclude that 
in this case the iterative solution (36) actually converges geo
metrically in operator norm to the operator K (w). 

lt may also be possible to develop effective approximate 
solutions to the Gel'fand-Levitan equation by using a finite 
number of the eigenvalues and eigenfunctions as normal 
modes, to be computed numerically, e.g., by a suitable vari
ational principle. 

2. CALCULATIONS 

Now we assume that r(k) is rational, of the form (16), 
and rewrite it as 

r(k)= i _ai_. 
i=1 k-b i 

(38) 

Here ai and bi are complex constants, with 1m bi < O. We 
assume that the bi are all distinct. It follows from (1) that 

R (x + y) = () (x + y) i ( - iai)e - ib,{x + y). (39) 
;=1 

We now insert the forms (27) and (39) into Eq. (21) and equate 
the coefficients of the exponential terms e ± ikr. In this way 
we find 

To satisfy (40) and (41), we put 

s(kj) = (r( - kjW12, 

t(kj) = (r( + kj W12, 

(43) 

(44) 

where the square roots are chosen so that s(kj)t (kj ) = - A. 
Then we put 

Aj = s(kj)Cj , (45) 

Bj = t(kj)Cj , (46) 

with Cj to be determined, and note that (40) and (41) are 
satisfied for any choice of Cj • 

Now (42) takes the form 
m 

L AijCj =0, (47) 
j=1 

where the matrixAij is given by 

A -A (w 1) _ s(kj) ~kj-b,)w t(kj) -i(kj+b,)w .. - ij ".. - e - e 
IJ i(kj - bi ) i(kj + b;) 

(48) 
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Note that the kj' and hence the Aij' depend on A. Equation 
(47), and hence (42), admits a nontrivial solution if and only if 

det(Aij(w,A )) = O. (49) 

This is the case only for certain values An of A; these values 
A n are then the eigenvalUes, and the corresponding functions 
¢n are the eigenfunctions of (24). In this way the eigenvalue 
problem for (24) reduces to the problem of solving (49). 

It is instructive to apply this same procedure to obtain a 
solution K (x, y,w) for the integral equation (4). An argument 
similar to that leading to (26) shows that if y < x, then 
K (x, y,w) satisfies a differential equation in y of the form 

q( -D)q(D)K(x,y,w) =p(D)P( -D)K(x,y,w). (50) 

Here D = a; ay. Hence K (x, y,w) must have the form 

K(x,y,w) = i Aj(x,w)eikjY + Bj(x,w)e-ikjY, (51) 
j=1 

where the kj are now solutions of 

r( - k )r(k ) = 1. (52) 

This is just (28) with A 2 = 1. If we insert (50) and (39) into (4) 
and equate coefficients of e ± ikj y

, we find 

(53) 

( 

m a. ) 
i~1 _ k

j 
'_ b

i 
Bj = r( - kj)Bj = Aj , (54) 

~ ( __ A..:..j_-ei(k) - b,)w Bj - i(kj + b,)W) 
£.. e - e 

j= 1 i(kj - bi) i(kj + b;) 

= _ e - ib,x. (55) 

Note that (53) and (54) are just (40) and (41) with A = - 1, 
and (42) is the homogeneous form of (55). Hence, with the 
choices (45) and (46) (with A = - 1) for Aj and Bj' we know 
that (53) and (54) are satisfied, and (55) becomes 

~ A C _ -ib,x £.. ijj--e (56) 
j= 1 

with the matrixAij = Aij(w, - 1) given again by (48), with 
A = - 1. When lr(k)1 < 1, we know [cf. (20)] that A = - 1 
cannot be an eigenvalue of R (w), and hence that 
detAij(w, - 1) cannot vanish. Hence Aij(w, - 1) must be in
vertible. Setting 

Bjdw) = (A -I(w,l))jk, (57) 

we have 

Cj(x,w) = i Bjk(w)e - ib"x, 
k=1 

and so 

(58) 

K (x, y,w) = - i Bjk (w)e - ib"x(s(kj )eikP> + t (kj)e - ikp». (59) 
j,k= 1 

Since 

s(kj )ikp> + t (kj)e - ikp> = A kj (y)ibk Y, (60) 

where A kj(y) = dA kj (y, - l)ldy, we may rewrite (59) as 
m 

K ( ) } B ( )A' ( ) - ibk(x - y) x, y,w = - j,t: 1 jk w kj y e . 
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In particular, when x = y = w, (61) becomes 

K(w,w,w) = - ~tr log A (w, - 1). 
dw 

Comparing (62) with (33), we see that 

..::i (w) = constX det A (w, - 1). 

(62) 

(63) 

The constant in (63) need not be 1, as our example in the next 
section shows, but it plays no role in determining K (w,w) or 
V(w). 

3. EXAMPLES 

Here we work through the simplest class of examples. 
We assume that m = 1 in (3S) and set a l = ia, hi = - iP, so 
that 

r(k)- ia __ a_ 
- k + iP - P - ik' 

(64) 

with a.p real constants, a.p> O. (The potentials for these 
reflection coefficients have been obtained using Gel'fand
Levitan methods for - p<a <P in Refs. S and 9 and for 
a = P in Ref. 10. Note that the case a = P is a pathological 
case in which two distinct potentials can be found which 
have the same reflection coefficient. 10) Then we have from (1) 

R (x + y) = O(x + y)arP("+Y), (65) 

and the eigenvalue equation (24) becomes 

a f~" e - P(" + Y),p (y,w)dy = A,p (x,w). 

One may verify that (26) holds: 

A2q( -D)q( +D)t/J(x,w) 

= A 21/3 2 - D 2)t/J (x,w) 

= p(D)P( - D )t/J (x,w) = a2,p (x,w), 

(66) 

(67) 

from which it follows that,p (x,w) must have the form (setting 
kl=K) 

,p (x,w) = AeiK" + Be - iK", 

with ± K chosen so that 

(6S) 

(69) 

We assume firstthatA 2 <a2Ip 2
, so that ± K are real. Insert

ing (6S) into (66), integrating, and equating the coefficients of 
e ± iK", we find 

(ia/(K + ip))A = - AB, (70) 

(ia/( -K+iP))B= -M. (71) 

Setting 

S(K) = (ia/( - K + iP W12, (72) 

t (K) = (ia/(K + iP W12, (73) 

A =S(K)C, (74) 

B=t(K)C, (75) 

we get 

,p (x,w) = C (S(K)eiK" + t (K)e - iK"). (76) 

The matrix Aij(w,). ) in this case reduces to a single entry 
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S(K)e(iK-P)w t (K)e( -IK-P)W 
A I1(w,).)= (iK-P) - (iK+P) (77) 

It follows that 

aA
l1

(w,).) = - r(K)s(K)e(iK-P)W - r( -K)t(K)e(-iK-P)w 

= At (K)e(iK - P)w + AS(K)e( - IK - P)w 

= Ae - Pw,p ( - w,w)/C, (7S) 

and 

aA ; I (x,). ) = ae - P",p (x,w)/C. (79) 

Thus the eigenvalue condition (49) in this case reduces to the 
condition 

,p ( - w,w) = O. 

To satisfy (SO), we set 

S(K) = pe - i
y, 

withp = Ir(K) 1 1/2 and y=! arg r(K): 

p = IA 1
1/2

, y = ! arctan(Klp). 

Then we have 

_ { peiY if A < 0, 
t(K) - "f 1 _pe'Y 1 .1\.>0, 

and (76) becomes 

{ 
21A 1I/2C COS(KX - y) 

,p (x,w) = 2ilA 1I/2C sin(Kx - y) 

Then (SO) requires 

or 

COS(KW + y) = 0 if A < 0, 
sin(Kw + y) = 0 if A > 0, 

(SO) 

(SI) 

(S2) 

(S3) 

(S4) 

(S5) 

(S6) 

where n = 0, ± 1, ± 2, ... , and in either case we are led to the 
transcendental equation 

KIP + tan 2Kw = 0 (S7) 

for the admissible solutions of K, and hence of A, in terms of 
w. The associated eigenValues and eigenfunctions are then 
just the admissible values A" of A, and 

{
C" COS(K"X-y,,) if A" <0, 

,p,,(x,w) =. . 
C" Stn(K"X - y,,) lfA" >0, 

(SS) 

where C" is merely a normalizing constant. 
The reader can now verify that if A 2> a 21p 2, then ± K 

are replaced throughout by ± ip, with p, real, so that (S5) is 
replaced by 

{
COSh(JLW + y) = 0 if A < 0, (S9) 
sinh(JLw + y) = 0 if A> 0, 

admitting no new admissible values for A. This verifies what 
already seems reasonable, that 

0<A~<a2Ip2, (90) 

i.e., that the A ~ must lie in the range of Ir(k W. 
The kernel K (XJl,w) is given by (61) with A = - 1, 

which, in view of (7S), reduces to 

K(x,y,w) = - (a cos(KY - y)/COS(KW + y)jeP(W-"). (91) 
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Here we suppose thata2 >,82, in which case A 2 = 1 <a21,82, 
K = + (a2 - ,82)1/2isrea1,andr = ~ arctan ((a21,82) _ 1)1/2. 
If 1 > a 21,8 2, then K = ip is imaginary, with 
p = + (p2 _ a 2)1/2. Then S(K) = (al(p - pW l2 = e6, and 
t (K) = (al(p - p))-1/2 = e - 6, where now ~ = ! log(al 
(p - p)) = arctanh 1p1,8). Then t/J (x,w) = 2C coshlp,x -~) 
and aA II(W, - 1) = - e - Pw2 coshlpw + ~ )IC. Hence if 
a 2 <,82, then (91) is replaced by 

K(x,y,w) = - (a coshlpy - ~)/coshlpw + ~))eP(w-x). 
(92) 

The intractability of (87) prohibits an explicit determination 
of A" (w), or of A (w), in general. In the limiting case a = 1, 
,8 = 0, however, we have r = 1r14, and (87) becomes 

1r {In + !)1r if ...1.<0, 
KW +-= 

4 (n + 1)1r if A> 0. 

The positive admissible values of K are 

_ {(4n + 1)1r14w if A <0, 
K" - (4n + 3)1r14w if A> 0, 

for n = 0,1,2, ... , and the admissible values of A are 

or 

{
-11K" = - 4w/(4n + 1)1r if A" <0, 

A" = + 11K" = + 4w/(4n + 3)1r if A" > 0, 

A" = (- 1)"+ 14w/(2n + 1)1r, n = 0,1,2, .... 

Hence in this case 
00 

A (w) = II (l +...1.,,) 
,,=0 

00 ( ( _ I)" + 14W) 
= JJo 1 + (2n + 1)1r 

= 21/2COS(W + 1r14). 

On the other hand, from (78) we have in this case 

AII(w,A.) = (A IC)t/J (- w,w). 

In particular, for A = - 1, K = + 1, 

AII(w, - 1) = - 2(cos KW + 1r14) 
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(93) 

(94) 

(95) 

(96) 

(97) 

(98) 

(99) 

sothatA (w)anddet(AII(w, - 1)) differ by the constant factor 
- 21/2. The eigenfunctions in this case are given by 

{
CIt cos((4n + 1)1rx/4w-1r14) if An <0, 

t/J,,(x,w) = . 
Cn sm((4n + 3)1rx/4w - 1r14) if An < 0, 

and the kernel K (x, y,w) is given by [cf. (91)] 

K( ) 
- cos(y -1r14) 

x,y,w = . 
cos(w + 1r14) 

(100) 

We have assumed throughout this section that a > ° in 
(64). The reader may verify that if a <0, then everything is 
exactly the same except that the phase r = ! arg r(K) is then 
augmented by 1r. We have avoided the case a 21,8 2 = 1, since 
then, when A = - 1, K = 0, and so ± K are not distinct (cf. 
Ref. 10). 
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A well-known result, due originally to Alexandrov in 1953 and subsequently rediscovered by 
Zeeman in 1964, states that transformations of Mink ow ski spacetime which preserve causality are 
essentially orthochronous Lorentz transformations. In this article, we first exhibit a proof of this 
result by using a lemma of Zeeman to reduce the proof to another well-known theorem of 
Alexandrov involving transformations preserving light speed. Then, by generalizing Zeeman's 
lemma and using recent extensions of Alexandrov's light-speed theorem, we determine the causal 
automorphisms of de Sitter and Einstein cylinder spacetimes. 

PACS numbers: 04.20. - q 

1. INTRODUCTION: THE CAUSAL AUTOMORPHISM OF 
MINKOWSKI SPACETIME 

Minkowski spacetime may be thought of as R4 
equipped with the metric ( , ) given by 

(x,y): = - XI YI + X2Y2 + X3Y3 + X4Y4 

for all x: = (X I,X2,x3,x4)'Y: = (YI,h 'Y3 'Y4)ER4. The separa
tion between events x, yEM4 is the quantity (x - y,x - y), 
and is preserved by all translations and Lorentz transforma
tions (linear, metric-preserving bijections) of M 4 • 

The separation between events in M4 is zero iff they are 
joined by an unreflected light signal. Alexandrov's "light
speed" theorem 1.2 states that bijections of M4 preserving se
paration zero in both directions must be Lorentz transfor
mations, up to translations and dilatations (scale changes). 
The significance of this result is that, unlike Einstein's origi
nal derivation of Lorentz transformations,3 it assumes no 
regularity conditions (e.g., linearity, or even continuity) for 
the transformations. 

A vector XEM4 is said to be timelike, null, or spacelike 
whenever (x,x) is negative, zero, or positive, respectively. 
The nonzero null and timelike vectors lie, respectively, on 
and inside one of the two halves of a circular cone in M 4• 

They are thus segregated into two disconnected compo
nents, which we may (arbitrarily) label future-pointing vec
tors and past-pointing vectors. It is easily checked that, un
less they are parallel null vectors, two nonspace-like vectors 
x i= 0, Y i= 0 lie in the same component iff (x, y) < O. Lorentz 
transformations which preserve future-pointing vectors are 
said to be orthochronous, and form a subgroup of the full 
Lorentz group. 

Causality on M4 may be defined in terms of future
pointing vectors as follows. A line in M4 with timelike direc
tion represents the spacetime history of a material particle 
experiencing no external force, while a line with null direc
tion describes the history of an unreflected photon. Since an 
event XEM4 can cause an event yEM4 iff a material particle or 
photon can experience both events in that order, two corre
sponding causal relations, symbolized by <E and <E', may be 
formulated. 

Definition 1.1: For X,yEM4' 
(i) x <EY iffy - x is timelike and future pointing, 
(ii) x <E .y iffy - x is null and future pointing. 

The result which interests us here appeared first as one 
of several related results in Ref. 4; its rediscovery by Zee
mans appears to be better known (at least among physicists), 
possibly because the former article is in Russian (see Ref. 6 
for historical background). The theorem states that bijec
tions of M 4 , which preserve the relation <E in both directions 
(Zeeman's "causal automorphisms"), must be orthochron
ous Lorentz transformations, up to translations and dilata
tions. 

The significance of this result is again, as with Alexan
drov's light-speed theorem, the absence of regularity as
sumptions on the transformations involved: preservation of 
a simple, physical condition is sufficient. For this reason, 
interest in these and similar characterizations has been 
growing steadily in recent years, particularly among geo
meters. Many generalizations now exist; these involve other 
spacetimes, other separations, more abstract light-cone 
structures, spaces over more general fields, etc. The bibliog
raphies of Refs. 6 and 7, for example, provide a cross section 
of such works. 

Zeeman's proof of the causality-preservation theorem 
on M4 begins by showing that causal automorphisms must 
also preserve the relation <E' in both directions. The crux of 
the matter is the following condition, for which we supply 
the proof omitted in Ref. 5. 

Lemma 1.1: For distinct x, yEM4, 

'ff{x~, X<EPI .. 
for all zEM4 , z <EX Impbes z <EY. 

Proof (a) Assume that x <E .y; then clearly x~. For any 
ZEM4 with Z <E x, write Y - Z = (y - x) + (x - z); then 

(y - z, Y - z) = (y - x, Y - x) + 2( Y - x,x - z) 

+ (x - z,x - z) < 0 

since y - x is null, x - z is timelike, and both are future 
pointing. Thus y - z is timelike, and, from 
(y - z,y - x) = (x - z,y - x) <O,y - z is future pointing 
(since y - x is). Hence z <Ey. 

(b) Assume that x-f· y and x~. For any timelike future
pointing vector t not parallel toy - x, the two-space spanned 
by t and y - x contains a spacelike vector of the form 
(y - x) + at. If Y - x is spacelike, we may choose a > 0 for 
small enough a; otherwise Y - x must be past pointing (else 
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x -EY or x -E .y), which implies a> 0. In either case, the vector 
z: = X - at satisfiesz-Ex, butz~. • 

After restricting attention to the relation -E', Zeeman's 
proof proceeds through properties of quadric surfaces, com
positions of parallel displacements, Cauchy's functional 
equation, etc., eventually reaching the required result. How
ever, since two events x, yEM4 have zero separation iff x -E .y 
or y -E ·X, the theorem follows immediately via Alexandrov's 
light-speed theorem. (The above lemma and the consequent 
shortcut actually work for Minkowski space Mn of any di
mension n;;;.3, where both theorems are valid. For n = 2, 
both theorems fail.) In the next sections, generalizations of 
Lemma 1.1 and Alexandrov's result will yield the causal au
tomorphisms of de Sitter and Einstein cylinder spacetimes. 

2. CAUSAL AUTOMORPHISMS OF DE SITTER 
SPACETIME 

de Sitter spacetime Y 4 can be embedded as a hyperbo
loid in five-dimensional Minkowski space M5 (see Ref. 8, 
Sec. 5.2), i.e., if ( , ) denotes the metric of M 5 , then 
Y 4: = ! X IxEM5, (x,x) = I}, and the (differential) metric of 
Y 4 is given by ds2: = (dx,dx). Events x, YEY 4 with 
(x, y) > - 1 are joined by a geodesic (given by a section of Y 4 

with a two-space in M 5; see Ref. 7) and their separation is sZ, 
where s (found by integrating ds along this geodesic) is the 
real or pure imaginary number given by 4 sinZ(s/2) 
= (x - y,x - y). A direct generalization of Alexandrov's 

light-speed theorem 7 states that bijections of Y 4 preserving 
separation s = ° [i.e., preserving the relation (x, y) = 1] in 
both directions must be induced on Y 4 by the Lorentz trans
formations of M 5 • 

The causal structure of Y 4 is induced by that of M 5 ; 

upon distinguishing the past-pointing and future-pointing 
vectors of M5 as in Sec. 1, we define the causal relations -E 
and -E' on Y 4 essentially as before. 

Definition 2.1: For x, YEY 4' 

(i) x -EY iffy - x is timelike in M5 and future pointing, 
(ii) x -E .y iffy - x is null in M5 and future pointing. 

Clearly, the orthochronous Lorentz transformations of 
M5 induce causality-preserving transformations of Y 4' Zee
man's condition, which generalizes exactly to Y 4 (see be
low), will enable us to establish these induced transforma
tions as the only causal automorphisms of Y 4' 

Lemma 2.1: For distinct x, YEY 4' 

'ff{X~' 
x -E'Y 1 for all ZEY 4' Z -E x implies Z -Ey. 

Proof If x -E .y, repeat part (a) of the proof oflemma 1.1 
with zEY 4 to get the required results. 

Assume that x-f·y and x~. Choose a future-pointing 
tEM5 with (t,t) = - 1, (t,x) = 0, and for E> 0, define 
z: = (1 + C)I/Zx - Et. ThenzEY4, Z-EX, and, for A: = (x,y) 
andjl: = (t,y), (y -z,t) =jl- E and 
(y - z,y - z) = 2{ 1 + Ejl - (1 + C)I/ZA ). We find choices 
of E for which z~. 

If jl > 0, choose E <jl; then (y - z,t) > 0, so z~. 
Ifjl = 0, the space spanned by x andy is orthogonal to t, 

and is thus positive definite. The Cauchy-Schwarz inequa-
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lity gives A Z < 1, so since A =1= 1 (x =1= y) we have A < 1. Then for 
some E>O, (1 + EZ)l/ZA < 1, so forthiSE, (y -Z,y -z»O 
and hence z~. 

Ifjl <0, then A < 1 (else x -E ·yorx -EY). If A >0, chooseE 
with E(A - jl) < 1; then (1 + C)1/2A < (1 + E)A. < 1 + jlE, so 
(y - z,y - z) > 0. If ..1.<0, choose E < - jl-I; then 
1 + jlE > 0, so again (y - Z, Y - z) > 0. In either case, then, 
z~. • 

Using the generalized light-speed theorem exactly as in 
Sec. 1, we have that bijections of Y 4 which preserve the 
relation -E in both directions must be induced by the orth
ochronous Lorentz transformations of M 5• We note that 
since the generalized Alexandrov result is in fact true for de 
Sitter spaces Y n of any dimension n;;;.3, so is our present 
result. 

3. CAUSAL AUTOMORPHISMS OF EINSTEIN'S 
CYLINDER UNIVERSE 

Einstein's cylinder universe 'if 4 can be visualized as a 
circular cylinder in lR5 (see Ref. 8, p. 121), i.e., if "." denotes 
the usual dot product of lR4, then 

'if 4: = {( p,r) IPElR,rElR4,r.r = I) and 

ds2
: = - dp2 + dr.dr. 

Its geodesics are either circular sections of 'if 4 (which are 
spacelike) or of the form r = cos(ap)a + sin(ap)b for some 
constant a;;;'O and orthonormal a,bER4 (and are timelike, 
null, or spacelike whenever a < 1, a = 1, or a > 1, respec
tively). In general, two points of ~ 4 are joined by many geo
desics (e.g., for orthonormal a,bER4, the points (O,a) and 
(1T 12,b ) are joined by all geodesics of the form r 
= cos[( 1 + 4k lo]a + sin[( 1 + 4k )P]b for integral k, thus the 

separation S2 between them (obtained by integrating ds along 
a joining geodesic) will be multivalued. For events (PI,r l ), 

(p2,r2)E~4weobtainsz= -(PI-PZ)Z+ !cos-l(rt·r2)}Z, 
which is negative, zero, or positive whenever the geodesic is 
timelike, null, or spacelike, respectively. 

The transformation group of ~ 4 (i.e., the group of 
transformations of~ 4 which preserve d~ at each point) con
sists of mappings of the form (p,r)_( ± p + const., Ar), 
where A is a 4 X 4 orthogonal matrix. The light-speed 
theorem does not generalize to 'if 4' since there exist rather 
pathological transformations of 'if 4 which preserve separa
tion zero (see Ref. 9 for details; the relevant points follow). 
For example, for fixed (p,r)E'if 4' arbitrary permutations 
within the subset {(p + k1T,( - l)k r)lk an integer) C 'if 4 pre
serve separation zero. Up to such permutations, bijections of 
~ 4 which preserve separation zero [or equivalently, the rela
tion cos( PI - pz) = r l ·r2] in both directions have the form 
(r,cosp, sinp)'_AT(r,cosp,sinpj1 for a scalar function 
A = A (p,r) (determined up to sign by the requirement that 
the condition N = 1 be preserved) and a (constant) 6 X 6 ma
trix T satisfying T' GT = G, where 
G: = diag{ 1,1,1,1, - 1, - 1 J (superscript t denotes trans
pose). 

Causality is defined on 'if 4 by using thep-coordinate as 
a criterion of temporal order, i.e., an event (Pt,rdE'if 4 can 
cause an event (pZ,r2)E~ 4 iff they can be joined by a timelike 
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or null geodesic andpI <P2' Specifically, we define the caus
al relations <EO and <EO' as follows. 

Definition 3.1: For (PI,rd, ~2,r2)E'G' 4' 

(i) (PI,rd <E (P2,r2) iff s2 < 0 for some geodesic joining 
them and PI <Pz, 

(ii) (PI,r l ) <EO'( pz,rz) iff s2 = 0 for some geodesic joining 
them andpI <Pz' 

A more useful characterization of these relations fol
lows: 

Lemma 3.1: For (PI,rd, ~z,rz)E'G' 4' 

(i) (PI,r l ) <E (pz,rz) iff PI <pz and either pz - PI> 1T or 
cos(pz -PI) <rl'rz, 

(ii) (PI,r l ) <EO'( pz,rz) iff PI <pz and cost PI - pz) = rl'rz· 

Proof for some O<.{J,;;;,1T, rl'rz = cos 0, thus 

s2 = - (PI - pz)Z + [cos-I(cos 0 nz 
= - (PI - pz)Z + ( ± 0 + 2k1T)Z 

for integral k. A tedious but elementary analysis of which k 's 
are possible for s2 < 0 and s2 = 0 yields the required results .• 

Zeeman's condition must be slightly modified to hold 
on CrfJ 4' 

Lemma 3.2: For distinct (a,a), (/3,b )E'G' 4' 
(a,a) <EO .( P,b) } 
and /3 - a<.1T 

'ff{(a,a)~( /3,b), and for all (r,C)ECrfJ 4' 

1 (r,c) <EO (a,a) implies (r,c) <E ( /3,b ). 

Proof Without loss of generality we may assume that 
a = O. For some O<'(i)<' 1T, a·b = cos (i). Recall that the cosine 
function is decreasing on [0,1T]. 

(a) Assume that /3<. 1T and that (O,a) <EO'( /3,b). Then 
o < /3 <. 1T and cos /3 = b·a = cos (i), so (i) = /3 > O. Suppose 
there exists a (r,C)ECrfJ 4 with (r,c) <EO (O,a) but (r,c)~ /3,b). We 
have r < 0 < /3 and 0 - r<' 1T [else /3 - r> 1T, which implies 
(r,c) <E (/3,b )]; thus cost - r) < a·c. For O<.B, t/><. 1T defined by 
cos B: = a·c, cos t/> = b·c, we have cost - r) < cos 0, 
cost /3 - r)>cos t/>; thus - r> B and/3 - r<.t/>, from which 
t/> > B + (i) and cos t/> < cos(B + w). 

Since the subspace of R4 spanned by a, b, and c is posi
tive definite, 

a·a b·a c·a cos w cos B 
0<. a·b b·b c·b cos w cos t/> 

a·c b·c c·c cos B cos t/> 1 

which may be written 

[cos(B + w) - cos t/> I [cos(B - w) - cos t/> 1<.0. 

The first factor has been proven positive, so cos t/> 
>cos(B - w), whence B + w<. IB - wi. This last implies the 
contradiction that either B or (i) is negative, thus no (r,C)E'G' 4 
with (r,c) <EO (O,a) and (r,c~( /3,b ) exists. 

(b) Assume that (O,a)~ /3,b ) and that for all (r,C)E'G' 4' 

(r,c) <E (O,a) implies that (r,c) <E (/3,b ). If /3 > w, then 
1T»/3> w»O, and consequently cos/3 < cos w = a·b. Hence 
(O,a) <E (/3,b ), a contradiction. If/3 < w, define (r,c): = ( - €,a) 
forO<€ <w - /3; then r<Oand cost - r) = cos € < 1 = a·c, 
so (r,c) <EO (O,a). But cost /3 - r) = cost /3 + €) > cos w = b·c 
and 13 - r = /3 + € <W<'1T, so (r,c)~p,b), a contradiction. 
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If/3 = (J) = 0, thena·b = 1, soa = band (O,a) = (/3,b), a 
contradiction. There remains the case 13 = (J) > 0, which 
yields o </3<.1T and cos/3 = a·b, from which (O,a) <EO.(/3,b) as 
required. • 

We see that bijections of CrfJ 4 which preserve the relation 
<EO in both directions preserve zero separation for "close 

enough" points. The following lemma, which rules out the 
existence of "null triangles" in 'G' 4, will enable us to extend 
this result to more distant points. 

Lemma 3.3: Three distinct points (a,a), (/3,b ), (r,C)ECrfJ 4 
with pairwise zero separation lie on a common null geodesic. 

Proof Without loss of generality a = 0, so cos /3 = a·b, 
cos r = a·c,andcos(/3 - y) = b·c. Ifbandcareparalle1 toa, 
then for some integers k,n, (/3,b) = (k1T,( - l)k a) and 
(y,c) = (n1T,( - Ita). Then for any unit dER4 orthogonal to 
a, all three points lie on the null geodesic with equation 
r = (cos pIa + (sin p)d. 

We may now assume that b is not parallel to a; thus 
sin /3 #0. Define d: = - cot /3a + csc Pb; then d is unit and 
orthogonal to a, and (O,a) and (/3,b ) lie on the null geodesic 
with equation r = (cosp)a + (sinp)d. For some scalars 4/I,t/> 
and some eER4 orthogonal to a and d, c = 4/la + t/>d + e, so 
4/1 = a·c = cos rand t/> = c·d = sin r, from which 
I = c·c = cos1 r + sin1 y + e·e. It follows that e = 0, so (r,c) 
is also on the null geodesic. • 

Now consider two "distant" points (PI,rd, (P2,r2)ECrfJ 4 
with separation zero. Cover the null geodesic segment join
ing them by a collection of open, overlapping subsegments 
whose points are "close enough," i.e., whose p-coordinates 
differ by at most 1T. By Lemma 3.3, the images of these sub
segments under a causal automorphism are also overlapping 
segments of null geodesics. But the points of each image 
overlap lie on at most a single null geodesic, so in fact, all 
image segments lie on the same null geodesic. This geodesic 
joins the images oft pprl ), (p2,rZ)' so these image points also 
have separation zero. 

Since they preserve separation zero in both directions, 
our causal automorphisms have the form 

(r,cos p,sin p)'--+AT(r,cos p,sin pj1 

for scalar A and matrix Tas described earlier, up to permuta
tions within subsets of the form 

[ (p + k1T,( - I)k r) Ik an integer I for fixed (p,rjECrfJ 4' 

But such permutations must now preserve causality, so since 
all points of the subset lie on a common null geodesic, their 
order must be preserved. It follows that if (p,rj denotes the 
image of (p,r) under a causal automorphism, then the image 
of (p + k1T,( - l)k r) is (p + k1T,( - l)k rj for all integers k. 

The scalar A = A (p,r) is fixed up to sign by the require
ment that ,:, = 1 = cosz P + sin2 p. For (/3,b ), (y,C)ECrfJ 4 we 
have 

b·c - cos(P - r) 
= (b,cos ,B,sin,B)G (c,cos r,sin rV 

= A (/3,b)A. (y,c)(b,cos/3,sin /3 )(Tt GT)(c,cos y,sin yV 

= A ( /3,b )A. (r,c) [ b·c - cost /3 - y) J 

since T' GT = G: = diag[ 1,1,1,1, - 1, - IJ. Since causality 
is preserved, all A's have the same sign. We may in fact take 
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A> 0: since T' GT = G iff ( - T)' G ( - T) = G, minus signs 
may be absorbed into T. 

For (a,a)E'G' 4' consider the subset 

vU'(a,a): = {(p,r)E'G' 41(a,a) "'" (p,r) and either 

(p,r) "'" (a + 217',a) or (p,r) "'" ·(a + 217',a) 

or (p,r) = (a + 217',a) J. 
Clearly, if (a,a)-+(a,a), thenvU'(a,a) maps intovU'(a,a). Fur
thermore, careful examination of the definitions of "'" and 
"'" . shows that 

vU'(a,a) = {(p,r)E'G' 410<p - a<217', cos(p - a)<r.a, 

and ifcos(p - aj = r·a, thenp - a>17'j, 

from which it can be checked that any point (p,rjE'G' 4 can be 
uniquely expressed as (a + k17',( - l)k s) for some 
(a,s)Evk(a,a) and integer k. It follows that the image of any 
point of 'G' 4 is determined by the image of vU'(a,a) for any 
given (a,a)e'G' 4' 

In summary, we may describe any bijection of Ctf 4 

which preserves the relation "'" in both directions as follows: 
choose (a,ajE'G' 4 with image (a,a). Then for some 6 X 6 ma
trix Twith T' GT = G: = diag{1, 1, 1, 1, - 1, - 1 J and for a 
uniquely determined scalar function A = A (a,s) > 0, the 
causal automorphism maps vU'(a,a) onto vU'(a,a), and has 
the form (a,s)-+(i7,S), where 

(S,cos u,sin oY = AT(s,cos a,sin a)' 

on vU'(a,a). Any point (p,r)E'G' 4 has the form 
(p,r) = (a + k17',( - l)k s) for some unique (a,s)Evk(a,a) and 
integer k: its image is then (i7 + k17',( - I )kS). 

It is easily checked that, given any point (a,a)E'G' 4' any 
image point (a,a), and a 6 X 6 matrix Tsatisfying T' GT = G, 
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then the bijectionofCtf 4 defined as above by (a,a),(a,a), and T 
is a causal automorphism of Ctf 4; we have thus characterized 
all causal automorphisms. As for Minkowski and de Sitter 
spacetimes, the characterization is in fact valid for n-dimen
sional Einstein cylinder spaces Ctf n for n>3. 

We note finally that the occurrence of the subsets 
vU'(a,a) above is no accident: the interior of each is confor
mal to Minkowski spacetime M4 (see Ref. 8, p. 122). The 
translations, dilatations, and orthochronous Lorentz trans
formations of M4 induced transformations on vU'(a,a) 
which, since they preserve the signs of separations between 
points, preserve causality on vU'(a,a). The causal automor
phisms obtained above are in fact compositions of these 
transformations with those of the transformation group of 
'G' 4 described earlier. 
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In this paper we find an exact, static, spherically symmetric solution for the nonsymmetric 
Kaluza-Klein theory. This solution has the remarkable property of describing "mass without 
mass" and "charge without charge." We examine its properties and a physical interpretation. 

PACS numbers: 04.50. + h, 11.1O.Ef 

INTRODUCTION 

The aim of this paper is to find an exact spherically 
symmetric solution to the nonsymmetric Kaluza-Klein 
equations (see Refs. 1-7) in the electromagnetic case. 1.3 

The nonsymmetric Kaluza-Klein theory provides a 
true unification of the electromagnetic and gravitational 
fields in the following sense. It not only reduces two major 
principles of in variance (i.e., the local coordinate invariance 
principle and the local gauge invariance principle) to the lo
cal coordinate invariance principle, but it also gives rise to 
new effects, which are absent in the classical Kaluza-Klein 
theory. These effects do not appear in either Moffat's theory 
of gravitation (see Refs. 8-10) or in Maxwell's electromagne
tism. They are therefore interference effects between the gra
vitational and electromagnetic fields. We outline these new 
features of the nonsymmetric Kaluza-Klein theory below 
(see Ref. 1): 

1. A new term appears in the electromagnetic Lagran
gian of the form 

(l/41T)(g II"VIFwf. 

2. There exists a vacuum electromagnetic polarization 
tensor MaP which has a geometrical interpretation as torsion 
in the fifth dimension. Thus, there are two electromagnetic 
field strength tensors Fap and Hap. 

3. There is an additional term for the Lorentz force in 
the equation of motion for a test particle: 

(qlmo)g lyalHyp UP, 

where q is the charge of the test particle and mo is its rest 
mass. This term plays the role of a reaction force for nonho
lonomic constraints. I 

4. A new traceless energy-momentum tensor T~13 ap
pears for the electromagnetic field. 

5. There exists a source for the electromagnetic field, 
Le., the conserved current/" . 

All of the above effects vanish when the metric of space
time is symmetric, in which case we get the classical Kaluza
Klein theory. Moreover, the new effects do not contradict 
any experimental or observational data. I The nonsymmetric 
Kaluza-Klein theory has a well-defined linear approxima
tion. II In the electromagnetic case it has been shown II that 
there is no coupling between skewon and electromagnetic 
fields up to the first order in hl"v gl"v - 7JI"V (where 7JI"V is 

oj On leave of absence from the Institute of Philosophy and Sociology of the 
Polish Academy of Sciences, 00-330 Warsaw, Nowy Swiat 72, Poland. 

the Minkowski tensor). The nonsymmetric Kaluza-Klein 
theory also has a well-defined geometry on the five-dimen
sional manifold, which one calls Einstein geometry. I When 
the electromagnetic field vanishes, we get Moffat's nonsym
metric gravitation theory (NGT) which is able to fit the peri
helion shift of Mercury in the presence of a nonzero quadru
pole moment of mass for the sun. 12.13 

It is possible to extend the formalism of the nonsymme
tric Kaluza-Klein theory to the nonabelian case2

•
6 (includ

ing such features as spontaneous symmetry breaking and the 
Higgs mechanism) as well as to the Jordan-Thiry case4•5•7, 

which possesses a scalar field connected to the gravitational 
constant. Material sources have also been incorporated3 into 
this formalism. 

It is of course important to find significant physical con
sequences of the "interference effects" present in the non
symmetric Kaluza-Klein theory. The best way to achieve 
this is to find an exact solution of the full field equations, and 
this is the aim of this paper. We find an exact solution of the 
field equations in the static, spherically symmetric case in 
the form suggested in Sec. 6 of Ref. 1. Even in this, the sim
plest case, we get the following interesting results: 

1. The electric field is nonsingular at r = 0 and has Cou
lomb like behavior for large r. This is similar to the situation 
in Born-Infeld electrodynamics. 14 Thus, there is a maximal 
value of the electric field. 

2. Asymptotically (for large r) the full solution behaves 
like the charged Reissner-Nordstrom type solution in 
NGT.IO 

3. The Newtonian mass is constructed from an electric 
charge Q and from a fermion charge /. 

4. The energy distribution is not singular and is negative 
in a small region around r = O. This means that the solution 
describes a bounded system of electromagnetic and gravita
tional fields. 

5. The total mass (Le., total energy) of the solution is 
greater than the Newtonian mass (the mass which is seen at 
infinity). 

6. There is no singUlarity at r = 0 in the function 
a = gil; that is, gil (r = 0) = 1. 

7. The only singularities atr= OareinlU g[I4] = /21r 
and in a factor (1 + [4Ir4) in the function r = g44' There is 
also the usual singularity in the determinant of the full non

symmetric tensor ~ - g = r sin (J at r = O. 
8. The charge distribution is nonsingular. 
9. For sufficiently large charge Q there exists one or two 
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event horizons, just as in the Reissner-Nordstrom solution 
to the Einstein-Maxwell equations. Sufficiently large charge 
in the present case means sufficiently large Newtonian mass 
as well. 
This solution is interesting as a classical model of a charged 
particle constructed from gravitational and electromagnetic 
fields. If we suppose that the Newtonian mass of our solution 
is the mass of an electron, we get a relationship between the 
classical radius of an electron and the parameter I from Mof
fat's theory of gravitation. The most facinating aspect of our 
solution is that it describes "mass without mass" and 
"charge without charge" in the following sense. At the ori
gin r = ° (or anywhere) there are no Coulomb-like or New
ton-like first- and second-order poles with charge and mass 
as residues. This is true for the metric and for the electric 
field. 

The paper is organized as follows. In the first section we 
describe some elements of the nonsymmetric Kaluza-Klein 
theory. The second section deals with the spherically sym
metric fields in the nonsymmetric Kaluza-Klein theory, and 
presents the field equations in this case. The third section is 
devoted to the exact, static, spherically symmetric solution 
ofthe nonsymmetric Kaluza-Klein theory. We find this so
lution and examine its properties. In the fourth section we 
discuss our conclusions and prospects for further research. 
Appendices A and B contain some details of calculations; in 
Appendix A we derive the Ricci tensor in the general (non
static) spherically symmetric case, while in Appendix B we 
deal with some details concerning the static, spherically 
symmetric case. In Appendix C we write down the coeffi
cients of the connection l' and the Christoffel symbols for 
our solution as well as the equations of motion for uncharged 
and charged test particles. 

1. ELEMENTS OF THE NONSYMMETRIC KALUZA
KLEIN THEORY 

Let P be a principal fiber bundle with structural group 
G = U( 1) over space-time E with projection 1T and let us de
fine on this bundle a connection a. We call this bundle an 
electromagnetic bundle and a an electromagnetic connec
tion. We define a curvature 2-form for the connection a: 

fl = da = !1T* (F"vO,l 1\ 0 V), 

where 

(1.1) 

F"v=J"Av-JvA", e*a=A,,(jll. (1.2) 

AI' is a 4-potential of the electromagnetic field, e is a loc~ 
section of !:' F"v is an electromagnetic field strength, and (J' 

is a frame on E. Bianchi's identity is 

dfl=O, (1.3) 

so that the 4-potential exists. This is of course simply the first 
Maxwell equation. On space-time E we define a nonsymme
tric metric tensor gap such that 

gap = g(aP) + g[ap I' 
(1.4) 

g gyp = g rfly = oy ap Pa5 a' 
where the order of indices is important. We define also on E 
two connections liJa p and Wrx p: 
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liJa p = 1'py(jY 

and 

Wrx p = Wrx py 7Ja , 
such that 

Wrx p =liJap -jOpW, 

where 

W= wy7Jr = MW~l7 - W~uy)7JY. 

(1.5) 

(1.6) 

For the connection liJa p we suppose the following condi
tions: 

(1.7) 
Q'" f3a (F) = 0, 

where D is the exterior covariant derivative with respect to 
liJa p and Qa py (F) is the torsion ofliJa p. Thus we have de
fined on space-time E all quantities present in Moffat's the
ory of gravitation (see Refs. 8-10). Let us introduce on ~ a 
frame 

(1.8) 

Now we turn to the natural nonsymmetric metrization of the 
bundle t According to Refs. 1-3 we have 

r= 1T*g - 0 5 
® 0 5 = 1T*(g(ap)7Ja ® eP) - 0 5 ®05, 

(1.9) 
r = 1T*g = 1T*( g[ap 17Ja 1\ ~). 

From the classical Kaluza-Klein theory we know that 

A. = 2.JG / c2 (see Ref. 1). We work with a system of units 
such that G = c = 1 and A. = 2. We have 

YAB = t~ap 1- ~). (1.10) 

where 

YAB = Y(AB) + Y[AB I (1.11) 

and 

r = Y(AB)(JA ® OB, (1.12) 

r=Y[AB IOAI\OB (1.13) 

(see Refs. 1-3 for more details). Now we define on ~ a con
nection evA B such that 

DYA+B- = DY
AB 
-YADQ~dr)(Jc=O, (1.14) 

which is invariant with respect to the action of the group 
U( 1) on P. D is the exterior covariant derivative with respect 
to the co-nnection evA Band Q D BC (F) is the tensor of torsion 
for the connection evA B' In Refs. 1 and 2 it is shown that 

A _ ~1T*(liJa p) + gya HypO 5 H pY O
Y1 ev (1.15) 

B - gaf3(HYf3 + 2Fpy)()Y 0' 

where Hpy is a tensor on E such that 

g6P gy6H ya + ga6~YHfJr = 2ga6~rFpr' (1.16) 

In order to get the usual interpretation of geodesics in the 
classical Kaluza-Klein theory we must assume l

-
3 

HaP = - Hpa· (1.17) 

We define on P a second connection 
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(1.18) 

Let us define a Moffat-Ricci curvature scalar for W A B' One 
gets l - 3 

R (W) = R (W) + (2( g[ ",v]F!'v)2 - H!,aF!'a)' (1.19) 

where 

(1.20a) 

is a Moffat-Ricci curvature scalar for the connection ijia p 

and Rap(r) is a Moffat-Ricci curvature for the connection 
wa p' In particular, 

(1.20b) 

where R ;vp (r )~re the components of the ordinary curva
ture tensor for r. In addition 

H,.,a =~"'gyaHpy. (1.21) 

From Eq. (1.19) one gets the field equations I 

RaP(W) - ~ gapR (W) = 81TT~p, (1.22) 

g[!'v].v = 0, (1.23) 
-; -; -g!'v.u - g;vF !'u - g!,;F uv - 0, (1.24) 

a!, (Hal') = 4g[atnap(g[!'v]F!'v)' (1.25) 

where 

T~p = (l/41T)(gYI'HyaFI'fJ - 2g[!'v]F}JvFaP 

- JKap(H!,vF}Jv - 2(g[}JV]F}Jvf)), 

g[}JV] = ~ _ gg[}JV] , 

HiLa =.[ _ g~}JgyaHfJY' 

(1.26) 

(1.27) 

The tensor H}Jv has an interpretation as a second electro
magnetic field strength tensor. 1-3 We have 

~PT~p = O. (1.28) 

Equations (1.22)-(1.25) can be written in the form 

R[[ap].y](r) - 81TT[[,.p].y] = 0, 

F,., =0, 

(1.30) 

(1.31) 

(1.32) 

(1.33) 

where RaP (I' ) is a Moffat-Ricci tensor for the connection 

{jja p = Fpy()Y, 

F}J = Ff}Ja]' 

The condition (1.31) is equivalent to (1.23). 

2. SPHERICALLY SYMMETRIC FIELDS IN THE 
NONSYMMETRIC KALUZA-KLEIN THEORY 

(1.34) 

Let us suppose that the fundamental fields in the non
symmetric Kaluza-Klein theory possesses spherical sym
metry. According to Refs. 15-23 one gets 

119 J. Math. Phys .• Vol. 25. No.1. January 1984 

(

-a 

g}Jv = ~ 
-U) 

o 
-{3 

- fsin () 

o 

o 
fsin () 

- {3 sin2 
() 

o 
where a, {3, y,/, and U) are real functions of rand t with 
a,y> O. In addition 

FI4 = E (r,t ), F23 = B sin () (2.2) 

and all other components of F}Jv vanish. For ?/,V, the only 
non vanishing components are 

gil = y/(U)2 - ay), 

g22 = g23sin2 () = _ {3 I( {3 2 + PI, 
g44 = _ a/(U)2 - ay), 

g[14] = U)/(U)2 - ay), 

g[23]sin () = f I( {3 2 + f2). 

We suppose that 

U)2 - ay#O and {32 + P#O. 

(2.3) 

(2.4) 

Let us suppose that HaP is also spherically symmetrical, so 
that 

HI4 = D (r,t ), H 23 = H sin () (2.5) 

and the other components vanish. Using Eqs. (1.16), (2.1), 
and (2.3) it can be shown that 

HI4 = FI4 = E (r,t), 

H 23 = F23 = B sin (). 

The Bianchi identity equation (1.3) yields 

B = Bo = con st. 

From Eq. (1.23) one gets 
U)2 [4 

ay - U)2 - {32 + P' 

(2.6) 

(2.7) 

(2.8) 

where [ is a constant of integration. In Moffat's theory of 
gravitation this constant has an interpretation as fermion 
charge. From Eq. (1.33) we have 

E - (Q 1/2)( {32 + f2) + 8jBo 

( {3 2 + f2 + 8f4) 
(2.9) 

where Q is an integration constant. In the intermediate 
stages of calculation we used the following expressions for 

/Fa and~ 

H 14 = 
HI4 -E 

(ay - U)2) = (ay - U)2J' (2.10) 

H23 = Bo (2.11) 
{32 + f2' 

"r=g = sin () [lay - U)2)({32 + f2)] 112. (2.12) 

Thus finally we get Eqs. (1.29)-( 1.32) plus the algebraic rela
tions (2.7)-(2.9). From Eq. (1.30) we get immediatelly 

R[23](r) - 81TTi~] = C I sin (), (2.13) 

where C I = const is an integration constant and 
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Equations (1.31) and (1.32) were solved in Ref. 17 in which 
Pant wrote down the Ricci tensor for such a connection. 

Note that the Moffat-Ricci tensor [Eq. (1.20b)] is a lin
ear combination of the ordinary Ricci tensor and the second 
contraction of the curvature tensor. However, Eqs. (1.23) 
and (1.24) imply that lO 

FifLa 1 = 0 

and 

Fef3 = [In(( - g)I/2)L 

so that the second contraction 

(2.15) 

(2.16) 

R ~fLV = !(F~f3).v - Ffvf3).v) = O. (2.17) 

Consequently the Moffat-Ricci tensor in this case is identi
cally equal to the ordinary Ricci tensor used by Pant, 17 
which we shall denote by AfLV (F). 

Thus we get the equations 

AlJ.tv) (F) = 81TT(p':i' 

A[23 I(r) - 81TT[~3 1 = C1 sin f), 

where 

(2.18) 

(2.19) 

Using Eq. (2.9), the last term in Eg. (2.19) can be written in 
the form 

_ 4a ~fBo + QI2 )2 
2 + f2 + 8/ 4 • 

(2.20) 

Moreover, it can be shown that 

The rest of the components of T~": vanish. The electromag
netic Lagrangian in this case is 

.y = _1_ (2(g[fLvIF )2 _ HfLvF ) 
em 81T fLV fLY 

_ 1 [ 8m
4 

(fBo E)2 
81T (ay - m2)2 14 m 

- (ay~2m2) (~! - ~:)]. (2.24) 

Finally, we have the following equations: 

AII(F) = 81TT~';', 

A44(F) = 81TT~, 

An(F) = 81TT~~, 

A33(F) = 81TT~~, 

A [23 j(F) - 81TT~~ = C1 sin f), 

A(14) (F) = o. 

(2.25a) 

(2.25b) 

(2.25c) 

(2.25d) 

(2.25e) 

(2.25t) 

Using results from Ref. 17 and Eq. (2.22) one finds the identi
ty (see Appendix A) 

(A22(F) - 81TT~~)=( lIsin2 f) )(A33(F) - 81TT~';), (2.26) 

so that Eq. (2.25d) is not independent. In the above 

81TT~';' = a [(81 'lBo - Q(fJ2 + PW + B~(fJ2 + f2 + 81
4

)2 - (fBo + QI2)(fJ2 + P)] 
(f32 + f2)(f32 + f2 + 81 4)2 ' 

(2.27) 

81T T~'; = ~ re~ = [- 7fBo(f32 + f2 + 81 4)2 - f(8fBo - Q(f32 + f 2W] 
sin f) sin f) [ 1 (f32 + PH/32 + f2 + 81 4f 

For T~~ one finds 

+ [8BoI4(8BoI2 - Q(f32 + P))(f32 + f2 + 81 4
) + 4f(f32 + f2)(fBo + QF)2] 

( /3 2 + P)( /3 2 + P + 81 4
)2 

(2.28) 

(2.29) 

A))(F), A44(F), A33(F), A(14)(F), A[141(F), andA[23 I(F) are given by the formulas (2.11) (see Appendix A) from Ref. 17. For 
.Y em one easily gets, using (2.24), 
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3. STATIC, SPHERICALLY SYMMETRIC SOLUTION 

Let us consider a spherical field configuration such that 

Bo=/=O. 
Later we suppose that 

{3=r, 

(3.1) 

(3.2) 

which is simply a coordinate choice. In addition, our quanti· 
ties do not depend on time (static case). One finds [see Eq. 
(2.9)] 

A(l4) =0, 

A (23 J - 81TT~~ = CI sin e, 
and we have 

8 T em 8 Tem Q (7{32 + 16/
4

) 
1T [14 J = 1T 14 = (j) I.P 2 + 81 4)2 ' 

(j) = 12/r. 

One gets 

Q ( r
4 

) E = - r I'" + 81 4 • 

It is easy to see that the function (3.7) is bounded 

IE I <Emax = IE (\i81) I = IQ 1/8/2. 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.7a) 

From (3.4), using results from Ref. 17, one gets (see Appen
dixB) 

.!!.(ra-I)=1-Q2r (r4+4/4). (3.8) 
dr (I'" + 8/ 4)2 

Thus we have 

1 C Q2 
- = 1 + - + - K (r,/), (3.9) 
a r r 

where 

(3.10) 

and C is a constant of integration. Moreover, 

Y= (1 + ~ + ~2 K(r,/)) (1 + ~) (3.11) 

[see Eqs. (B8) and (Bl1) in Appendix BJ. Performing the inte
gration in (3.10) one gets 

i. = 1 + C + Q
2

b g (.!!...), (3.12) 
a r b 2r r 

where b 4 = 8/ 4 and 
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FIG. 1. The function g = g(x) vsx. 

~x) = + (x4 : 1) + 3:Vl (log (:: ~ :;: : ! ) 
+ 2 arctan(V'1x + 1) + 2 arctan(V'1x - 1)). 

(3.13) 

The function g(x) is plotted in Fig. 1. Let us examine the 
properties of the function 

g(b/r). 

It can be shown that 

limg(.!!...) = 2-~. 
r=O r 16 Vl 

(3.14) 

Thus for small r we get 

a-I~1 + i.(c+ _7_1T(~)). 
r 16Vl b 

(3.15) 

We can avoid a singularity in a at r = 0 by choosing 

C= - 1~ 1T(~2) (3.16) 

so that 

lim(a- I
) = 1. (3.17) 

r=O 

Let us examine the asymptotic properties of a and y. One 
gets 

a-I -. (1 _ [(7/1~1T)Q2/b] + ~). (3.18) 
r_", r r 

For large r, a clearly behaves like the analogous function in 
the Reissner-Nordstrom solution, with Q as the electric 
charge and with 

mN = 3:./2 1T (~2) (3.19) 

playing the role of the Newtonian mass. To summarize, we 
have 

I ( 7 (1T)Q
2
/b Q2_(b)) a- = 1 - 8Vl "2 -r- + 7'" g -; ,(3.20) 

where 

lim k(.!!...) = I, 
'-00 r 

(3.21) 

_ (.!!...) = ~b/r) 
g r (b/r) , 

(3.21a) 
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and 

lima-I = 1. (3.22) 

In the neighborhood of r = 0 one gets for our metric 

-I 0 0 
12 

r 
0 -r 0 0 

gl'v = 
0 0 -rsinO 0 
12 

0 0 (I + ~:) r 
(3.23) 

(for r-+O). The determinant of the symmetric part of the met
ric is 

( - g)lt2 = (r4 + 14) lt2sin O. 

The full determinant is 

~ -g = r sin O. 

(3.24) 

(3.25) 

Thus there is a singularity at r = O. It is worth noting, how
ever, that there is no singularity in a and only one singularity 
in rdueto the(1 + 14/r4) factor. cu, the skew-symmetric part 
of gl'v, is also singular at r = O. 

Let us examine properties of the electric field: 

Q ( r
4 

) E = -? r4 + 8/4 . 

One easily sees that 

E(O)=O 

and 

Q 
E- - _2' 

r-+oo r 

(3.26) 

(3.27) 

(3.28) 

Thus there is no singularity at r = O. This is similar to the 
situation in Bom-Infeld electrodynamics. 14 Let us calculate 
the charge distribution and total charge for the electric field. 
It is known that 

41T~ - gp = H4i.i -div D, (3.29) 

where p is the charge density distribution and D is an electric 
induction vector. One gets 

H41=~ -gE/(ar-cu2)=~ -gE (3.30) 

and 

(3.31) 

The total charge is 

f l oo 1 r4 
Qtot = ~ -gpd 3x = - 32QI 4 

- r4 42 dr 
o r( +81) 

= -Q. (3.32) 

Thus we find the following interesting feature: the total elec
tric charge defined above is the same as the charge obtained 
from the asymptotic properties of the electric field E and the 
metric (functions a and r). Let us pass on the calculation of 
the energy of the electromagnetic field. One has 
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T4 = _1 Q2 ((r4 - 101
4
)). 

4 81T (r4 + 81 4 )2 
(3.33) 

The total energy 

E tot =41T fO rT\dr= (~2):; (~:). (3.34) 

where b 4 = 814. Thus we get that the total mass is 

m tot = (:) ( :; ) ( ~ 
2

). 
(3.35) 

and the Newtonian mass is 

(3.36) 

Thus, 

mN/mtot =M· (3.37) 

Equation (3.37) implies that asymptotically we see only [~] 
of the total energy as a Newtonian gravitational mass. Let us 
divide the total energy into two parts: Newtonian and elec
tromagnetic. That is 

(3.38) 

One gets 

(3.39) 

This energy could be treated as the energy of the electric field 
of the charge Q distributed over a sphere of radius roo That is, 

c2mem = Q2/ro, 

so that 

ro=b r (~) =14v'1(~)' 
1T 45 451T 

(3.40) 

(3.41) 

Let us suppose that the Newtonian mass is the mass of an 
electron. 

(3.42) 

One gets 

m c2 = (SL) (~~). 
e b v'1 32 

(3.43) 

Thus we get 

(3.44) 

where e is an elementary charge. For ro we get similarly 

ro = (~)(e2/mec2). (3.45) 

The classical radius of an electron is defined as 

rei = e2/mec2~2.81 X 10- 13 cm. 

Thus we get 

ro = (ij)rel~1O-13 cm 

and 

I = (~) (4~) rei ~ 10-
13 

cm. 

Let us introduce the dimensionless variables 

q=Q/b = Q/\!81, 

R -==r/b = r/4../8/. 
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-01 

5678910 
R 

FIG. 2. The function E = E(R) vs R (normalized electric field). 

Using Eqs. (3.49) and (3.50) we have 

I ( 7 (11') q q2 _ ( 1 )) 
a- = 1 - 8v2 "2 Ii + R2 g R 

= (1 - q2P(R )), (3.51) 

E = - t2 (R ~: 1 ) = q2E, (3.52) 

e=41TT4 r= q2.R
2 

(R4_i) =q2e, 
4 2 (R4+ W (3.53) 

411'pr 411'pr 411'pr 
P R = ""8f4 = ""8f4 = ~ 

= _ 2q ( R 4 ) = qiJR ' (3.54) 
R R4+ 1 

where q is a normalized charge, R is a normalized radial 
coordinate, and E, e, P R are normalized, electric field, radial 
energy distribution, and radial charge distribution, respec
tively. These functions are plotted in Figs. 2-4. The function 

P(R) = J.- (- q (J.-) + ~) (3.55) 
R R 16v2 

is plotted in Fig. 5. It expresses the properties of the general
ized Newtonian potential for our solution. Notice that the 

function e<O forO<R <\/S/v2. This means that our solution 
corresponds to a kind of bounded system of gravitational 
and electromagnetic fields. 

An interesting question which we can pose here con
cerns the existence of event horizons. This problem reduces 
to finding real roots for the function a-I = f(R,q). This de
pends of course on the value ofthe parameter q. Let us con
sider the function 

f(R,q) = 1 + q2(l/R )( - 71T/16v2 + g(l/R )). (3.56) 

0082 

0.039 

2345678910 
R 

FIG. 3. The function e = e(R ) vs R (normalized radial energy distribution). 
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FIG. 4. The function .oR = .oR (R) vsR (normalized radial charge distribu
tion). 

We have 

f(O,q) = 1 (3.57a) 

and 

lim f(R,q) = I. (3.57b) 
R~", 

Consider now the function 

h (x) = - 711'116v2 + g(x) (3.58) 

and look for a value of x = x I such that 

h (xd <0. (3.59) 

The function g(x) is monotonic in the interval (0, + O()) and 
positive. Moreover, 

lim g(x) = ~ 
X= '" 16v2 

so that 

g(lIR) < 71T116v2. 

Consequently, 

h (l/Rd <0 

for every R I > O. Let us suppose that 

(3.60) 

(3.61) 

(3.62) 

q> ..[If;. (3.63) 
~ - g(l/Rd + 71T116v2 

It is easy to check that if (3.63) is satisfied then 

f(q,R I) < O. (3.64) 

The functionf(q,R ) changes sign in the interval (O,R I >. This 
means that there exists a value RH E (O,R d such that 

o 

p 

f(q,RH) =0. 

2345678910 
R 

(3.65) 

FIG. 5. The functionp = p(R) vs R (generalized Nordstrom function). 
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The function/(q,R ) changes sign in the interval (R I , + 00) 2,.".,."."..".,.~T"T"'""'1""~T'""'""""""~l""T"""""'"""'1'""""""'"'T"='f""""'T""1 

too. Thus there exists a value R li E (R I' + 00) such that 

(3.66) 

[if condition (3.67) is satisfied]. Hence there are two event 
horizons for sufficiently large q in general. 

Let us examine the situation with only one event hori
zon. The conditions necessary for the existence of a single 
horizon are 

/(q,R)=O, 

:~ (q,R)=O. 

From (3.67b) one easily gets 

~g(J..) =g(J..) _ 
Rdr R R 

Equation (3.67) is equivalent to 

71T 
16v1' 

In terms of the variable x= 1/ R we have 

71T 

16v2 

(X4 + 2)x 
2(X4 + 1)2 = g(x). 

The soluiton Xo of Eq. (3.70) is 

Xo = 0.516 28899464 .. ·. 

Let us solve Eq. (3.67a) with respect to q. One gets 

1 

or 

Xo(X6 + 1 ).J2Xo 
~X6 +2 

Thus there is exactly one event horizon when 

RH = 1/xoz 1.9369 .. · 
and 

(!iL) = 4.J8 ~3.2575 ... , 
I Xo 

qo = Xo(X6 + 1)-J2Xo ~2.038 6231 .... 

~X6 +2 

(3.67a) 

(3.67b) 

(3.68) 

(3.69) 

(3.70) 

(3.71) 

(3.72) 

(3.73) 

(3.74) 

(3.73a) 

(3.75) 

In this case we have for the Newtonian and total mass, 

mO = 1T4v2 (~) X~(X6 + 1)2 (i.i), (3.76) 
N 16 (X6 + 2) G 

mO = 1T4v2 (~) X~(X6 + 1)2 (e21), (3.77) 
tot 32 (X6 + 2) G 

or 

m~ = 3.39 (C~) ~ 107 g, (3.76a) 

m?at = 14.31 (Cd) ~ 107 g (3.77a) 

for I = 10-20 cm. The total charge is 
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FIG. 6. The function a- J = /(q,R I vs R for various values of parameters q. 
qo means the critical value for which we have only one event horizon for the 
value R = RH . For the value R = RH the function/(q,R) has a minimum 
regardless the value of q. If q > qo we have two event horizons [two real roots 
of/(q,R ), RH, ,RH,]. If q < qo there are not any event horizons [no real roots 
for/(q,R )]. 

Qo = qo4.J8lc2/-./G z2.82(lc2/-./G) 
~ 105 esu z 1014 elementary charges 
(for 1~1O-20 cm). (3.78) 

It is easy to see that if q > qo we hve two horizons. This also 
implies that 

(3.79) 

In other words the Newtonian mass is large enough to form 
event horizons. If q = qo we have only one horizon and if 
q < qo we have no horizons. This situation is described in Fig. 
6 where we plot the function a -I = /(q,R ) for various values 
of the parameter q. For example for an electron one has 

qelectron = e-./G /4.J81c2~ 10-37 <qo' (3.80) 

Thus there are no event horizons. It is worth noting that if 
there exists only one event horizon the solution is unstable 
due to pair creation and Hawking radiation. Such "black 
holes" are "very hot" (see Ref. 23) and decay very quickly. In 
the case of two event horizons the solution is unstable be
cause of pair creation.lf the Newtonian mass is sufficiently 
big this solution could be more stable because the Hawking 
effect is not important for very massive black holes (see Ref. 
23). The situation without any event horizons is very inter
esting from a physical point of view, because it corresponds 
to the parameter q for electron (in general for any elementary 
particle). Thus we have in this case a singularity without a 
horizon. The structure of this singularity is different from 
the Nordstrom-like or Schwarzchild-like singularity in the 
nonsymmetric theory of gravitation [see Refs. 15, 16, and 23 
and Eq. (3.23)]. 

To summarize, we have found the following exact solu
tion (in the form suggested in Sec. 6 of Ref. 1): 

(

a 0 0 F/r) 
- 0 -r 0 0 

g/tv = _2' 

_~2/r ~ -~Sine ~ 
(3.81) 
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( 
71T ( Q 2) 1 Q 2 ( b )) - I a = 1 - -- -- - + - g - ,(3.82) 

16v1 b r rb r 

y= (1 + ~) (1- ~(~)~ + ~g(!:...)), 
r4 16v1 b r rb r 

(3.82a) 

b 4 =8/ 4
, (3.83) 

(3.84) 

The function g is plotted on Fig. 1 [see Eq. (3.13)]. The solu
tion has one horizon if 

(3.85) 

If Q < Qo there no horizons. If Q > Qo we have two horizons 
(as for the Nordstrom solution to the Einstein-Maxwell 
equations).In other words, the horizons exist if the mass is 
sufficiently big [see Eq. (3.79)]. Finally let us calculate the 
ratio Q /m N for our solution. One gets using (3.36) and (3.49) 

Q /m N = 32~2G l71Tq. (3.86) 

However, for an electron, 

e 32{W 
(3.87) 

71Tq electron 

so that 

Q (3.88) 

4. CONCLUSIONS AND PROSPECTS 

We have found an exact static, spherically symmetric 
solution for the nonsymmetric Kaluza-Klein theory. 1.3 Our 
solution has the following properties: The metric (symmetric 
part of ga{3) behaves asymptotically like the Reissner-Nord
strom solution of general relativity [apart from a factor of 
(1 + /4/r4) which is typical in the nonsymmetric gravita
tional theoryI5.16]. The most remarkable feature of this met
ric is that the function a is not singular at r = 0 and goes to 1 
as r-o. We have calculated the total energy of the solution 
and its Newtonian mass. Both quantities are constructed 
from Q and /, the charge and fermion number parameters 
respectively. 10 The electric field in our solution asymptoti
cally behaves like the Coulomb field generated by a charge 
Q. However, this field vanishes at r = 0 and is nonsingular 
for all r. We get a maximal value of this field similar to the 
one in Born-Infeld electrodynamics. 14 We calculated the 
charge distribution for such a field and showed that it is 
nonsingular and equal to zero at r = O. Asymptotically our 
solution behaves similarly to the Reissner-Nordstrom-like 
solution in NGT. 16 Although asymptotically we see a New
tonian mass and an electric charge, at the origin (r = 0) there 
is no mass or electric charge (only fermion charge /). Thus it 
seems that we get "mass" without mass and "charge" with
out charge. The total charge for our solution is the same as 
the Coulomb charge (charge seen at infinity). The total mass, 
on the other hand, is not the same as the Newtonian mass 
(mass seen at infinity). In this sense we get a kind of finite 
mass renormalization. If we consider this solution to be a 
model for a charged particle constructed from gravitational 
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and electromagnetic fields, this mass renormalization is un
derstandable. The Newtonian mass is the mass of the parti
cle and the remainder is the mass of the external electric 
field. For example, if we consider this solution as a model of 
an electron we get a connection between the classical radius 
of an electron and its fermion number parameter 1. Note that 
in general relativity the total energy associated with the elec
tric field of a pointlike electron is infinite. 

Our solution possesses a singularity at r = 0 in the de
terminant of the full non symmetric metric. However, the 
(symmetric) metric seems to be less singular. There is no 
singularity for the function a. The function y has a singular
ity only in the factor (1 + /4/r4) and the function (U = f2/~ 
has the usual singularity at r = O. The electric field is not 
singular. Our solution posseses one or two event horizons if 
the charge Q (and consequently the Newtonian mass) is suffi
ciently large. The solution seems to represent a bounded sys
tem of gravitational and electromagnetic fields [c.f. the be
havior of the function e (see Fig. 3)]. The radial energy 
density is zero at the origin, and finite everywhere. In a small 
region around r = 0 it is negative. The metric is spatially flat 
at the origin. For a very small value ofthe parameter q (see 
Fig. 6)thefunctiona~l, andy = (1 + /4/r4). Iftheparam
eter q is equal to qelectron' one gets 

1;;.a-1 = (1 - q;lectronP(R)) 

>(I-q;lectronPmax»1-1O-74~1. 

Thus a is almost exactly one and y is almost exactly 
(1 + /4/r4). The metric is then as follows: 

( 

- 1 0 0 /2/~) 

gl'v = ~ - ~ _ ~ Si~2 (} ~ . 

_/2/~ 0 0 (1 + /4/r4) 

(4.1) 

(4.2) 

The symmetric part ofthis metric is spatially flat. It is easy to 
see that such behavior is valid for every elementary particle. 
The remarkable property of(4.2) is that it is described com
pletely by the parameter / (fermion number) which plays the 
role of the second gravitational charge in the nonsymmetric 
theory of gravitation. It seems that the fermion number pa
rameter should playa significant role in the unification of 
elementary particle theory and gravity. In Eq. (4.2) the fer
mion number parameter is much more important than mass. 
Thus the geometry of space-time on the level of elementary 
particles is determined by the second gravitational charge. 
The function a-I in general relativity has the form 

a-I = 1 - 2m/r. (4.3) 

This function describes the difference between the 
Schwarzschild solution and a Minkowski metric; in particu
lar the curvature of a space. In the solar system at the earth's 
orbit one finds 

a- l (1 au)~l- 3XlO-B, (4.4) 

where 1 au = 1.45 X lOB km, is one astronomical unit (the 
radius of earth's orbit) and we have put into Eq. (4.3) 

2m~5 km (4.5) 

which is the Schwarzschild radius of the sun. Ifwe compare 
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Eq. (4.4) with Eq. (4.1) we easily see that our solution with 
q = qelectron is spatially much more flat everywhere than 3-
space at the orbit of the earth. 

Note that in Eq. (4.2) we get in a natural constant I 
which has the dimension oflength. Some authors claim that 
it is impossible to get a true unification of the gravitational 
field and elementary particles without a new universal con
stant dimensions of length. In the non symmetric theory of 
gravitation there exists such a constant connected to fermion 
number. The nonsymmetric Kaluza-Klein theory which 
unifies the nonsymmetric theory of gravitation with a gauge 
field theory (i.e., the a electromagnetic field), possesses this 
constant as well. 1-7 This fact might enable these investiga
tions to lead ultimately to a true unification of gravity and 
elementary particles. 

Here are some prospects for further investigation: 
1. Find more general spherical solutions with nonzero! 

and Bo' including non static solutions. 

APPENDIX A 

126 J. Math. Phys .. Vol. 25. No.1. January 1984 

2. Find axially symmetric solutions of the field equa
tions. This is more difficult, because there is no known axial
ly symmetric solution in the Einstein unified field theory and 
in NGT. 

3. Extend our formalism to the nonabelian-nonsymme
tric Kaluza-Klein theory (see Refs. 2 and 6), i.e., to find such 
a solution for the case G = SU(2) and G = SU(2)XU(I). This 
will offer a model of an electron or a lepton constructed from 
gravitational, electromagnetic, and weak interactions. 

4. Extend our solution for the nonsymmetric Jordan
Thiry theory (see Ref. 4). 
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A[23I(r)=sin8(('f¢'-2f3~' - ~(2fC-{3¢')+ _1 (/¢' +2{3C) (a' + ~¢'+ y,) 
4a - ) 4a 8a a ay y 

+ _1 (f¢ + 2f3D) (L + ~¢ + ~) _ ~('f¢ + 2f3
D

) + ~(2fD-{3¢)), 
8y y 2ay 2a at 4y 4y 

(A6) 

where 

¢ = log(f3 2 + 12), 

fl3' - {31' ill - {3i C = D = -'-=-----'-~ 
{32+r' {32+/2' 

. means derivative with respect to time t, and' means derivative with respect to radius r. 

(A7) 

(A8) 

(A9) 

A (1')= ~((¢')2+4C2)_ ~((¢)2+4D2)+ ~¢'(¢'+¢)- ~~(¢~) 
114 I 8a 8y 4a 2 at y 

(AlO) 

APPENDIXB 

Using condition (3.1) in the static case and the following 
ideas from Ref. 17 we get from (A2)-(A4) and from Eqs. (3.4) 
in the static case, 

- ~ (A 11(1') - 81TT~';') + ~ (Adr) - 81TT~~) 
a {3 

+ ~ (A44 - 81TT:') 
y 

1 - 2 - 1 -= - -A11(F) + -A22 (F) + -A44(F) 
a {3 y 

4 {32 8 Tern p 
a (/32+4/2) 1T 11 = . 

One gets 

0= ~(A11(r)-81TT~';')+ ~p 
a 2 
1 - 1 - 1 -

= -All(F) + -AdF) + -A44(F) 
2a {3 2y 

(BI) 

_ 81T ({32 + 4/4) Tern (B2) 
a {32+4/4 11' 

o = ~ (A 22(r) - 81TT~~) + ~ P 
{3 2 

1 - 1 - 1 -= - -All(F) + -A22(F) + -A44(F) 
2a {3 2y 

_ 81T (3{32 - 4/4) Tern (B3) 
a {32+4/4 11' 

o = - ~ (A 44(r - 81TT:') + ~ p 
Y 2 
1 - 1 - 1 -= - -A11(F) + -Azz(F) - -A44(F) 

2a {3 2y 

_ 81T ({32 - 4/4) Tern (B4) 
a {32+4/4 II' 

where 

81TT ern _ aQ2 ( {32 - 4/4 ) (BS) 
11 - {32 ({32 + 8/ 4f . 

From Eqs. (B2)-(B4) one gets 

(lIa)A11(r) + (lIy)A44(r) = o. (B6) 

Let us substitute 
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a=exp(M), 
(B7) 

y=exp(N), 

where M = M (r) and N = N (r) are real functions of r. From 
(BS) one gets 

M'+N' 4 
r + -;;H = 0, (B8) 

where 

H = (/4/(/4 + {32). (B9) 

Let us take 

{3=r (BlO) 

and substitute Eqs. (B8)-(BlO) to Eq. (B4). One gets, using 
Eqs. (BS) and (B6), 

~(rexp(-M))=I- ~ (r+4/4). (Bll) 
dr r (r4 + 8/ 4)2 

APPENDIXC 

Let us calculate the connection I' Pr and the Christoffel 
symbols for our solution. One gets (using results from 
Ref. 17) 

r/ 141 =21 2/ar, r~3 = -!sin28, r~3 =r~3 = cot 8, 

I' j2 = (lIsin2 8)1' ~3 = - ria, 

r~12) = rtl3) = lIr, 

rT241 = rf34 I = -/2/ar, (CI) 

The remaining r's are zero. Let us consider the symmetric 
part of our soluiton, i.e., 

o 
-r 

o 
o 

o 
o 

- r sin2 8 

o 
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where a and r are given by the formulas (3.81) and (3.81a). 
One easily finds the determinant 

g = det[glJtvl] = - (1 + 14/r4)r4 sin2 O. (C3) 

The determinant is not singular at r = O. The inverse tensor 
for glJtvi' 

(C4) 

IS 

o 0 
-1Ir 0 ° glJtvl = 0 

(

-1Ia 

o o - 1Ir sin2 0 
o ) ° . 

o o 0 

Let us calculate the Christoffel symbols for glJtvl' 

( a) _ 1 -(al'l( ) 
\.rJr - 2" g g(/3IL I,Y + g(YI'I,/3 - g(/3YI,1' . 

One easily finds 

( 1) a' 
11 =~' 

G2) 
r -, 
a 

G3) = ~ sin
2 

0, 

(:3) 
C~) 

- ~sin20 
2 ' 

L 
2a 

(22J = -;- = (:J, 
( 14) a' 

1 + r4 2a3 ' 

(4) _ r' _ a' 14 ( 14) - 1 -----+- 1+- . 
41 2r 2a ,.s r4 

1Iy 
(CS) 

(C6) 

(C7) 

The remaining Christoffel symbols are zero. Let us write 
equations of motion for an uncharged test particle for our 
solution, i.e" equation for geodesics. 

d 2x a 
- dx/3dxY 

~ +rI/JYI-- =0. (C8) 
dT dT dT 

One easily finds, from (C1), 

d
2

r + ~ (!!!..)2 + (~ _ (1 + ~)~) 
dr 2a dr 8a2,.s r4 2a3 

( dt)2 r [(dO)2 (dr )2] X dr - -;; -;J; + sin
2 

0 -;J; = 0, 

d 20 + ~ (!!!..) (dO) _ sin 20 ( drfJ)2 = 0, 
dr r dr dr 2 dr 

(C9) 

d 2rfJ + ~ (!!!..) (drfJ) + 2 cot 0 (drfJ) (dO) = 0, 
dt 2 r dr dr dr dr 

d
2

t + ( 3/
4 

_ ~) (!!!..) (~) _ 0 
dr 2r(/4 + r4) 2a dr dr -. 

In the nonsymmetric theory of gravitation uncharged parti
cles move along geodesics in Riemanian geometry formed 
from glJtvl (see Ref. 13), i.e., in Christoffels' symbols 
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d 2xo. + (a) dxr dxP = O. 
dr \.rJr dr dr 

(ClO) 

One easily finds, from (C7), 

Let us find equations of motion for a charged test particle. In 
the nonsymmetric Kaluza-Klein theory one derived such 
equations, (see Ref. 1) 

d 2xa - dxr dx/3 ( q ) -- +rl/Jl--- + -
dr r dr dr mo 

X [n<>rF _g[ar1H ] dxP = 0 (C12) 
6 rfJ yfJ dr ' 

where q is a charge and mo a rest mass of a test particle. Using 
(C9) and (3.7) one gets 

d
2

r + ~ (!!!..)2 + (~ _ (1 + ~)~) 
dr 2a dr 8a2,.s r4 2a3 

d 2t (31
4 

a' ) ( dr ) ( dt ) 
dr + 2r(/4 + r4) - 2a dr dr 

+ (L) ( raQ ) (!!!..) - 0 
mo r4 + 8/ 4 dr -. 

In Ref. 3 a different possibility is considered for the equa
tions of motion for a charged test particle. 

d 2x
u 

+ (a) (dxP\ (dxr) + (L) 
dr \.rJr d-; ) dr mo 

X [~rF _ g[ar1H ] dxfJ = 0 (C14) 
y/3 r/3 dr . 

Using (C9) and (C11) one finds the equations 

( dt)2 r [(dO)2 (drfJ)2] X -;J; + -;; -;J; + sin
2 

0 -;J; 

( 
q ) Q (r4 + 14) dt 

- mo ar r48/ 4 dr = 0, 

d 20 _ sin 20 ( drfJ)2 + ~ ( dO) (!!!..) = 0, 
dr 2 dr r dr dr 
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d 2¢ + 3.. (d¢ ) (~) + 2 cot 0 (d¢) (d¢) = 0, 
dr r dr dr dr dr 

d 2t ( a' /4) ( dt ) ( dr ) 
dr + 2a + r(/4 + r4) dr dr 

+ (~J C::~4) (~~) =0. (CIS) 

Notice that equations for 0 and ¢ are the same in (C9), (CII), 
(C13), and (CIS) regardless of connections and whether the 
particle is charged or not. For a' we have 

a'=!:.. +a2(Q 2
(r4+4/4) _ ~), (CI6) 

r (r4 + 8/ 4)2 r 

where a is given by formula (3.81). According to the general 
properties of the geodetic equations in Einstein's unified the
ory, nonsymmetric theory of gravitation, and in the nonsym
metric Kaluza-Klein theory, the Eqs. (C9), (CII), (Cl3), and 
(CIS) have the following first integral (see Refs. I and 3): 

r ( :; r -a ( ~~ r -r 

X [( ~~ r + sin
2 

0 (~~ r] = const. (CI7) 

We can choose const = I and 

r ( ~; r -a ( ~: r -r 

X ((~~r +sin20(~~r) = 1. (CI8) 

Let us consider equations for 0 and ¢' 

d
2
0 _ sin 20 (d¢)2 + 3.. (dO) (.!!!..) = 0, (CI9) 

dr 2 dr r dr dr 

d 2¢ + 2 cot 0 (dO) (dO) + 3.. (d¢) (.!!!..) = o. 
dr dr dr r dr dr 

One easily finds the first integral of motion of (C 19), 

(C20) 

where 
Eo = const. (C21) 

comparing (CI8) and (C20) one gets 

r(~)2 -a (~)2 = 1- 2Eo. 
dr dr r (C22) 

Let us consider the second equation of (C 19). One easily finds 
the first integral of motion 

d¢ L 
-= , 
dr r sin2 0 

(C23) 

where L = const. Comparing (C20) and (C23) one gets 

(
dO)2 I ( L 2 ) 
dr = r4 2Eo - sin2 0 . (C24) 

The first integrals (C20) and (C22) lead to the following sim
plifications of our equations (C9), (Cl1), (CI3), and (CIS): 

a' ) 
2a2 

(C9a) 
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Formulas are derived for energy-dependent, steady-state, and time-dependent neutron transport 
problems, relating the surface neutron fluxes for a convex, homogeneous, three-dimensional 
region to the neutron scattering laws that apply within the region. In principle, these formulas can 
be used to deduce information about the scattering laws. 

PACS numbers: 05.60. + w, 42.68.Db 

I. INTRODUCTION 

In recent years, a substantial effort has been directed 
toward the problem of obtaining exact formulas relating in
coming and exiting neutron fluxes for a homogeneous slab to 
the scattering laws that apply within the slab. 1-13 Such for
mulas have generally been obtained by directly manipulat
ing the forward and adjoint one-dimensional slab geometry 
transport equations, although there are exceptions; some 
early work of Siewert 1,2 makes use of the Chandrasekhar X 
and Y functions; recent work by Sanchez and McCormick 11 

uses the diffusion equation as an approximation to the trans
port equation; and a recent article by Siewert and Dunn9 

allows for spatial variations in the angular flux in directions 
parallel to the edges of the slab. Also, most of this prior work 
considers only monoenergetic transport problems, although 
Larsen6 has considered multigroup problems. 

In an effort to obtain a more general, and therefore pos
sibly more useful theory, we shall in this article extend the 
domain of the previous results to the general case of time
and energy-dependent neutron transport in a three-dimen
sional, convex, homogeneous region. Specifically, for such 
transport problems we derive exact formulas relating both 
steady-state and time-dependent surface neutron fluxes to 
the neutron scattering laws that apply within the region. In 
principle, these formulas can be used to determine properties 
ofthe material scattering laws. However, there are limita
tions: a large number of neutron flux measurements general
ly must be made, and the theory described here is only appli
cable for homogeneous regions. 

Our theory thus cannot be used to determine the struc
ture of a heterogeneous solid by irradiating it with external 
neutrons and measuring (and processing) the incident and 
exiting fluxes. However, it can be used to solve the following 
two general problems for a homogeneous region D: (1) If D 
consists of a uniform mixture of known materials (with 
known cross sections) in unknown proportions, then deter
mine the proportions; and (2) if the cross sections inD can be 
regarded as multigroup with a finite number of groups and a 
finite Legendre expansion in angle, then determine these 
cross sections. 

The remainder of this article is organized as follows. In 
Sec. II we establish notation and derive physical interpreta
tions for solutions of certain adjoint neutron transport prob-

01 This research was performed under the auspices of the U. S. Department 
of Energy. 

lems. In Sec. III we use these results to derive the inverse 
theory for steady-state problems; in Sec. IV we repeat this 
analysis for time-dependent problems. We conclude, in Sec. 
V, by describing a way to simplify some of the results ob
tained in Secs. III and IV. 

II. PRELIMINARIES 

The main purpose of this section is to show that solu
tions of adjoint transport problems for a convex solid exist 
having simple interpretations at points on the surface. 

To begin, let us assume that steady-state neutron trans
port occurs within a homogeneous convex region D accord
ing to the standard equations 

n· VtP{r, n, E) + O'T(E)tP(r, n, E) 

= f f O's(E'--+E, n'· n)tP(r, n', E')d 211' dE', 

(2.1) 

tP(r, n, E) = fIr, n, E), rEaD, n· n < 0 . (2.2) 

Here 0 is the unit outer normal. The solution tP of problem 
(2.1), (2.2) is, physically, the neutron angular flux arising 
from the incident fluxf on the surface of D. 

To proceed, let R be the set of all phase-space points 
(r, n, E), with rEaD and n . 0> O. Let Ro be any subset of 
R, and Xo the characteristic function for Ro: 

{
I, 

Xo(r, n,E) = 
0, 

(r, n, E) E Ro , 

(r, n, E) E R - Ro . 
(2.3) 

For any neutron flux tP(r, n, E) existing in D, we define 

f f f n· °Xo(r, n, E)tP(r, n, E)d 211 dE d 2r 
R 

= f f f n· °tP(r, n, E)d 211 dE d 2r 

Ro 

= the net current out of Ro. (2.4) 

Now, let us consider the steady-state adjoint problem 

- n· VtP*(r, n, E) + O'T(E)tP*(r, n, E) 

= J J O's(E --+ E', n • n')tP*(r, n', E ')d 211' dE', 

(2.5) 

tP*(r, n, E) = Xo(r, n, E), rEaD, n· 0>0. (2.6) 

We shall prove the following result: 
Lemma 1: For any rEaD, n· 0 <0, and any E, 
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l/J*(r, 0, E) = the net current out of Ro due to a unit delta 
incident beam at (r, 0, E). 

Proof Let ro be any point on aD, 0 0 any unit vector 
such that no • ii;, < 0, and Eo any admissible value of E. Also, 
let l/J be the solution of the forward problem consisting of 
Eqs. (2.1) and (2.2), with 

f(r, 0, E) = 8(r - ro)8(0 - 00)8(E - Eo)llOo 0 nol . 
(2.7) 

Then l/J(r, 0, E) is the angular flux at any point (r, 0, E) due 
to the unit delta incident beamfat (ro, 0 0, Eo). 

We multiply Eq. (2.1) by l/J* and Eq. (2.5) by l/J, integrate 
both equations over 0 and E, subtract, and then integrate 
the resulting single equation over all rED to obtain 

° = iDJ J 0 0 0l/J*l/Jd
2
{J dE d

2r. (2.8) 

(This is just the reciprocity relation for the special case of no 
interior sources for the forward and adjoint transport 
fluxes. 14) Next, we use Eqs. (2.2), (2.6), and (2.7) to get 

0= IIIo oOl/J(r,0,E)d 2{JdEd 2r 

Ro 

+ L II no ol/J* 8(r - ro)8(0 - 00)8(E - Eo) 
aD 100 0 00 1 

0·0<0 

(2.9) 
or 

l/J*(ro, no, Eo) = f II n· ol/J(r, 0, E)d 2
[} dE d 2r. 

R" (2.10) 

This proves the result. Q.E.D. 
Now let us assume that time-dependent neutron trans

port occurs within the homogeneous convex region D ac
cording to the standard equations 

1 a 
--a f/!{r, 0, E, t) + 0 0 Vf/!{r, 0, E, t) + a,(E)l/J(r, 0, E, t) 
v t 

= II as(E'~E,0'·0)l/J(r,0',E',t)d2[}'dE', 
(2.11) 

l/J(r, 0, E, t) = f(r, n, E, t), rEaD, 0 0 n < 0, 0< t , 
(2.12) 

l/J(r, n, E,O) = 0, rED. (2.13) 

The solution l/J of Eqs. (2.11)-(2.13) is, physically, the time
dependent neutron angular flux arising from the incident 
fluxf on the surface of D. [Throughout this article, we only 
treat problems with initial data of the form (2.13), i.e., we 
assume that initially no free neutrons are present in D.] 

We let R, Ro, and Xo be defined above, and for any 
neutron flux l/J(r, n, E, t) existing in D and T> 0, we define 

iT f f f n 0 0xo(r, n, E)l/J(r, n, E, t )d 2[} dE d 2rdt 

R 

= iT f f f n 0 nl/J(r, n, E, t)d 2[} dE d 2rdt 

Ro 

= the net current out of Ro up to time T. (2.14) 
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We now consider the time-dependent adjoint problem 

_1- !.... .I·*(r 0 E t) v at'f/ , , , 

- 0 0 Vl/J*(r, 0, E, t) + a T(E )l/J*(r, 0, E, t) 

= I I as(E~E', 0 0 O')l/J*(r, 0', E', t)d 2{J' dE' , 

(2.15) 

l/J*(r,n,E,t)=Xo(r,O,E), rEaD, noo>o, O<t<T, 
(2.16) 

l/J*(r, 0, E, T) = 0, rED. (2.17) 

We shall prove the following result: 
Lemma 2: Let ° < t < T. Then for any rEaD, 0 • 0<0, 

and any E, l/J*(r, 0, E, t) = the net current out of Ro up to 
time T due to a unit delta incident beam at (r, 0, E, t ). 

Proof Let ro be any point on aD, 0 0 any unit vector 
such that no 0 no < 0, Eo any admissible value of E, and 
0< to < T. Also, let l/J be the solution of the forward problem 
consisting of Eqs. (2.11 )-(2.13), with 

fIr, 0, E, t) = 8(r - ro)8(0 - 00)8(E - Eo)8(t - to) . 
1000noi 

(2.18) 

Then l/J(r, 0, E, t) is the time-dependent angular flux at any 
point (r, 0, E, t) due to the unit delta incident beam at 
(ro' 0 0 , Eo, to)· 

We multiply Eq. (2.11) by l/J*, Eq. (2.15) by l/J, integrate 
both equations over 0 and E, and subtract to obtain the 
single equation 

0= :tII ~l/Jl/J*d2{JdE+Vo II 0l/Jl/J*d
2
[}dE. 

(2.19) 
Next, we operate on Eq. (2.19) by 

fL (.)d 3
rdt, (2.20) 

and use the initial conditions, Eqs. (2.13), (2.17), and the 
boundary conditions, Eqs. (2.12), (2.16), and (2.18) to easily 
obtain 

l/J*(ro, 0 0 , Eo, to) = .r II f n· nl/Jd 2{J dE d
2
rdt. 

Ro 
(2.21) 

This proves the result. Q.E.D. 
The main purpose of Lemmas 1 and 2 is to establish the 

following: (1) there exist solutions l/J* of the steady-state ad
joint transport Eq. (2.5) for which l/J*(r, n, E) is physically 
measurable for all rEaD, all 0, and all E; and (2) there exist 
solutions l/J* of the time-dependent adjoint transport Eq. 
(2.15) and initial condition Eg. (2.17) for which l/J*(r, n, E, t) 
is physically measurable for all rEaD, all n, all E, and all 
t < T. Such solutions will playa key role in the remainder of 
this article. 

111. STEADY·STATE THEORY 

Let l/J be any solution ofEq. (2.1) and l/J* any solution of 
Eq. (2.5). We multiply Eq. (2.1) by Vl/J*, Eq. (2.5) by Vl/J, 
integrate over nand E, and then add the two resulting equa-
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tions, obtaining 

f f [(Vtl*)(fl· Vtl) - (Vtl)(fl • Vtl*)]d 2f} dE 

+ V f f uT(E)tI(r, fl, E)tI*(r, fl, E)d 2f} dE 

= V f f I I us(E / ---+ E, fl' • fl)tI(r, fl/, E /) 

X tI*(r, fl, E)d 2f} / dE' d 2f} dE. 

However, elementary operations give 

(Vtl*)(fl • vtl) - (Vtl)(fl • Vtl*) 

= V(tI*fl • vtl) - fl • V(tI*vtl) 

= fl· V(tlvtl*) - V(tlfl • vtl*) . 

(3.1) 

(3.2) 

Introducing Eq. (3.2) into Eq. (3.1) and integrating over r, we 
obtain 

S + iD n II uT(E)tI(r, fl, E)tI*(r, fl, E)d 2f} dE d 2r 

= iD n I I II us(E'---+E, fl' 0 fl)tI(r, fl/, E') 

X tI*(r,fl,E)d 2f}'dE'd 2f}dEd 2r, (3.3) 

where, using a standard vector identity, 15 we have 

s = iD I I tI* [n(fl 0 vtl) - (fl 0 n)(Vtl)]d 2f} dE d 2r 

= iDII tI*[flX(nXVtl)]d 2fldEd 2r, (3.4a) 

or 

S = iD I I tI[(fl 0 n)(Vtl*) - n(fl 0 Vtl*)]d 2f} dE d 2r 

= iD f I tI[flX(Vtl*xn)]d
2
f} dE d 2r, (3.4b) 

However, if V T denotes the gradient operator in the plane 
tangent to aD, then for any point on aD we may use 

vtl = n(n 0 Vtl) + V Ttl 

in Eq. (3.4a), and 

Vtl* = n(n 0 Vtl*) + V TtI* 

in (3.4b). Making these substitutions (and noting that 
nXn = 0) we obtain 

(3.5a) 

(3.5b) 

s= iDII tI*[flX(nXVTtI)]d 2fldEd 2r, (3.6a) 

or 

s= iDII tI[flX(VTtI*xn)]d 2fldEd 2r. (3.6b) 

Our result is Eq. (3.3) and Eq. (3.6). Each of the terms in these 
equations consists only of a surface integral involving tI, tI*, 
V Ttl, or V TtI*· Since boundary conditions for tI and tI* have 
not yet been imposed, we can choose these boundary condi
tions so that both t/J and t/J* are physically measurable on aD. 
Doing this, then V T t/J and V T t/J* can also be obtained, and the 
vector equation (3.3) reduces (for general three-dimensional 
geometry) to three linear scalar constraints involving U T and 
Us' For different combinations of t/J and t/J*, different con
straints are derived, and one can use these constraints to 
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determine properties of Us and U T' such as described above 
in Sec. I. 

To obtain new constraints on UT and Us, one does not 
have to determine new values of both tI and tI*. For instance, 
one could experimentally determine a specific, unique tI*, 
and then three new constraints are determined by each dif
ferent value of t/J. Alternatively, one could determine a 
unique t/J and then derive three different constraints using 
each different value of tI*. [This can easily be done if in eval
uating the "first" tI* using the theory in Sec. II, one deter
mines the exiting angular fluxes for all points (r, fl, E) E RD. 
Then, the "first" tI* arises from Ro, and arbitrarily many 
other solutions t/J* arise from arbitrary subsets of RD.] 

Whichever way one chooses to determine different con
straints, it is clear that the experimental determination of the 
necessary data will require a large number of measurements. 
In addition, because the problem under consideration is tru
ly inverse in nature, it is likely that our set of constraints will 
be sensitive to errors in neutron flux measurements. How
ever, only experiment can determine just how accurately the 
fluxes need to be determined so that errors in measurements 
of tI do not lead to unacceptable errors in U T or Us' 

IV. TIME·DEPENDENT THEORY 

Let t/J be any solution of Eqs. (2.11) and (2.13), and tI* 
any solution of Eqs. (2.15) and (2.17). We multiply Eq. (2.11) 
by Vtl*, Eq. (2.15) by Vt/J, integrate over fl and E, and then 
add the two resulting equations, obtaining 

II ~[(vt/J*) at/J - (vt/J) at/J* ]d 2fl dE 
v at at 

+ II [(Vt/J*)(fl 0 vt/J) - (Vt/J)(fl 0 Vt/J*)]d 2fl dE 

+ V f f uTt/JtI* d
2
f} dE 

=V IIII us#*d 2 f}'dE'd 2f}dE. (4.1) 

Equation (3.2) can be used to rewrite the second term on the 
left side of Eq. (4.1), while the first term can be rewritten 
using 

(Vt/J*) atl _ (Vt/J) at/J* = v(t/J* at/J) - ~ (t/J*vt/J) 
at at at at 

= ~ (t/Jvt/J*) - v(t/J atl*) . 
at at 

(4.2) 

Introducing Eqs. (3.2) and (4.2) into Eq. (4.1), operating by 

iT L (o)d 3rdt, 

and using the initial conditions (2.13) and (2.17) and the for
mulas (3.5), we obtain 

U + V + iT iD n I I U T(E )t/J(r, fl, E, t) 

X t/J*(r, fl, E, t)d 2fl dE d 2r dt 

= iT iD n I I I I us(E'---+E, fl' 0 fl)tP(r, fl/, E', t) 

X t/J*(r, fl, E, t)d 2fl / dE / d 2fl dE d 2r dt , (4.3) 
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where 

or 

and 

or 

U = (i 0 II~ tP* atP d 2[l dE d 2rdt (4.4a) Jo aD v at 

u= - (i 0II~tP atP* d 2[ldEd 2rdt (4.4b) Jo aD v at 

v = iT iD II tP*[nX(OXVTtP)]d 2[l dE d
2
rdt 

(4.5a) 

v= iT iDff tP[nX(VTtP*Xo)]d 2[ldEd 2rdt. 

(4.5b) 

Our result consists of Eqs. (4.3)-(4.5). As with the 
steady-state analysis, each of the expressions in these equa
tions involving tP or tP* can, in principle, be determined by a 
suitable interpretation of tP* (see Sec. II) together with suit
able measurements of surface neutron fluxes. The comments 
at the end of Sec. III regarding (1) the likely sensitivity of our 
equations to experimental errors, and (2) the effort that ap
pears necessary to determine acceptable measurements, ap
ply here to an even greater degree than in Sec. III. This is 
because one must now make accurate measurements for 
each value of t; therefore, the dimensionality of the space in 
which measurements must be made, recorded, and pro
cessed, is increased by one. 

To conclude this section, we note that there is a simple 
instance in which time-dependent results can be analyzed 
directly by the steady-state results of Sec. III. This occurs for 
the case of a subcritical medium and T = 00. Then, assum
ing that a source of neutrons is beamed onto D for only a 
finite amount of time, the angular flux tP will tend to zero as 
t ---+ 00. Thus, one can integrate Eq. (2.11) from t = 0 to 
t = 00 and define 

tP(r, n, E) = 1''' tP(r, n, E, t )dt 

to obtain exactly Eq. (2.1) for the steady-state tP. The bound
ary condition is just the time-integrated boundary condition 
for the time-dependent tP. Sanchez and McCormick have 
discussed this (and more general) procedure for slab geome
try problems. 10 

V. ADDITIONAL RESULTS 

In the previous sections of this article we have consid
ered the problem offorward (and adjoint) transport with 
boundary conditions that are as general as possible, con
strained only by the requirement that tP and tP* are both 
measurable for all rEaD, all n, all E, and all suitable t if the 
problem is time dependent. In this section, we show that by 
placing additional constraints on these boundary conditions, 
a simplification of our results can occur. For brevity and 
simplicity, we only consider the case of steady-state trans
port as described in Sec. III. 

To be specific, we prove that for certain types of bound
ary conditions on tP and tP*, the expressions (3.6) for S sim-
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plify to line integrals involving only tP and tP* (not their tan
gential derivatives) over simple closed curves on aD. This 
makes the resulting constraint (3.3) on U T and Us substantial
ly simpler and almost certainly less prone to experimental 
error, because errors in measurements of V T tP or V T tP* are 
likely to be much greater than errors in tP or tP*. We shall not 
attempt to discuss the most general boundary conditions for 
which this simplification occurs; we just show that it can 
occur in special cases. 

To describe a special case, let.II and.I2 be simply con
nected subsets of the boundary aD of D with the following 
properties: (1) the boundaries of.I I and.I2 are simple closed 
curves, r 1 and r 2, having piecewise continuous tangent vec
tors; and (2).I I is sufficiently small in diameter that there 
exists a unit vector n with the property that n . n < 0 for all 
unit ou~r normal vectors n corresponding to points in .I I' 
(Thus, n points into D at all points in .I I' If .I I happens to 
consist of a planar part of aD; then n exists and can be 
any u~it vector pointing into D through this plane. In gen
eral, n exists if .I I is "small" enough that n i • n2 > 0 for all 
unit outer normals n i and n2 corresponding to points on.II.) 
Finally, let X n (r), n = 1,2, be the characteristic functions for 
.II and .I2 : 

{
I, 

Xn(r) = 0, (5.1) 

We now consider the forward transport problem con
sisting of Eq. (2.1) and the boundary condition 

tP(r,n,E)=XI(r)b(n-n), rEaD, n·n<O. (5.2) 

(This equation describes a uniform, monodirectional beam 
incident on .I I') Also, we consider the adjoint problem con
sisting ofEq. (2.5) and 

tP*(r, n, E) = b(r), rEaD, n· n > 0 . (5.3) 

(The physical interpretation of tP* with this boundary condi
tion is given in Sec. II.) 

To proceed, we use Eqs. (5.2) and (5.3) in Eq. (3.6b) [use 
ofEq. (3.6a) leads to the same result] and write 

S = S+ + S- , (5.4) 

where 

n·n>O 

and 

S- = iD II tP[nX(VTtP*xn)]d
2
[ldEd

2
r 

non <0 

II nx [VTtP*(r, n, E)xn]dE d 2r. (5.6) 

I, 

If we define 

d (r, r 2 ) = the distance from r to r 2 , 

then by Eq. (5.3), for n· 0>0, 

V TtP* = - b[d (r, r 2)]m, 

(5.7) 

(5.8) 

where b is the usual delta function and m is the unit outer 
normal to r 2 in the plane of aD. Introducing Eq. (5.8) into 
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Eq. (5.5), we obtain 

S+= - L, II ¢[nx(mxn)]d 2fJdEd lr. (5.9) 

n·n>O 

Finally, we note that 

-mXn=t, (5.10) 

where t is the unit tangent vector pointing in the direction of 
the transverse of r 2 • (This direction is right handed with 
respect to the outer normals of .1'2') Equation (5.9) thus re
duces to 

S+= L, II (nxt)¢d
2
fJdEd

l
r, (5.11) 

O'n>O 

which is the desired simplification of Eq. (5.5). 
To simplify Eq. (5.6), it is necessary to use vector indi

cial notation and Stokes' theorem. IS Then, with 

~*(r, E) = ¢*(r, n, E), 

we have 

(5.12) 

nX [VT¢*(r, n, E)xn] = nX(V~*Xn)= EijkfljEklm ~jnm 
A A 

= - Emlk [EjjkfJj ¢*] ,1nm . 

Thus, by Stokes' theorem, 

f fl X [VT¢*(r, n, E)xn]d 2r JI, 

1 AA 

Emlk [EjjkfJj ¢*] ,1nm d 2r 
I, 

f [E ijk flj ~* ] t k d 1 r Jr, 
f (nxt)¢*(r, n, E)d lr. Jr, 

Using this result in Eq. (5.6), we obtain 

S- = - L, I (nxt)¢*(r, n, E)dE d Ir, 

(5.13) 

(5.14) 

(5.15) 

which is the desired simplification. Combining Eqs. (5.4), 
(5.11), and (5.15), we obtain the final result 

S= L2 II (nxt)¢(r,n,E)d2fJdEd
l
r 

0,0>0 

L, I (nxt)¢*(r, n, E)dE d Ir, (5.16) 
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which consists ofline integrals of just ¢ and ¢*. 
Other boundary conditions for ¢ and ¢* also lead to 

expressions of the form (5.16) for S. For example, one could 
replace the delta function in n in Eq. (5.2) by a characteristic 
function in n over a subset of the cone of directions pointing 
into D through all of .1'1' (n belongs to this cone.) However, 
we shall not consider this topic further here. 
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In a general curved space-time, the requirements that the Feynman Green's function be 
symmetric and have the Hadamard form are shown to result in specific constraints on the local 
behavior of the function. These constraints are solved yielding a general form for the function. 
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I. INTRODUCTION 

The Feynman Green's function, or time-ordered, two
point function, is a quantity of central importance in the 
study of quantum field theory in curved, or fiat, space-time. 
In Minkowski space-time there is, for a given field, exactly 
one such function. When space-time is curved, there are 
often many candidates for the title. In this paper I wish to 
discuss the structure of these functions that is required by the 
two constraints: that they have the Hadamard I form and 
that they be symmetric functions of the two space-time 
points involved in their definition. I shall not discuss 
whether they ought to have the Hadamard form, although 
there is fast growing support for this idea,2 nor shall I discuss 
boundary conditions or Cauchy problems. They must be 
symmetric functions, and it is how this condition affects the 
Hadamard form that I shall investigate. I shall use the exam
ple of the massless, conformally invariant, scalar field in an 
arbitrary curved space-time. The analysis will be seen to be 
applicable to more general fields. 

Although in writing this paper I have in mind the appli
cation to quantum field theory, it is exclusively concerned 
with properties of the classical wave equation; Planck's con
stant enters only in spirit. This is an important point: Much 
of the subsequent analysis is about finding a missing length. 
In quantum field theory this length might find expression as 
an arbitrary renormalization length or the Planck length. 
Here, with a massless, classical field theory, it is a length that 
can only be constructed from the curvature of space-time 
itself. 

II. THE SYMMETRIC HADAMARD SERIES 

In this section I shall derive a necessary condition for 
the Green's function G (x,x') to be a symmetric solution to the 
inhomogeneous wave equation, 

(0 - f,R )G (x,x') = - g-1/2(XW(X - x') (2.1) 

having the Hadamard form, 

G (x,x') = i(8~)-1 [.1 1/2(U + iE)-1 + v In(u + iE) + w]. 
(2.2) 

First, note some well-known features of Eq. (2.2): The 
factors iE are included to give G the singularity structure that 
is appropriate for a Feynman Green's function. 2cr(x,x') is 
the square of the length along the geodesic joining x and x'. 
(One can require that x and x' belong to a "simple region,,3; 
this ensures that it is meaningful to speak of their being 
joined by a unique geodesic.) .1 (x,x') is the symmetric bisca-

lar constructed from the Van Vleck-Morette determinant, 
viz., 

.1 (x,x')= - g-1/2(X) g-1/2(x')det( - U;ab')' (2.3) 

.1 satisfies the equation 

(2.4) 

The functions v(x,x') and w(x,x') can be represented as the 
uniformly convergent power series, I 

00 

v(x,x') = I vn(x,x')cr"(x,x'), (2.5) 
n=O 

00 

w(x,x') = L. Wn(X'X')cr"(x,x'), (2.6) 
n~O 

where the coefficients Vn and Wn satisfy the differential re
cursion relations 

(n + I)(n + 2)vn + I + (n + l)vn + I;co'c 

- (n + l)vn+ 1.1 -1/2.1 ;1:20'C + !(O - f,R )Vn = 0, (2.7) 
and 

(n + I)(n + 2)wn + I + (n + I)wn + I;cdc 

- (n + l)w .1 -1I
2.1 112d c 

n + 1 ;c 

+ ~(O -!R )Wn + (2n + 3)vn+ I + Vn+ I;c
dc 

- V .1 -1/2.1 112d c = o· n + I ;c , (2.8) 

the biscalar v(x,x') is completely determined by Eq. (2.7), and 
the boundary condition 

Vo + vo;cdc - vaLl -112.1 ;1:2dC + !(O - f,R ).11/2 = O. 
(2.9) 

V(x,x') is a solution to the homogeneous wave equation. The 
functions v(x,x') and Vn (x,x') are known to be symmetric. 2 v 
and VI have the covariant Taylor series expansions 

v(x,x') = !vab(x)dadb -lvab;c!x)o'ao'bdc + o (uZ), 

and 

VI(x,x') = vl(x) - !vI;a(x)da + o (u), 

where 
vab _ I (C c(ab )dR + 2C c(ab)d ) - m cd ;cd' 

(2.10) 

(2.11) 

= -Lu- 1/2_ fJ _ J d 4xgl/2C C abcd (2.12) 
2400 fJ abcd' 

gab 

and 

VI (x) = tio(RabcdR abed - RabR ab + OR ). (2.13) 

Equations (2.12) and (2.13) are immediate consequences of 
the formulae given in the Appendix. 
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Less is known about the biscalar w(x,x'). Clearly it must 
be symmetric if G is to be symmetric. W (and hence G) is 
completely determined by the recursion relations once the 
biscalar wo(x,x') is specified. Thus the requirement that 
w(x,x') be symmetric can be seen as a condition on wo(x,x'). 
w, unlike v, is not a solution to the homogeneous wave equa
tion; it is a simple matter to show that it has to satisfy the 
equation 

(0 - f,R )w(x,x') = - 6v1(x) + 2v1;a(x)da + o (a). 
(2.14) 

W is unlike v in another important respect: The biscalar 
v(x,x') has a covariant Taylor series expansion, the first few 
terms of which are given by Eq. (2.10). The complete expan
sion has the property that the coefficients vab(x), etc., are 
polynomial functions of the curvature tensor and its covar
iant derivatives. One might ask if one should expect the same 
property to hold for the covariant Taylor seris expansion of 
w, when, as in often the case, one seeks to find a purely geo
metrical solution to equation (2.2). The answer is that, in 
general, one should not: In Eq. (2.2) the argument of the 
logarithm is a dimensional quantity. Thus W must supply a 
term - v(x,x') In L (x,x'), where L (x,x') is a function having 
the dimensions of area. The requirement that G be geometri
cal implies that L must be some function of the curvature 
tensor.! shall return to this point in the next section where I 
shall be able to specify further L (x,x'). 

Let me now determine a condition on wo(x,x') that must 
be satisfied if G (x,x') is to be symmetric. I begin with some 
observations on covariant Taylor series: Let A be a biscalar 
possessing a covariant Taylor series expansion in a neighbor
hood of the point x, namely, 

A (x,x') =A (x) + Aa(x)da + !Aab(x)dadb 

+ f,Aabc(x)dadbdc + o (a2), (2.15) 

whereA ab = A(ab I andAabc = A (abel ,etc. The expansion coef
ficients, Aab etc., can be expressed as coincidence limits of 
covariant derivatives of the biscalar A (x,x') by means of the 
equations4 

A (x) = [A], 

Aa(x) = [A;a] - [A La' 
Aab(X) = [A;(abd- 2 [A;(aLbl + [A L(ab» 

A abe (x) = [A ;(abed - 3 [ A ;(ab lCI + 3 [ A ;(a Lbcl - [A L(abe» 
(2.16) 

where I use the standard notation 

[A ] = limA (x,x'). 
X'----i>X 

Using these equations, it is easy to compute the Taylor series 
for the function A (x' ,x). The requirement that A (x,x') equal 
A (x' ,x) results in the conditions 

2Aa(x) = -A;a(x), 

4Aabe (x) = - 6A(ab;cl (x) + A;(abcl (x), 

(2.17) 

(2.18) 

and so on. More generally, the requirement of symmetry 
determines the odd coefficients, Aa, A abe , Aabcde' etc. How
ever, I shall need only Eqs. (2.17) and (2.18) in what follows 
and shall not record the higher order constraints. 
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W(x,x') is a symmetric biscalar that, it is supposed, pos
sesses a Taylor series expansion. Therefore, by the above 
argument, it can be written 

w(x,x') = w(x) - ~w;a(x)da + !wab(x)dadb 

- H Wab;c(X) - f,w;abc(x)}dadbdc + o (a2), 
(2.19) 

where w(x) = [w] and Wab = [W;ab]' 
At this point there are several ways to proceed. Perhaps 

the most direct is to require that w(x,x'), as given by Eq. 
(2.19), satisfy Eq. (2.14). So doing, one obtains the equations 

and 

waa(x) = f,Rw(x) - 6v1(x), (2.20) 

{Wab(x) - ~oabwcc(x)La = 2V 1;b(X) + !(OW(X));b 

+!R abW;a(x) - -bRW;b(X). 
(2.21) 

Next one has to relate these equations to wo(x,x'). This is 
done as follows: wo(x,x') has a Taylor series expansion 

wo(x,x') = wo(x) - !WO;a (x)da 

+ !WOab (x)dadb + 0 (tr/2), (2.22) 

where wo(x) = w(x). [The form of the second term in Eq. 
(2.22) is required by the symmetry of w(x,x'); it must not be 
supposed that wo(x,x') has any particular symmetry proper
ty.] w1(x,x') has a Taylor series 

W1(x,x')a = !Wlab(X)dadb + 0 (tr/2), 

where, by Eq. (2.8) and (2.6), 

(2.23) 

W1ab(X) = gab [W1(X,X')] (2.24) 

and 

[W1(x,x')] = z\Rwo(X) - !WOaa(X) - ~Vl(X). (2.25) 

Combining Eqs. (2.22) and (2.23) with (2.6), one sees that 

w(x,x') = wo(x) - ~wo;a(x)da 

+ ! { WOab (x) + W1ab (x) l dadb + 0 (tr/2). 
(2.26) 

Comparing this equation with Eq. (2.19) yields the result 

wab(x) = wOab(x) + W1ab(X). (2.27) 

Now Eqs. (2.20) and (2.21) can be written in terms ofwo(x,x'). 
The first of these equations is identically satisfied; in other 
words, it is not a constraint on wo(x,x'). The second is more 
interesting and becomes 

{WOab(x) - !Oabwocc(x)La = !V1;b(X) + !(OWO(X));b 

+ ~R ab wO;a (x) + z\{R;bWO(X) - RWO;b(X)}. (2.28) 

Equation (2.28) must be satisfied by the coefficients in 
the Taylor series expansion of wo(x,x') if G is to be a symmet
ric Hadamard solution to Eq. (2.1). Of course, there will be 
additional constraints on the higher order Taylor series coef
ficients. These would require some dedication to compute; 
fortunately, one needs only those terms up to WOab (x) to un
derstand quantum field theoretic energy densities.5 In this 
context, notice that wo(x,x') = 06 is not a solution to Eq. 
(2.28) unless v1(x) is constant. v1(x) [Eq. (2.13)] is a function 
that is commonly known7 as the "trace anomaly." 
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In the next section I shall describe the geometrical solu
tions to Eq. (2.28). 

III. THE FORM OF w(x,x1 

I shall regard Eq. (2.28) as a constraint on wOab(x) for 
some given Wo in a general curved space-time. It can be 
solved as follows: 

Let me write 

WOab = Sab + tab' 

where Sab satisfies 

(s\ - iO a bSe e );a = !(OWO);b 

(3.1) 

+!R abWO;a + f4(R;bWO - RWO;b)' 

and tab satisfies 
(3.2) 

(tab - !OabteC);a = !VI;b' (3.3) 

A solution to Eq. (3.2) is provided by 

Sab = t(WoRab - ,igabwoR) + j(WO;ab - ,igabOWO)' (3.4) 

This is geometrical, provided, of course, that Wo is a function 
of the curvature. That it satisfies Eq. (3.2) is easily checked: 
One uses the Bianchi identity 

R ab'a = lR.b, , 2, (3.5) 

and the differential identity 

O(WO;b) = (OWO);b + R a b WO;a' (3.6) 

Finding a solution to Eq. (3.3) is not so easy. I first gave 
a solution to this equation some years ago.8 However, the 
method I then used is inappropriate in the present context. I 
think that the following is a more interesting way to proceed. 

I define the tensor T: 

Tab -tab - ,igabtCe - !Vlgab · 

Then Eq. (3.3) implies that 

Tab;a = 0 

and 

(3,7) 

(3.8) 

(3.9) 

Thus one has a geometrical solution to Eq. (3.3) if one can 
find a geometrical tensor Tab that is conserved [Eq. (3.8)] and 
whose trace is proportional to the trace anomaly [Eq. (3.9)]. 
The clue to finding such a tensor is provided by the conserva
tion equation: suppose that Tab is the variation with respect 
to the metric of an invariant action. In other words, let 

Tab = 2g-I/2_0_ f d 4xgl/2A (ged)' 
ogab 

(3.10) 

Equation (3.8) is the statement that A be a scalar under gen
eral coordinate transformations. Equation (3.9) can be treat
ed as a statement about the scaling behavior of A; more pre
cisely, 

:w f d 4
xg

l
/
2
A (8-ed{.,,=o = _gl/2Ta

a, (3.11) 

where g is related g by the equation 

gab=e- 2"'gab' 
Equation (3.11) suggests that a suitable action can be found 
by integrating the functional differential equation 
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(3.12) 

Equation (3.12) clearly reduces to (3.11) in the limit w = o. 
The variation with respect to w is taken holding the metric 
gab fixed. In this sense, Eq. (3.12) is a partial, functional dif
ferential equation. Bearing this in mind, it is remarkably 
simple to integrate it. 

Using the formulae in the Appendix, gl/2Ta
a(8-ed) can 

be written 

gl/2Taa (ged) = - 2gl/2VI(gcd) 

- MI/2(Rabed R abed _ RabR ab + OR) 
= _ Jiogl /2! RabedR abed _ RabR ab + DR 

+ 2R Ow + 2R;aw;a + 60(Ow) + 8[(Owf 

- W;abW;ab - Rabw;aW;b 

- W;cW;e Ow - 2w;abW;aW;b ] ). (3.13) 

It is straightforward to see that Eq. (3.12) can be functionally 
integrated to give 

gl/2A (8-ed) =gI/2C(w;ged) +gl/2F(ged)' (3.14) 

where F is a function of the metric (but not w) and 

C (w;ged ) ==~ [(RabedR abed - Rab R ab + DR )W + 3(Ow)2 

- 2Rab w;aW;b - 4w;ew;c Ow + 2(w;cw;e)2]. 

(3.15) 

C is determined uniquely up to total divergences. Equation 
(3.14) must hold for w = O. This implies that 

F(gcd) =A (ged)' (3.16) 

Equation (3.14) may now be seen to determine the scaling 
behavior of the function A: 

gl/2A (e - 2"'gcd) - gl/2A (gcd) = gl/2C (w;ged)' (3.17) 

Thus the problem of finding a tensor satisfying equations 
(3.8) and (3.9) has been reduced to finding a scalar A that 
satisfies the scaling equation (3.17). 

The solutions to Eq. (3.17) can be found by choosing w 
to be a function of the curvature that has the scaling law 

w(e- 2Xgab )=w(gab)-X, (3.18) 

Equation (3.17) then has the solution A *(gcd)' where 

A *(gab) = - C(W(gab);gab)' (3.19) 

This is clearly a solution since 

A *(e - 2Xgab ) = - C (w - x;e - 2Xgab ). (3.20) 

Setting X = w in Eq. (3.20) yields 

A *(e- 2"'gab) = O. (3.21) 

More general solutions to Eq. (3.17) are obtained by 
adding to a solution gl/2A * any conformal invariant. It is 
worth noting that, when w satisfies Eq. (3.18), C has the scal
ing property 

C(w(e-2Xgab);e-2Xgab) = C(W(gab);gab) - C(x;gab)' (3.22) 

Thus, if WI and W2 both satisfy Eq. (3.18), the difference 
{ C (w l;gab) - C (W2;gab ) J is a conformal invariant. 

To summarize these results: I have shown that a solu
tion to Eqs. (3.8) and (3.9) is provided by 
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Tab = - 2g- 1/2 -f-J d 4x gl/2C(cu(ged);ged)' (3.23) 
gab 

where cu is a scalar function of the curvature satisfying Eq. 
(3.18) and C(cu;g) is given by Eq. (3.15). There exists the free
dom to add to Tab any conserved, trace-free tensor. In terms 
of the function w(x,x'), this freedom corresponds to the free
dom to add a symmetric solution to the homogeneous wave 
equation that has zero coincidence limit. {The function 
v(x,x') provides a particular example. Recall that v(x,x) is 
zero and vab(x) is the variation of a conformally invariant 
action [Eq. (2.12)].} 

It now remains to show that there exist scalar functions 
of the curvature, cu, that satisfy Eq. (3.18). These functions do 
indeed exist; they are more or less difficult to construct, de
pending upon whether or not the Weyl curvature of the 
space-time is zero. 

When the space-time is not conformally flat (Cabed #0), 

cu = - 1 In C C abed (3.24) 4 abed 

is the simplest to construct. Of course, it may be that Cabed is 
not zero, but the particular invariant cabedcabed is. In this 
case one can select any other, nonvanishing, invariant. One 
could take cu to be proportional to the logarithm of the sum 
of the squares of the independent invariants of the Weyl ten
sor; this would have some advantages. However, it still may 
not be the most natural choice. To see what might be more 
natural, it is necessary to see how Tab contributes to the 
Green's function G (x,x'). It does this through the function 
w(x,x'). Combining Eqs. (2.26), (3.1), (3.4), and (3.7), w(x,x') is 
now seen to have the form, 

w(x,x') = wo(x) - ~wo;a(x)da 

+ ~ [Tab - V1gab + iRabWO 

+ j(WO;ab - ~abOwo)]dadb 
+O(~/2). (3.25) 

In the previous section I made the point that it was artificial 
to write G in the form ofEq. (2.2); in particular, w(x,x') had to 
provide a term - v(x,x') In L. The Taylor series expansion 
of this term about the point x is provided by Eq. (2.10), and 
the necessary assumption that L (x,x) is not zero. A term 
having exactly this structure is indeed provided by w(x,x'). 
Whatever the actual choice for cu, its scaling behavior is 
characteristic of a function that is the logarithm of a length; 
Eq. (3.24) is an example. 

Consider taking the variation in Eq. (3.23) to obtain an 
explicit form for the tensor Tab. It is easy to see that the only 
place where the logarithmic nature of cu survives is in the 
term 

- rtog-I/2CU_
O_ J d 4x gl/2(RabedR abed - RabR ab + DR). 

ogab 
(3.26) 

Elsewhere cu appears differentiated, either functionally or 
covariantly. Using the formulae in the Appendix, the term 
(3.26) can be shown to be equal to 

(3.27) 

139 J. Math. Phys., Vol. 25, No.1, January 1984 

(The variation of the other terms vanishes identically.) 
Recalling Eqs. (2.12) and (3.25), one sees that the term 

(3.27) contributes to w(x,x') an amount: 

(3.28) 

where cu-In L. In short, cu provides the length that is miss
ing in Eq. (2.2). 

It would seem natural to choose cu to be a function of the 
biscalar v(x,x'), insofar as it is the existence of v that requires 
the existence of cu. The tensor Vab is well suited to this pur
pose: its scaling behavior can be inferred from Eq. (2.12) and 
is given by 

va
b(e- 2Xged) = e4XVab(ged)' (3.29) 

The eigenvalues Vj ofva
b scale in the same way. Thus it is 

possible to choose for cu, 

cu = - (4d )-1 In hd(v j ), (3.30) 

where hd(v j ) is any homogeneous function of degree d. 
When the space-time is conformally flat Vab vanishes. 

Indeed it can be shown that v(x,x') vanishes.9 If this is the 
case, then there is no pressing need to construct an cu satisfy
ing Eq. (3.18). However, solutions do still exist and can be 
defined implicitly. For example, 

cu = -In tP, (3.31) 

where tP is a geometrical solution to the wave equation 

(0 - iR )tP = 0, 

which has the scaling behavior 

tP(e - 2Xgab ) = eXtP(gab)' 

Of course, functions of the type (3.31) will continue to pro
vide solutions to Eq. (3.18) when Cabed = O. It can be shown8 

that by proceeding in this way one obtains for the tensor Tab 
the polynomial expression 10 

Tab = tio[6R aeR be + 2R ;ab 

_ 6RR ab _ ~b(20R _ 2R 2 + 3RedR Cd)]. (3.32) 

(One chooses for cu the solution that is conformal to a con
stant, the solution in flat space-time.) 

The simple form for Tab in Eq. (3.32) is essentially a 
feature of the conformal flatness. The variation ofEq. (3.15) 
is easy to compute because 

OC= J d 4x {gl/2TaaWed)Ocu-2gl/2pbogab}, (3.33) 

and, for the above choice of cu, the coefficient of ocu vanishes; 
one does not have to compute further the variation of cu with 
respect to the metric. 

In general, when the Weyl tensor is nonzero, one can 
arrange for a similar simplification to take place: Require 
that CU(ged) is determined by the condition 

T a
a(e- 2"'ged) = O. (3.34) 

This equation implies that cu satisfies (3.18) and has 
some interesting solutions. II A nongeometrica1 solution 
worth mentioning is provided by 

cu = - ~ In(K agabK b), (3.35) 

where Ka is any curl-free, Killing vector field of the Ricci 
flat metric gab' 12 
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IV. CONCLUSION 

To some extent it is artificial to look for more or less 
natural functions W that satisfy Eq. (3.1S): for a given prob
lem with prescribed boundary conditions an w will be auto
matically provided. But, as I said in the Introduction, I was 
interested in how far the requirements of symmetry and hav
ing the Hadamard form determine the local structure of 
Feynman Green's functions. In this spirit, the hard conclu
sions of this paper are those contained in Eq. (3.25), (3.23), 
and (3.15). The rest is more speculative but, I hope, not with
out interest. 

APPENDIX 

The conventions used in this paper are consistent with 
Ref. 13. The following formulae were used in the derivation 
of the equations appearing in the text: 

R ab = e2QJ(R ab + 8[a wb] ) cd cd [c d ] , 

R b - e2QJ [R b + l(2OJb + 8b Wa )] d- d 4 d d a , 

R = e2W(R + iWa a)' 

D¢ = e2w(O¢ - 2w;a¢'a)' 

where 

Rabcd-Rabcd(e ~ 2wgef), 

wab -4(W;ab + w;aw;d - 2gab w;Cw;c' 

(AI) 

(A2) 

(A3) 

(A4) 

and a semicolon denotes covariant differentiation with re-
spect to the metric gab; 
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U;ab(X,x') = gab (X) - jRacbd(X)dCdd 

+ izRacbd;edcddde 

- (1,oRacbd;ef + isR acgdR be gf ) 

Xdcddde(jf + O(~/2), (AS) 

.::1 1/2(X,x') = 1 + 1 R dadb - 1 R dadbdc 
12 ab 24 ab;c 

+ (zhRabRcd + JkR e/bRecfd 

+ rtoRab;cd )dadbdcdd + O(~/2), (A6) 

.::1
1/2

;ab(X,X') = iRab + iz(2Rc(a;b) - Rab;c)dC 

+ (ioRab;cd + ioRcd;(ab) - isRc(a;b)d 

+ i,.RabRcd + .fr,RacRbd 

+ rtoRe(aRb)c ed + ifoRaebfR e/d 
1 ye R f 

- 90'" cf(a b) ed 

- ifoR ecf(aRb )/d + Nrfice R e(ab)d ) 

X dCdd + 0 (a3 /2 ), (A 7) 
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[formulae (AS), (A6), and (A7) are taken from Ref. 14] 

Va;[bc] = ! VdR dabc ' (AS) 

Cabcd = R abcd + ga[d Rb ] - gb [d Rc]a + jRga[cgd Jb' 

cabCd;a = Rb [d;c] - t,gb [d R;c J' 

Cabcdcabcd = RabcdR abcd _ 2RabR ab + jR 2, 

C C cde - 1 C C efgh acde b - ~ab efgh , 

8g 1/2 = !g1/2~b8gab' 

8rab c = ~d (8gad;b + 8gbd;a - 8gab;d)' 

8Rabc d = (8rca dLb - (Orcb d);a' 

8Rab = gcd (8gc(a;b)d - ~Ogab;cd - !8gcd;ab)' 

oR = ~bgcd (ogac;db - ogab;cd) - R ab8gab. 

(A9) 

(AlO) 

(All) 

(AI2) 

(AI3) 

(AI4) 

(AIS) 

(AI6) 

(AI7) 
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We present all the Wightman functions for an explicit operator solution of the Schwinger model. 
To understand these better, we study the algebra of fields of this model, representations of this 
algebra as well as the Hamiltonian. The latter turns out to elucidate the "confinement" of the 
fermion field. In addition we comment on the renormalization of the theory as well as on the 
analyticity of the amplitudes in terms of the coupling constant. 

PACS numbers: 11.10.Mn 

I. INTRODUCTION 

The Schwinger model has proved to be a rich source of 
theoretical results for further conjectures as well as for test
ing conjectures. This makes it worthwhile to examine this 
model, in as much detail, and from as many perspectives, as 
possible. In a previous paper, I we presented an explicit oper
ator solution of the Schwinger model for an arbitrary covar
iant gauge. The solution was local, Lorentz-covariant, chir
ally invariant, and the gauge transformations of the first 
kind were implementable. 

In this paper we further examine properties of these 
solutions. In particular, we list all the Wightman functions, 
construct the Hamiltonian, and examine its spectrum. Final
ly we also comment briefly on the renormalization of the 
theory and the analyticity of the Wightman functions with 
respect to the coupling constant. 

Throughout we use the same notation as in Ref. 1. To 
introduce this notation, we briefly review the results ob
tained in Ref. 1. When necessary, we use the following ex
plicit conventions: 

gOO = 1, ~I = 1, 

~ = (~ ~), yl = (~ - ~), r = ~yl. 
We also define F = F( +) + F (-) for any free quantized field F 
to be, respectively, the annihilation and creation parts of F. 

The Schwinger model, as considered by us in Ref. 1, is 
defined by the formal Lagrangian 

5t' = - A(F"vf - ~a(a·A f + ~ (iy.a - ey·A )</1. (1) 

The solutions for the Heisenberg fields </1, A" are given in 
terms of certain free "building block" fields as follows: 

</1 (x) = z -1/2 exp[ - iefl H(X)]t/t(X) exp[ - iefl (+)(x)], (2) 

A,,(x) = a"c(x) + E"" aVd(x), 

where 

fl (x) = c(x) + rd (x), 

c(x) = a(x) + {3 pIx), 

d (x) = ({1T/e)[..!' (x) + C7{x)] - (a1T/e2 )h (x). 

(3) 

(4) 

(5) 

a) Permanent address: Istituto di Fisica, Universita di Pisa, Piazza Torricelli 
2, Pisa, Italy, 

Here {3 is a real parameter and the other quantities are free 
fields defined as follows: 

and 

y·at/t(x) = 0, 

Da =b, Db =0, 

(0 + e2/1T)..!' = 0, 

:¢y"t/t:(x) = (lI{1T)a"p = (lI{1T)E"v avO", 

a"b = E"v avh. 

The relevant two-point functions for these fields are 

(6) 

(7) 

(8) 

(9) 

(10) 

(OIt/ta(x)¢p(O)IO) = - i(iy.a)apD(+)(x), (11) 

(Ola(x)a(O)IO) = - (i/a)I(+)(x) 

+ i({32 + 2f3{1T12)D(+)(x), (12) 

(OI..!'(x)..!'(O)IO) = - i.J (+)(x), (13) 

(Olp(xlo(O)IO) = (OIC7{x)C7{O)IO) = - iD(+)(x), (14) 

(Olp(x)C7{O)IO) = - iD(+)(x), (15) 

where 

D(+)(x) = (41Ti)-1 In,u2( - x2 + iEXo), 

I(+)(x) = (161Ti)-lx2In ,u2( - x2 + iEXO). 

(16) 

(17) 

.J (+) is the solution of(D + e2 /1TJ.d (+) = o with the normali
zation that yields 

ao.J(+)(x)lxo~o =8(xl
) 

and finally 

l)(+)(x) = (41Ti)-lln [(XO - iE + x+)/(XO - iE - Xl)]. (18) 

The finite normalization constant Z is given by 

Z = ({1T,u/e)1/2 exp[ - ~(y -In 2)), (19) 

where y is Euler's constant and,u is an arbitrary mass scale. 
For further details, regarding properties of these solu

tions, the reader is referred to Ref. 1. 

2. THE WIGHTMAN FUNCTIONS 

Since the solution given in Ref. 1 conserves fermion 
number, the only nontrivial Wightman function involving 
only Fermi fields was already listed there and is given by 
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(Ol¢ (xd"'¢ (xn)¢ *(yd"'¢ *(Yn)IO) 

= Wn(x,y) 

= Z -n exp[yHI(X,y)] W6n(X, y), 

where 
n 

Y+(x,y) = L FI+I(XoYj) 
i,j~ I 

n 

(20) 

- L (FI+I(xo xj ) + F1+I(Yi'Yj)) (21) 

and 

i<j= I 

FI+I(x,y) = e2
{ - ~ II+I(x - y) 

- :~y~~ [Ll I+I(X - y) - D1+J(x - y)]}. 

(22) 
Here 

w2 (x y) = _1_ y.(x - Y)Yo 
0' 21Ti [(x - yf - iE(XO - yO)] 

= (OI¢(x)¢*(y)IO) (23) 

is the free fermion two-point function and 
n 

W6n(X,y) = L (- 1)8PII W6(XO YiP) = det W6(X;'Yi) 
Perm i= 1 

(24) 

is the free fermion 2n-point function. It is worth noting that 
the two-point function can also be written as 

(OItfJ(x)¢*(y)IO) = (,u/21T) exp 21Ti 
X irDI+I(x - y) -D1+1(x - y)J. (25) 

The vector potentialAp is just a sum offree fields, as stated 
by Eq. (2). Thus all n-point functions of Ap are just given in 
terms of the following two-point function: 

(OIAp (x)Av( y)IO) 

= iH1~I(x - y) = (i/a) apaJI+I(x - y) 

+ (i1T/e2
) apav [Ll I+I(X - y) - D 1+I(x - y)] 

+ igpvLl 1+I(x - y). (26) 

The result is 

where the sum is over all partitions of 2n into n disjoint two
element subsets 

(jlj2)(j3j4)···(j2n - I j2n) with j2k - I <j2k' 

We next compute the simplest of the mixed Wightman 
functions, namely 

(OIAp (z)¢ (x)¢ *(y)IO) = (OIA 1+ I(z)¢ (x)¢ *( y)IO). (28) 

The computation is facilitated by using Eqs. (72)-(74) of Ref. 
1, namely, 

with 
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¢ (x) = exp[ - ieEI-I(x));(x) exp[ - ieEI+I(x)] (29) 

; (x) = exp i pl-l(x)tfJ(x) exp i pl+I(X), 

PIx) = f1i(p(x) - ralx)) 
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(30) 

and 

E(x) = a(x) + r(fii/2~ (x) - (a1T/e2)h (x). (31) 

This is just a rewriting of the solution given by Eq. (2). We 
then obtain, 

[A 1+ I(z), EI-I(x)] = (i/e)G 1+ I(z, x) 

= - ii(lIa)apI I+I(z - x) + (1T/e2)rEpv 

xaV[Ll 1+I(z - x) - D1+I(Z - x)]J.(32) 

Now using the identity (for [A,B] a c-number) 

AeB = eB(A + [A,B ]), 

we obtain 

[A 1+ I(z), ¢ (x)] = G 1+ I(Z, x)¢ (x), 

and 

[A )1+ I(z), ¢ *(x)] = - G 1+ I(z, x)¢ *(x), 

where we used that GH*(x,y) = G1+I(x,y). 

(33) 

Combining these results yields the desired Wightman 
function 

(OIAp (z)¢ (x)¢ *( y) 10) 

= [-G1+ I(z,y)+G1+ I(z,x)](01¢(x)¢*(y)10). (34) 

This generalizes immediately to 

(OIAp (z)¢ (x d"'¢ (xn)¢ *( YI)"'¢ *( Yn) 10) 
n 

= L [G1+ I(z, Xi) - G1+ I(Z'Yi)] Wn (X, y). (35) 
i= I 

Further combining this result with Eq. (27), we find 

(OIAp, (zd .. ·Ap/(ZI)¢ (xd"'¢ (xn)¢ *( yd"·¢ *( Yn )10) 
n 

= L L (OIA pik + I (Zik+ J .. Apik+/(zik+JIO) 
r~ I Pili 

k 

X II [G p~+I(Zij' Xr ) - G p~+ I(Zij,Yr)] Wn(x,y), (36) 
j= 1 J J 

where the sum over P (/ ) is over all partitions of I indices into 
two disjoint sets, with ij < ik for j < k. 

This completes the evaluation of all the Wightman 
functions. Before turning to the Hamiltonian, it is conven
ient to examine the operators; (x),; *(x) given by Eq. (30). As 
we show later, they do not belong to the algebra of fields, but 
are nevertheless useful objects. 

3. THE ~·REPRESENTATION 

We begin by considering the vacuum expectation value 

To evaluate Z, we need 

;(x)~ (y)* = exp i[pl-I(x) - pH(y)]¢(x)¢*\y) 
Xexp i[pl+l(x) - pl+l(y)] 

XexpH1+I(x,y), 

; (xd;(x2) = exp i[pl-I(x l ) + pH(x2)]tfJ(X I )¢(X2) 
Xexp i[pl+l(x,) + pl+I(X2)] 

(37) 

(38) 

Xexp[-H 1+1(X I ,X2)], (39) 
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~ ·(yd~ ·(Y2) = exp - i[P(-)(YI) - p(-)(Y2)]"'·(Yd"'·(Y2) 
xexp{ - i[P(+)(YI) + P(+)(Y2)]J 

xexp[ -H(+)(YI'Y2)], C (40) 

where 

H(+)(x,y) = i1r[(1 + rxy;)D(+)(x - y) 

- (rx + y;).D !+)(x - y)]. (41) 

The subscripts x, y, etc. on rx indicate on which side of a 
quantity 'I is to be multiplied. Thus (rxF (x, Y))aP 
= YayFyp(x, y) whereas (y;F(x, Y))aP = Fay (x, y)r;,p. It then 

follows that 

Z (x, y) = exp JY(x, y) W6n(X, y), 

where 
n 

JY(x,y) = L H(+)(xoYj) 
j,j= I 

n 

(42) 

- L [H(+)(xoxj ) +H(+boYj)]' (43) 
j<j= I 

To further evaluate this expression, we notice that both 
JY(x, y) and W6n(X, y) are diagonal in the spinor indices. If we 
now consider all spinor indices to have the value 1, we find 

W611 =(217"i)-I[XO_yO_(XI _yl )-iE]-1 (44) 

and 

w671 ... 11 (x, y) = det{ (217i)-1 [x j - - Yj- - iE] -I J 

= (217i)-n IIi<j (xj - -xj-)(Yj- -Yj-) . 

IIj.j(xj- - Yj- - iE) 
(45) 

The last step above is proven in Refs. 2 and 3. 
To complete the computation, we write out exp ~+) 

for rx = y; = 1 and use Eq. (25) to get 

exp ~+)(rx = y; = 1) 

n'n IIj,j (xj- - Yj- ) 
= '" I (46) 

IIj<j(xj- -xj- -iE)(Yj- -Yj- -iE) 

and hence 

(Oltl(XI) .. ·tl(Xn)tT(Yd .. ·tT(Yn)IO) = (u/217r 

A similar computation for general spurion indices yields the 
following result: 

(Oltl(xd···tl(Xn )t2( yd .. ·t2( Ym)t T(z d 

.. ·t T(zn,)t !(wl) .. ·t !(wm' )10) 

= on,n' om,m' ( - )"'m(u/217)" + m. (47) 

Thus we see that the algebra specified by Eq. (75) of Ref. 
1 is represented on a Hilbert space with an orthonormal basis 

( ) 

- (lnl + Imll/2 
In,m) = ;17 (t T)(n + In li/2t \n -lnll/2 

X(t!)(m + Imll12~km -lmll1210) (48) 

for n, m = 0, ± 1, ± 2, ± 3, .. , and (n,mln',m') 
= on,n,om.m'· 

In this representation one has 

tIt T = t~! = ",/217, (49) 
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and two charges q and qs can be defined by 

[q, tJ = t, [qs, tJ = 'It, 
qlO} = qslO) = 0. 

(50) 

It is worth noting that the algebra given by Eq. (75) of 
Ref. 1 has many representations, not just the one given 
above. The representations can even be finite if the charges q, 
qs are omitted from the algebra. An example of such a finite 
representation is 

(51) 

4. THE HAMILTONIAN 

The solutions of the Schwinger model in Ref. 1 were 
constructed to preserve the gauge invariance of the underly
ing formal Lagrangian equation (1). Thus, in regularizing the 
terms appearing in the Hamiltonian, we must respect this 
invariance. A straightforward calculation shows that the re
quired condition is 

r(A )P" r-I(A ) = PI' + a I dXI a·A aaa"A, (52) 

where DA = ° and PI' is the generator of space-time transla
tions. The operator r(A ) is explicitly given by 

r(A ) = exp ia I dXI a·A aoA (53) 

and has the properties that 

r(A JA,,(x)r-I(A) =A" - a"A, 
(54) 

r(A )¢ (x)r- I(A ) = exp(ieA )¢ (x). 

To see how the condition implied by Eq. (52) is implemented, 
we consider the classical, unsymmetrized energy-momen
tum tensor 

K"V = i~r"av¢ - FI'PAp.v - agw>Ap'v a.A 
_g"V[ -IF FPu 

4 pu 

- ~a(a.A )2 + ~ (ir·a - er.A )¢ ]. 

The classical momentum operator is given by 

pv = I dXI KOv. 

(55) 

(56) 

Examining the individual terms (appearing in P V) under a 
gauge transformation, we find that Eq. (52) is valid ifthe 
following transformations hold: 

r(A )I( - aA o.v a·A ) dXI r-I(A ) 

= - a fA D,v a·A dx l + a f a·A aaaVA dx l, (57) 

7{A);j dx l ~yDrv¢r-I(A ) 

(58) 
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r(A )f dx l FOPAp,Vr-I(A) 

= f dx l FOPAp'v - f dx l aPFpO aVA. (59) 

The most problematic term is the term i¢yl'a vifJ en
countered in Eq. (58). To define this term, we use the gauge
invariant point splitting given by 

exp{ - ie f dsl' A ~ -I(S) [i¢ (y)yl' aVifJ (x)] } 

(60) 

We expand this expression in a power series in 1] = y - x, 
subtract the singular parts, and verify that the result is com
patible with Eq. (58) as well as the general properties of PV. 
The procedure is not covariant but can be made so by an 
averaging over all 1] I' •

4 This averaging is discussed in Appen
dix A and has the effect of replacing any product of 1] /s as 
follows: 

(1]2)n 
1]1', "'1]1'2n = -2 " I gl',l'/ oogl'kl'l' (61) n .. 

where the sum runs over all partitions of 1,2,oo.,2n into pairs 
such that i < j. Also 

1]1', "'1]1'2n + 1 = O. 

Now using 

ifJ *(y)ifJ(x) = Z-I expF(+I(x,y) 

Xexp ie[n H(y) - n H(x)]:I/!*(y)I/!(x): 
X exp ie[n (+I( y) - n (+I(x)] + Z-I 

xexp F(+I(x,y) exp ie[n H(y) - n H(X)] 

X (OIl/!*(y)I/!(x)IO) 
Xexpie[n(+I(y)-n(+I(x)]. (62) 

We find on inserting this result in the expression (60) that in 
the first term the limit 1]---+0 can be taken immediately to 
yield 

i:¢yl'avI/!:(x) + e;I/!yl'avnl/!;(x) 

= i:¢yl'avI/!:(x) + m[ ;yl'paVe;(x) - ;aI'O'aVd;(x)].(63) 

To obtain this, we have used that yl'y = - €I'VYv and that 
lim'7~ exp F(+I(X, x + 1]) = Z. The second term requires 
more work and when inserted in (60) yields 

[ r ](-1 
iZ -I expF(x,y) exp ie n (y) - n (x) - Jx ds P Ap(s) 

Now 

X I [a ~F(x,y) - ie avn (x)] (OI¢'*(y)fyl'¢,(x)IO) 

+ (Ol¢'*(y)fyl'a",p(x) 10) J 

[ r ]1+1 Xexpie n(y)-n(x)- Jx dsPAp(S) . (64) 

n (y) - n (x) - f ds PAp (s ) 

= rx [d(y) - d(x)] - J: ds P SPfJ aad(s)· (65) 
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Therefore, we obtain, after expanding in 1] and retaining only 
the non vanishing contributions for 1]---+0, that 

;exPie[n(y)-n(X)- f dS'PAp(s)]; 

---+1 + ie(y~ 1]P a pd -1]P€ pfJ aad) + ~1]ar/ 
X; - e2(rx aad - €ap aPd Hrx afJd - €fJfJ aad) 

+ ie(rx aaafJd - €afJ aaafJd);. (66) 

Combining this with the remaining expressions in (64), we 
find, after a straightforward computation using the averag
ing process described in Appendix A and Eq. (61) that the 
fermion kinetic term when properly defined yields 

i¢yl' a vifJ ---+~i[ :¢yl' a vI/!: - a v:¢yl'I/!:] 

+ m:(a I'p - m€l'a aa d ) aVe; 

- m; a I'O'a vd; 

+ Im2gl'v:a Pd a d: 2 • p., (67) 

where m2 = e2 hr. Evaluating the rest of the terms in K I'V 

and combining all the results, we obtain 

KI'V 

= F[:¢rl' a V¢': - aV:¢rI'I/!:] + a;aVea I'b - a l'ea Vb; 
-m:€l'a a IaVe+I€!lPa aVe ,a P 

+ (a 1'0'- m a I'd)a Vd; 

+ m2;~l'v a pd aPd - al'd a"d; 

- m;.2' al'a"d + (a/m)b€l'p a pa"d; 

+gI'V; _ !m2I2 + !ab2;. (68) 

After some rewriting we then obtain the Hamiltonian 

H = f dx l ; ~ [¢yO aol/! - ao¢yOI/!] 

+ a(aoa aob + ala alb _ b
2

2
) 

+ a {3 (a 0p aOb + a Ipalb) - +[ (ao(O' - : b)y 

This can also be rewritten as 

H=Ho+H I 

with 

H o= f dx l ; ~ [waol/!-aoWl/!] 

+ a(aoa aob + ala a Ib _ b
2

2
) 

+ ~202 + ~)[(aoh)2 + (alb f] 

+ ~ [(ao.2')2 + (alIf + m2I2]; 

A. Z. Capri and R. Ferrari 

(69) 

(70) 

(71) 

144 



                                                                                                                                    

and 

HI = - ~ fdXI:[ao(p -a~+ ~)b)r 

+[al(p-a~+~)b)]\ (72) 

Ho is clearly the Hamiltonian ofthe free building-block 
fields a, b,.I, and 1/1. Similarly starting from equation (68) we 
find that the momentum operator is given by 

P = J dXIKol = Po + PI' (73) 

where 

Po = J dXI J¢rfa 11/1 + ala laaob + aOaa Ib) 

+ a2~2 + ~)aOba Ib + a°.Ia I.I: (74) 

Here again Po is the momentum operator for the free build
ing-block fields a, b, .I, and 1/1. The Lagrangian correspond
ing to Ho and Po is 

X' 0= :¢iy.a1/l: + a:a I-'a a I-'b -!b 2: 

+ !a(p2 + 2Plm):(al-'b )2: 
+ !:(a I-'.I f + m2.I 2: 

and involves only the free fields 1/1, ¢, a, b, and .I. 

(76) 

A straightforward application of the equal-time com
mutation relations listed in Appendix B yields 

[Ho, 1/1] = - iip, 
[Ho, a] = - iiI, 
[Ho, b ] = - ib, 
[Ho, u] = - iiT. 

[Ho, .I ] = - it, 
[Ho, b ] = - ih, 
[Ho,p] = - ip, 

(77) 

Using the equal-time commutation relations listed in 
Appendix B once more, we then find 

[H,1/I] = - iip + [ii![p - alP + lIm)h] 

- [iT - alP + lIm)b ]rJ1/I, 

[H, 1/1] = - it, 

tions (78), this Hamiltonian H is also a time evolution opera
tor for the algebra of fields ~(A I-' ' f/J, '¢ ). This point will be 
clarified after we discuss the field algebra in the next section. 

What is the role of these two Hamiltonians? Ho pro
vides the time evolution of ~ but does not provide the full 
physical content of the theory. The subtle message obtained 
from the full operator H is that in addition to the obvious 
spectrum obtained from H o there are infinitely many Poin
care-invariant states so that we have infinitely many copies 
of the spectrum of Ho (excluding the fermions) built up on 
these translation invariant states. The details of this will be 
expounded in Secs. 6 and 7 and will reveal just how subtle the 
confinement offermions (exclusion from the spectrum of H) 
is. 

5. THE ALGEBRA OF FIELDS 

We consider those objects which are local relative to the 
fields f/J, ,¢, and A 1-" Some of the useful properties of this 
algebra ~ are 

(i) b = a I-' A I' E~. 

(ii) Since b is not local relative to f/J we have bE~. How
ever, a I'h = E I'V a Vb E~. 

(iii) .I = - (lIm)EI'VFl'vE~. 

(iv) The dipole field is not local relative to f/J and hence 
aE~. However, 

al'[a+(p+ lIm)p] =AI' + (alm2) al'a.A 
- (lIm2)aVFl'vE~. 

The next property of the algebra requires a proof and is 
thus stated as a lemma. 

Lemma: 
(v) p,ill' = (lI[ii)a I'P, u, and a I'u are not elements of 

~ if A 1" f/J, and '¢ are irreducibly represented. 
Proof Suppose they belong to ~ and choose P = - 11 

m; then they commute with f/J, ,¢, and A I' and should be c
numbers. This is contradicted by 

(Olp(x)p(y)IO) = - iD(+)(x - y), 

(Olu(x)u( y)IO) = - iD (+)(x - y), 

(Olu(x)p(y)IO) = - i.D(+)(x - y). 

For a general value of P consider 

Po =p - alP + lIm)b, 

uo=u-a(p + lIm)b. 

Then Po and U o again commute with f/J, ,¢, and A I' and the 
same argument applies. 

(vi) Combining the results of(iv) and (v), we find that for 
[H, a] = - iiI - i(P + lIm)fP - alP + lIm)h], 

[H, b] = - ih, [H, b] = - ib, 
(78) P -1= - 11m 

[H,p] = - ia(p + lIm)h, [H, u] = - ia(p + lIm)b. 

The sets of equations (77) clearly show that H o provides a 
time evolution operator for all the building-block fields and 
hence for the full algebra of fields ~(A 1-" f/J, ~ ). This is in fact 
what one would naively expect. 

In addition to Ho' we have, however, the full Hamilton
ian H, and, although it is not obvious from the set of equa-
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a I' a = a I' [a + ( P + 11m) p] - (P + 11m) a I'pE~. 

(vii) Since {;a and {;: are not local with respect to f/J and 
~, they also do not belong to ~. 

In view ofthese results, it is convenient to use instead of 
the original building-block fields a and 1/1 the compound 
fields 

ao = a - (alm2)b + (P + lIm)p (79) 
and 
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(80) 

These fields commute with each other and satisfy the same 
field equations as a and "p, respectively. Furthermore, we can 
express A I' and ¢' in terms of these fields 

AI' =al'ao+~El'vav2, 
m 

¢' = :exp{ - ie[ao + (alm2)b 

+ (lIm)(2 - (alm)b )r]:; j, 

(81) 

(82) 

and we see that the parameter /3 has completely disappeared. 
Next we find that 

[H,;] = - it, (83) 

[H, ao] = - iao, (84) 

[H, b] = - ib, (85) 

[H, b] = -ib, (86) 

[H, 2] = - i.t. (87) 

It is still true that ;, ao, and b are not elements of 2l:. If, 
however, we choose test fU!lctions!oEY vanishing at p I' 
= 0, then both ao(fo) and b (fo) belong to 2l:, the algebra of 

fields. It would now be easy to read off the spectrum of H 
except that we find a host of Poincare-invariant states in 
addition to the obvious vacuum. We examine these next. 

6. POINCARE-INVARIANT STATES 

To find translation-invariant states, we begin by "un
dressing" the fermion field ¢'. To do this requires exponen
tiating certain elements of the algebra 2l:. We define such 
exponentials using the triple-dot-product. Thus for any free 
field AE21:, we define 

: exp A: -exp A (-) exp A (+). (88) 

For convenience we also choose the value/3 = - 11m in this 
section. Since 2E21:, we can "remove" 2 from ¢' and obtain 

¢'o(x)=exp(ielm)r2 (-)(x)¢,(x)exp(ielm)r2 (+)(x) 

= Z -I exp[ - ie(a - (alm2)rb )H](XJt (x) 

(89) 

Since a~21: but a I'a is, we cannot "undress" ¢'o any further. 
For this reason we consider bilocal fields which can be un
dressed as far as the field a is concerned. Due to the presence 
ofr, the b cannot be removed. Thus we consider 

¢'o(x)¢, ~(y) exp [ - ie f ds I' a I'a(s) J 

and multiply by the necessary c-number factors to obtain the 
bilocal field 

B (x,y) = exp[(iealm2)(b (x)rx - b (y)~)H];(X); *(y) 

Xexp[(iealm2)(b (x)rx - b (y)~)(+)], (90) 

which belongs to the algebra ~L This field has the following 
local properties: 

[A I' (z), B (x, y)] = (elm2) [a I'D (z - x)rx 

-a)j(z-y)~]B(x,y), (91) 
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[¢' (z), B (x, y)] 

= {exp i1r[D (z - x) - D(z - y)] - 1 jB (x,y)¢, (z) 

for ;(x) = ;(y) 

= - {exp i1r[D(z - x) + D(z - y)] + 1 jB(x,y)¢' (z) 

for;(x)#;(y), (92) 

and we see that both commutators vanish whenever z is 
spacelike with respect to both x and y. Thus B (x, y) is truly 
bilocal. 

We next consider the vacuum expectation value 

(Ol¢' (x)¢' *(y)B (z, w)IO). 

Then (keeping always/3 = - 11m) using the commutator 

K(+)(x,y)=[E(+)(x), E(-)(y)] 

= - (ila)I(+)(x,y) - (ilm2)D(+)(x - y) 

+ (ilm2)(rx + ~)D(+)(x - y) 

- (ilm)rx~L1 (+)(x - y) (93) 

and the identity given by Eq. (25), we find 

(Ol¢' (x)¢, *(y)B (z, w)IO) 

= Z -I exp [e2 K(+)(x, y)] (P/21T) 2 

X { 8xw 8xy exp i1T rw 
X[D(+)(y -z) -D(+)(x -z) +D(+)(x - w) 

- D (+)( y - w)] + 8xw 8yz[1 - 8wz] 

X exp i1T rw [ - D (y - z) + D (+ )(x - z) 

+ D(+)(x - w) - D(+)(y - w)]j, (94) 

where the Kronecker delta refers to the Lorentz indices. 
Next we take the limit w--+z and consider the three com

ponents B II' Bn. and B 12 separately to find 

lim (Ol¢' (x)¢' *( y)B I dz, w)IO) 

= lim (Ol¢' (x)¢' *(y)B22(Z, w)IO) 
W~Z 

= Z -I exp e2 [K(+)(x, y)](P/21T)2 

so that 

lim B II (z, w) = lim B22(z, w) = JiI21T. 
UJ--... z W--+Z 

On the other hand we obtain 

lim (Ol¢' (x)¢, *(y)Bdz, w)IO) 

= Z -1(p/21T)2exp e2 K (+)(x, y) 

X exp 21Ti[D (+)( y - z) - D (+)(x - z)] 

= - (.u/21T)(OI¢' (x)¢, *(y)O" +(z)IO). 

(95) 

(96) 

(97) 

We now look for translation-invariant states by Fourier 
transforming the relevant part of Eq. (97) with respect to z. 
For convenience we also choose x = o. The relevant expres
sion is 

f d 2Z e - Ijn exp 21Ti[D (+)(y - z) - D (+)( - z)] 

=+ fdZ+ dz- exp[ - ~ (p+z- +p-z+)] 

X (Y: - z: -~E )1/2( - z: _ ~E)I/2. 
Y - z - IE - Z - IE 
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Ifwe consider the integral over z+ we find 

L"'", dz+ e- irz+/2[ (Y+_~~+_~:E)1/2 - 1 + 1] 

= 2m5(P2-) + 21Ti·28 (p-) 

(99) 

The second term is an analytic function of p - since it is the 
Fourier transform of a function with compact support. 

Thus Eq. (98) becomes 

f d 2z e- ip·z exp 21Ti[D (+I(y - z) - D(+I( - z)] 

= (21T)28 (21(p) + terms in 8(p-)8(p+), 8(p+)8(p-) 

and 8 (p-)8 (p+) multiplied by analytic functions in 

p+ and p-. (100) 

From this we conclude that the state (21T1f..l); rtlIO) is a 
normalized, Poincare-invariant state. With these prelimin
aries out of the way we can finally discuss the spectrum of the 
Hamiltonian H. 

7. THE SPECTRUM OF THE HAMILTONIAN 

Using the results of the previous section, we see that we 
have the normalized Poincare-invariant states 

In) = ((21T1f..l); t;d(,n, 
+ n)l2((21T1f..l); n2)(ln,- nI/210), 

n = 0, ± 1, ± 2, .... (10 1) 

Each of these states can be used as a cyclic vacuum with 
regard to the fields I, ao, and b, where the field ao is not 
allowed to carry zero frequencies. In this way we build up a 
Fock space Gn of I (f), ao(fo), b (f), whereJEY(R2) and 
JoEY 0(R2) C Y(R2) is the space of test functions whose sup
port excludes the origin p I" = O. The Hilbert space G of 
asymptotic states is then the direct sum over the individual 
Fock spaces Gn : 

(102) 
n= - r$J 

It is now clear that each space G n contains the same spec
trum as Ho if the fermion term is dropped from Ho. Thus in 
each space Gn no vestige of the fermions remains. The fer
mions are confined. Nevertheless, a hint of their existence is 
manifested by the infinite degeneracy of the spectrum. 

Another comment is in order. Since ao is a dipole field 
(except for the Landau gauge, a = 0), neither Ho nor H can 
be diagonalized. 5,6 

8. RENORMALIZATION 

In defining the electromagnetic current in Ref. 1 we 
used a split-point regularization and gauge invariance. The 
current was then defined by 

147 

j I" (x) = lim {¢ (x + E)Y I"<P (x) 
E....o 

E"#o 

xexp[ - ie f A,,(x + s) dSV - < )o]}. (103) 

J. Math. Phys .• Vol. 25. No.1. January 1984 

It is, however, possible to maintain gauge invariance by us
ing a different definition. Thus we now consider the current 
J I" defined by 

JI" (x) = lim {¢ (x + E)Y I"<P (x) 
E....o 
E"#o 

where 

V,,(x) = A,,(x) + ua"a·A (x) + vJ"FA,,(x) (105) 

and u, v are two real parameters. This definition also leads to 
a viable current. As we now show, the net effect of replacing 
j I" by J I" is to renormalize the Lagrangian (1). 

Using the same procedure as in Ref. 1 to triple dot order 
the terms in (104), we find for small E that 

JI"(x) =j I" (x) - (euI21T) al"a·A (x) - (evI21T) J"FA" (x), (106) 

where we have also made extensive use ofthe Dirac equation 

(i~ - eJ. )<p = o. (107) 

With the above result we find that the equation of motion for 
A" is 

(1 + e2vI21T) J"FAI" + (a + e2u/21T) a l"a.A = ej I"" (108) 

Equations (107) and (108) describe the new equations of mo
tion due to usingJ instead ofj. They can be considered to be 
the equations of motion arising from the renormalized for
mal Lagrangian 

X R = - !Z3(F 1",,)2 - !aZa (a·A )2 + ¢ (i~ - eJ. )<p (109) 

with 

Z3 = 1 + e2vI21T, Za = 1 + e2uI21Ta. (110) 

By rescaling the fields we can rewrite this Lagrangian as 

X 0 = -l(FI",,)2 - !a(a.A f - ¢ (ia - eJ. )<p, (111) 

which is of the same form as the original Lagrangian (1) 
except that we have replaced a by 

_ Za 1 + e2ul21Ta 
a=a-=a (112) 

Z3 1 + e2v121T 
and e by 

e = eZ 3- 112 = e(1 + e2vI21T)-1/2. (113) 

The mass arising from X 0 is 

-2 e
2 

e
2 
( e

2
v) - I 2( e

2
v) - I m =-=- 1 +- =m 1 +- . (114) 

1T 1T 21T 21T 

Thus various choices of the parameters u, v lead to equiva
lent theories. 

As a final item we consider the analytic properties of the 
Wightman functions with respect to the coupling constant. 

9. ANALYTICITY IN THE COUPLING CONSTANT 

Schwinger's7 original solution of the Schwinger model 
was given in terms of perturbation theory. Since then there 
have been other perturbation theoretic considerations of this 
model. 8,9 As we now have all the Wightman functions of this 
model explicitly displayed, it is feasible to examine their 
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analyticity properties with respect to the coupling constant 
e. 

We begin by considering the e-<J limit of the various 
Wightman functions. To accomplish this, we need only con
sider the two-point function for A 1" the fermion 2n-point 
function, and the mixed three-point function. From Eq. (26) 
we see that due to the presence of the term (itT/e2) a I"av 

x [.1 (+) - D (+)] the limit e-<J exists only if we take test func
tions which vanish for P I" = O. In that case we obtain 

On the other hand, using Eqs. (15) and (20) of Ref. 1, we find 
that 

lim [.1 (+)(m 2, x) + (l/1Ti) In Z] = D(+)(x) 
k->O 

so this limit exists. 

(116) 

We next consider the e-<J limit for the 2n-point fer
mion functions given by Eq. (20), namely, 

W. (x, y) = Z - • exp [y(l)(x, y)] w~n(x, y). 

Using Eq. (116), we obtain 

lim Z -n exp Y+(x,y) 
.->0 

= exp{ - n In Z + In Z [i'~ 1 rx,¢' ~j 

- . i (rx,rxj + r;,r;j]}' 
I<J~ 1 

(117) 

If we now take the spinor indices of the first k<.n fermion 
fields to be 1 and the spinor indices of the remaining n - k 
fermion fields to be 2, then we can evaluate the sums over the 
r matrices to get 

n 

I rx,r;j = k 2 + (n - k)2 - 2k (n - k) = (n - 2k )2, 
i,j~ 1 

(118) 

• I rx,r;j = ~k (k - 1) + ~(n - k)(n - k - 1) + k (n - k). 
i,j~ 1 

Combining these results, Eq. (117) becomes 

exp In Z [ - n + (n - 2k)2 - k (k - 1) 

(119) 

- (n - k)(n - k - 1) - 2k (n - k)) = 1. (120) 

Thus 

lim W. (x, y) = w~n(x, y). (121) ._0 
Finally we consider the limit e-<J for the mixed three-point 
function given by Eq. (34). To obtain this limit, we must 
simply consider the limit of the function G (1"+ )(x, y) given by 
Eq. (32). Again using Eq. (116), we easily obtain that 

lim G (1"+ )(x, y) = O. 
.->0 

(122) 

Thus the limits of all these Wightman functions exist in the 
sense of distributions in Yb whose test functions are Fourier 
transforms of functions in Y with their support excluding 
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the origin P I" = O. In spite of this, the Wightman functions 
are not analytic in e. To see this, consider the fermion two
point function 

(Ol¢' (x)¢' *(y)IO) 

= Z -I exp e2[ - (ila)I(+)(x _ y) _ (i1T/e2) 

X [.1 (+)(x - y) - D(+)(x - y)] Jw~(x,y), 
(123) 

where we have used that rx r; = I for this case. 
Now for small m 2 = e2/1T we have 

.1 (+)(m, x) = - J... H (1)(im(-x2 +i€xO)1/2) 
4 

1 = _ _ H(1)(y) 
4 

= - :{Jo(Y)[I+~'(r+ln~)]- ~ 
00 (_ qn(y/2)2k (II)} xI 2 1+-+ .. ·+-. 

k~O (k!) 2 k 

This clearly shows that 
(124) 

exp[ - hT[.1 (+)(m, x) + (l/hT) In Z] J 

~exp[ -! Jo(y)ln(y/2) -In Z] 
m->O 

and has a cut in m. 
Thus we find that the coupling constant e is not a suit

able expansion parameter around zero. In spite of this, when 
such an expansion is summed, the correct analytic properties 
in e are obtained. 

10. CONCLUSIONS 

We have studied certain properties of the Schwinger 
model. In particular, we have obtained all the Wightman 
functions for this model. We have also studied the algebra of 
fields and representations of this algebra. A particularly in
teresting object of this model turns out to be the Hamilton
ian. It does not consist simply of the Hamiltonian Ho for the 
building block fields, although this one does yield the correct 
time evolution for the algebra of fields. The full Hamiltonian 
H reflects the "confinement" of the quarks in that the only 
vestige of the fermions that remains are zero-energy (actual
ly Poincare-invariant) states in its spectrum. 

We also briefly discuss renormalization of the theory 
and analyticity of the amplitudes in terms of the coupling 
constant. 
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APPENDIX A: AVERAGING OF POINT SPLITTING 

In computing the energy-momentum tensor regular
ized by point splitting, one obtains expressions of the form 
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'TJ ".'TJ in the point splitting parameter 'TJ". We prescribe ,.,.. /-In r-

an averaging method over "all directions" of nil· 
Since the Lorentz group is noncom pact, we go to the 

Euclidean region 'TJo-+i'TJo to perform our averaging. In this 
case keeping the length of 'TJ Il fixed is no problem. 

Thus we define the average in the Euclidean region by 

Letting 'TJo = R cos e, 'TJI = R sin e, the integral becomes 

r21T 

I J . In = Jo de"2 R n dR 2 8(R 2 - a2)(cos e)k (sm e )In - k I, 

(A2) 

where we have assumed that k of the fli values have the 
value 0 and the rest have the value 1. It is easy to see that 
unless nand k are even In vanishes. For n, k even we obtain 

I = an .21T (k - I )!!(n - k - I)!! . 
n 2 n!! 

(A3) 

These results now immediately yield: 
15 0+ ... + 15 0 a2n(i) ",. "2no 

'TJ ... 'TJ = 
PI J.l21TEuc11dean (2n)!! " 8 ···8 ~ /lif·.l} J-lk JI-,' 

partitions 
in n pairs 

(A4) 
which in Minkowsky space becomes 

('TJ2t 
'TJ Il, ... 'TJ 1l2" = (2n)I.I. + I g Ilill/··g Ilkll" (A5) 

partitions 

where the sum is over the partitions of the 2n indices into 
pairs (flo flj) with i < j. Furthermore, we immediately find 
that the "average" of an odd product of 'TJ Il 's vanishes. 

APPENDIX B: EQUAL-TIME COMMUTATORS FOR 
BUILDING-BLOCK FIELDS 

Using the various commutators for the building-block 
fields, one easily finds the following useful equal-time (anti-) 
commutation relations: 

falx), b (O)]x"~o = - i/a8(xl), (BI) 

falx), a(O)L" ~ 0 = i( /3 2 + 2/3 /m)8(xl), (B2) 

[h (x), a(O)L"~o = - (i/a)8(xl), (B3) 

[..!' (x),..!' (O)L" ~ 0 = - i8 (Xl), (B4) 

Lo(x),p(O)L"~o = - i8(x l ), (B5) 

[a lo-(X),p(O)]xo~o = i8(x l ), (B6) 

[a Ip(x), l7(O)]x"~o = i8(x l ), (B7) 

[ir(x), o-(O)Lo~o = - i8(xl), (BS) 

[¢(x), ¢(O)Jxo~o = yD8(xl), (B9) 

[¢(x), ¢(O)Jxo~o = yD8(xl), (BlO) 

[pIx), ¢(Y)Lo~yo = - {tT¢(y)8(XI), (BII) 

[a Ip(x), ¢(Y)Lo~yo = - {tT r¢(y)8(xl), (BI2) 

[ir(x), ¢(Y)Lo~yo = {tT r¢(y)8(xl), (B13) 

[a Io-(x), ¢(Y)]x"~yO = {tT ¢(y)8(xl). (BI4) 
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Moreover, we find that 

[:¢yla 1¢:(y),p(x)]yO~XO = -p(X)8(XI - yl) (BI5) 

and 

(BI6) 

APPENDIX C: THE LANDAU GAUGE 

We briefly consider the Landau gauge here. It is ob
tained as the a-+ 00 limit of our solutions if one keeps 

bo(x)=ab (x) 

fixed. 
It then follows from Eq. (79) that 

ao(x) = a(x) - bo(x)/m2 + (/3 + lIm)p(x) 

and 

(Olao(x)ao(O)IO) = (i/m2)DI+I(x). 

whereas 

and 

(Olao(x)bo(O)IO) = - iD 1+I(x) 

(Olbo(x)bo(O)IO) = 0, 

(Olao(x)bo(O)IO) = - iD I+I(X). 

Moreover, both ao and bo are scalar fields: 

Dao = 0, Dbo = o. 
The fields ¢J and A Il are now given by 

¢J (x) = ;exp { - ie[ ao(x) + b~~) 

+ ~(..!'(X) - b~))rx] :;(X)}, 

All = a Ilao + (lIm)€ IlV av..!', 

(CI) 

(C2) 

(C3) 

(C4) 

(C5) 

(C6) 

(C7) 

(CS) 

(C9) 

where; is still given by Eq. (SO). The content of these equa
tions is clarified if instead of the two massless scalar fields ao, 
bo we introduce two commuting massless scalar fields 

al = mao + (lIm)bo, a2 = mao, 

bo = m(a) - a2 ), ao = (lIm)a2 • 

We then find 

(Olal(x)al(O)IO) = - iDl+I(x), 

(0Ia l(x)a2(0)10) = 0, 

(0Ia2(x)a2(0)10) = + iDl+1(x). 

Thus the field a2 carries a negative norm. 
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A novel mass-eigenvalue problem for spinors in deSitter space 
Edward H. Kerner 
Sharp Physics Laboratory. University of Delaware. Newark. Delaware 19711 
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It is shown that an unambiguous quantum theory of spinors in positively curved deSitter space, 
based on distinguished coordinates in a Hamiltonian framework, leads to a set of spinors 
corresponding to unsharp energy but sharp mass defined in a family of novel eigenvalue problems. 
An example is given in which partly real and partly complex discrete mass spectra come forth. 

PACS numbers: 11.10.Qr, 04.90. + e 

Spinors in spaces of constant curvature [deSitter spaces 
of 0(3,2) or 0(4,1) symmetry] have received continuing at
tention 1 for nearly fifty years. Their structure is of interest 
not only in its own right since deSitter spaces are the physi
cally distinguished ones having maximal (tenfold) symme
try, but also because they are local osculating spaces2 (rather 
than mere tangent spaces) to more generally curved Rie
mann spaces, attaining thereby a prototypical role. Further, 
they form background spaces for supersymmetry,3 and have 
been broached4 as closed up "microuniverses" for consider
ing particle confinement at a basic geometrical level. 

In the present paper an unusual family of eigenvalue 
problems is brought out for the mass of a spinning particle 
running along a geodesic of 0(3,2) deSitter space. This re
sults from a well-set and essentially unique Hamiltonian for
mulation of the motion developed in recent years,5 in con
trast to the formal spinor theories usually invoked. I 

In the latter, governed by general con variance consider
ations, Klein-Gordon equations are typically factorized to 
curved-space Dirac equations (yli(X)V Ii + m)t/' = 0 as a mat
ter of formal prescription (V Ii = covariant derivative). The 
coordinates remain ambiguous, and of course commutation 
rules are renounced. The Hamitonian formulation, on the 
other hand, relies on distinguished coordinates and proceeds 
through clear commutation rules to a quite unambiguous 
statement of quantum theory. The basis here is a specialized 
subgroup of the projective transformations x; 
= Ai (x,a)/.::1 (x,a) ==:ri(x), with Ai and.::1 inhomogeneous 

linear functions of space Cartesians X1,X2,X3 = r and time 
Xo = t, and a = a universal length. These are isomorphic to 
the deSitter group of pseudo rotations 0(3,2) in the five-space 
of homogeneous coordinates Xi' U (Xi ==XJ U). What is no
table is that x' and x are in the relationship of coordinates of 
inertial frames, since d 2r' I dt ,2 = 0 is sent into d 2r I dt 2 = 0 
and conversely, making these coordinates clearly distin
guished above all others. While the appropriate invariant 
line element indeed describes constant curvature 1/ a2

, the 
geodesics one and all are the global free-particle motions 
d 2r I dt 2 = O. Given this order of simplicity, general covar
iance is rendered irrelevant, and only the automorphism of 
space-time under x' = r (x) is consequential, as with the au
tomorphism of Minkowski space under the Poincare group. 
Coordinate ambiguities and equivocal quantization recipes 
may then be set aside, and instead the usual commutation 
rules (xi,pJ) = i'/wij' etc. (i,) = 1,2,3) tenably introduced as 
the primary physical hypothesis for the quantum dynamics 
of a free particle, in accord with all physical experience. 

Useful coordinate transformations can now (post settle
ment of the physical basis) be performed, such as p(r,t ) and 
7(t) described earlier,S that rephrases the straights d 2rldt 2 
= 0 as the harmonic-oscillator geodesics d 2pl dr + (e2 I a2) 
p = 0 otherwise familiar in deSitter space, and that gives a 
ladder spectrum of Klein-Gordon energy eigenvalues. The 
further transformation R = p/( 1 - p2 I a2) I /2 brings the Ha
miltonian-squared 

(1) 

K2 = m2c2a2/fz2 -!, p=~(I + RR/a2)·pc + h.c., 

where Pc is canonical mate - iflV R to R, and L is RXP, 
with I the unit dyadic. 

This reduction forces into particularly clear view the 
issue oflinearization to determine H upon the primary phys
ical basis, an issue distinct from generally covariant factori
zation of V liV Ii + m 2

• As has been remarked,6 there does not 
exist any ordinary matrix squareroot of H i + ~ H ~ in 
Dirac matrices or otherwise (except for K = 0). Since this 
point is central to any consideration of spinor theory on a 
Hamiltonian base, the proof will be briefly reviewed. 

Taking fl,c,a = 1 from here on, the one-dimensional 
form of Eq. (1) already reveals the difficulty: 

H 2 =p 2+K2(1 +X2), 

(where both the terms L2/a2 and fz2la 2 are to be dropped in 
one dimension). If His F (x)P + G (X), it is then required that 

F2 = 1, 

FG + GF= iFF', 

G 2 _ iFG' = ~(1 + X 2), 

be identically satisfied in X, whereF' means (1 + X2)d F IdX 
and similarly for G '. Multiply the second, right and left, by F. 
This brings FF' = F' F, while the first states that 
FF' + F'F = 0. Hence FF' = ° = F'F, so that F' = 0 and 
FG + G F = O. Now multiply the third, right and left, by F, 
producing FG' = G 'F. But (FG + GF)' = FG' + G'F = 0, 
whence G'F = 0 = FG'. Consequently G' = 0, and then 
G = const, cannot satisfy the third (except for K = 0). 

In short, while H i and H; are separately Dirac lineari
zable,5 for example as 

HI = (l.p - (F·L - 1, 
(2) 

H2 = {J + i {J(l·R, 
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with standard Dirac matrices p,a,CT, the pieces HI and H2 
are incompatible in that they cannot, in general, be brought 
together to give a general overall linear Hamiltonian. The 
choices for HI and H2 above are not unique but are here 
selected for simplicity. (A second possibility for HI is 
a·P + a·L - iY5' while the roots of I + R 2 for Hz are very 
numerous; but in all cases a single general Hamiltonian is 
ruled out.) 

To hold to the Hamiltonian framework, and accord to 
the Hamiltonian its master dynamical role of generator of 
time (T) translations, is nevertheless achievable (notwith
standing the incompatibility of HI and H2 ), provided the 
spinors to be considered are suitably restricted, and as well 
the value of the mass parameter K = (m 2 

_ !)I/2. 
Clearly, if t/! is a spinor such that 

HIt/! = AH2t/!, (3) 

then for these spinors an overall linearization of H becomes 
possible, 

(A,a l,a2 numerical parameters) since 

H2t/! = [aiHi + a la 2(HIH2 + HzH.) + a~Hnt/! 

= [(ai + alaz/A )Hi + (a; + Aala 2)Hnt/!· 

This requires only that 

ai +ala 2IA= I, a~ +Aala2=~' 

or that 

(4) 

a l = (I + ~/A 2)-1/2, a 2 = (K2IA )(1 + ~I A 2)-112, 

bringing Eq. (4) to 

. at/! ( ~ )112 
1- = 1+- HIt/! 

aT A 2 

=A(I+ ;z)1I2H2t/!. 

If ¢' is some initial spin or, one gets [t=(1 + K21A 2)1/2] 

t/! = [exp( - i;HIT)¢' = [exp( - iA;H2T)]¢" 

so that this initial state is constrained to satisfy 

HI¢' =AH2¢,· 

Stationary states are here ruled out. 

(5) 

(6) 

(7) 

As will be shown below, Eq. (7) does not allow arbitrary 
A or arbitrary ¢'; rather a discrete spectrum of eigenvalues Aj 
and eigenstates ¢'j is demanded. But then in Eqs. (5) and (6) 
the operators (1 + K21A J) 1I2H I or Aj(I + K21A J)I/2H2 are 
not uniquely valued [i.e., are not independent of the indexj 
labeling the eigensolutions of Eq. (7)] unless K is restricted. 
Taking uniquely valued spinor wave equations as a basic 
requirement, two mutually exclusive restrictions on K stand 
forth, which may be called cases (A) and (B). These corre
spond to 

(1 +K2IAJ)1I2 =131 (A) 

or 

Aj(I +~/A})I/2=/32' (B) 

where/3I' /32 are arbitrary real numbers independent of the 
labelj. Not both of (A) and (B) can be allowed simultaneously 
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since 1321/31 = Aj is ruled out. Then 

KJ = (Pi - I)). J (A) 

or 

KJ = 13 ~ - A J, (B), 

(8) 

prescribe the allowed mass spectra, while the uniquely val
ued spinor wave equations are 

i at/! = /3IH lt/!, 
aT 

(A) 

or 

i at/! = /32H 2t/!, 
aT 

(B) 

with /3;H; remaining Hermitian when H; are Hermitian 
(/31,/32 may be absorbed into scale changes in T if desired). It 
is easily demonstrated that J = L + ~CT commutes with both 
HI, Hz of Eq. (2), so that t/! may be an eigenstate of total 
angular momentum, but it clearly cannot be an eigenstate of 
energy (either HI or H2)' 

We may summarize as follows: Within the Hamiltonian 
framework in deSitter space, spinors exist which are not eigen
states of the Hamiltonian but rather are eigenstates of a 
"mass-generating operator" H 2- IHI [Eq. (7)] whose eigen
values prescribe afamily of allowed masses (Eq. 8) and whose 
elements HI> H2 are Dirac square roots of well-defined opera
tors within thatframework. In a word, these particular states 
are unsharp in energy but sharp in mass. To the extent that 
one may regard the parameters/3I' /32 as running freely over 
their real values, the mass spectra are of the nature of bands, 
with individual bands labeled discretely according to the 
eigenvalues of the H 2- IHI operator. 

A further perspective on the reduction given above is 
sketched in the Appendix, where a novel square root pro
cess6 for H i + K2 H ~ in total is reviewed, and the case where 
A = K is particularly obtained. 

Turning to the eigenvalue problem of A, Eq. (7), we may 
use HI and H2 from Eq. (2) as an example. In view of the 
many possible choices for H; noted before, this will be under
stood to be primarily illustrative rather than exhaustive or 
definitive, demonstrating the principal point that A has a 
discrete spectrum. Since the HI' H2 of Eq. (2) do not com
mute, the mass generator H 2- IHI in H 2- IHI¢, = A¢' is not 
Hermitian, SOA cannot be expected to have a completely real 
spectrum in the present example. 

Eq. (7) is readily analyzed upon recognizing certain 
structural similarities to the classical Dirac-Coulomb prob
lem as set forth particularly by Foldy. 7 First it is convenient 
to return to the harmonic-oscillator coordinate p or p,e,¢, in 
polar coordinates (O.;;;p.;;; I) with corresponding momentum 
p = - iVp' Then employing FoIdy's operators 

k =/3 (CT·L + I), 
ap = a'plp, 

Pp = (l/p)( p.p - i), 

the operators HI> H2 are 

HI = (I - p2)1/2(ap Pp + (ilp)ap /3k) 

+ ~ ipap/(1 _p2)1/2 -/3k, 

H2 = /3 + i/3ap pl(I _ p2)1I2. 
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The operators /3, k, L z, J, are intercommuting and their 
common eigenvector, which depends only on () and ¢, may 
be designated as 5, belonging respectively to the eigenvalues 
1, k, 1(/ + 1), m j • A sec~nd angular spin function 7]=iap5 is 
also an eigenvector of k and Jz with the same eigenvalues k 
andmj ass [though it is not an eigenvectorofL z belonging to 
I (I + 1)). Since 7] is an eigenvector of/3belonging to the eigen
values - 1, it is orthogonal to 5. Hence when one introduces 

¢ = (f(p)/p)5 + (g(p)/p)7], 

into H 1¢ = AHz¢, one obtains terms only in 5 and 7], and 
thence by their orthogonality, the pair of coupled radial 
equations 

dl +(_!:. _~_p_ -A-P-)I 
dp p 2 1 _ p2 I _ p2 

k+A -0 
+ (l_p2)1/2 g- , 

dg +(!:. _~_P_ +A-P-)g 
d P P 2 1 - p2 1 _ p2 

k+A 1=0 + (I _ p2)1/2 . 

Here k is an eigenvalue of k, namely k 2 = (j + i)Z with 
j = ~,~, ... , that is, k = ± 1, ± 2, ... or Ik I==s = 1,2, .... 

The normalization of ¢ is defined by 

(9) 

t 1/12 + Igl 2 pZdp = 1 
Jo p2 (1 _ p2)5/2 ' (10) 

when 5 and 7] are normalized according to 

f 5 +5 sin () d() d¢ = 1 = f 7] + 7] sin () d() d¢, 

where the factor (1 - p2) -5/2 comes from the invariant line 
element in p,r variables that prescribe the invariant volume 
element (1 - p2)-5/2dp dr in deSitter space. Consequently I 
and g must be regular at p = ° and vanish sufficiently fast at 
p=1. 

One very simple solution to Eqs. (9) stands out at once in 
the case k + A = 0, 

l=pk(l_p2)-1/4-11I2IA, 

g=p-k(l_ p 2)-1I4+ I II2 IA. 

Not both of these may be retained, but only 

1= 0 g = pSt 1 _ p2)11/21S - 1/4 

or 

g = ° 1= pSt 1 _ p2)11/21S - 1/4 

with eigenvalues 

A. 2(S) = S2 = 9,16, ... 

for s = 3,4, ... in view of Eq. (10). 
Proceeding to the general situation, write 

1= (1 - p2)1/4F, g = (1 _ p2)- 1I4G 

to get rid of roots of 1 _ p2, 

, (k p) k+A. F - - +(1+A.)-- F+ --G=O, 
P 1 _p2 1 _p2 
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G' + (!:. + A. ~) G + (k + A )F = 0, 
P I-p 

and decouple to obtain a second-order equation in G alone, 

G" _ -p-G' + [-k(k+ 1) 
1 _ p2 p2 

_ (k+A.)2+2M+k + A.-A~2]G=0. 
1 _p2 (I -p2f 

Now extract the characteristic behavior atp = ° andp2 = 1 
through 

G = pa(1 - p2fs 

to obtain the indicial roots 

a = -k, k+ 1, 

/3= !A, !(l - A. ), 

with S satisfying the differential equation of essentially hy
pergeometric type 

S" + (2a _ (1 + 4/3)p)S' _ _ Y-S=O 
p 1 _p2 1 _p2 

y=(k + A. )2 + 2kA + k + a + 2 {3 + 4a {3 - A. 

In the customary way, the series solution S = ~av p" 
produces the recursion 

av + 2 = (v+a+2/3 +q)(v+a+2/3-q) 

av (v + 2)(v + 1 + 2a) 

q2 = (a + 2{3 )2 - Y = - 4kA. 

The even and odd solutions here are then 

Se = 2 F1((a + 2{3 + q)/2,(a + 2/3 - q)/2;a + ~~2), 
So = P3 F2(1,(1 + a + 2{3 + q)/2,(1 + a + 2/3 - q)/2; 

~,1 + a;p2). 

(11 ) 

The recursion relation Eq. (11) shows that S behaves 
like (1 - p2)112- 2/3 near p = 1. This overwhelms the factor 
(1 - p2f in G when at the outset Re( /3 ) is taken as positive to 
ensure that G vanishes appropriately at p = 1. Hence the S 
series must be broken off in a polynomial, 

n + a + 2{3 ± q = 0, 

n = 0,1,2, .... 

Therefore when a = - k (knegative) = sand{3 = A. /2 
one obtains the A. spectrum 

A. 2 + U (n - s) + (n + S)2 = 0, 

A. (s,n) = s - n ± 2i-jSn, 

requiring s>n + 3 for satisfactory Re( /3) > ° [the root 
{3 = (1 - A.)/2 of the indicial equation is ruled out]. 

Similarly, whena = k + 1 (k positive) and{3 = (1 - A.)/ 
2, the A. spectrum is 

A. (k,n) = n - k + 2 ± 2i~k (n + 2), 

with k>n + 4 for suitable Re( {3) (the indicial root{3 = A. 12 
being ruled out here). The case a = ° (k = - 1) is not al
lowed. 

This concludes the illustration of how the mass gener
ator H 2- IHI eventuates in a spectrum of eigenvalues A (s), 
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A (s,n), A (k,n) and corresponding spinors belonging to sharp 
masses. In the case of the real eigenvalue A (s), the mass spec
tra according to Eq. (8) are 

mJ = ( f3 i-l)(j + ~)2 + l (A), 

or 

mJ = f3 ~ + l - (j + !f, (B) 

j=;,~, ... , 

where (A) describes an infinite real discrete spectrum for 
f3 i > 1 and a finite real spectrum for f3 i-I small and nega
tive; while (B) describes a finite real spectrum for adequately 
largef32' Corresponding mass bands are defined whenf3I' f32 
are allowed to range freely. The complex eigenvalues A (s,n), 
A (k,n) of course do not admit ready interpretation [though 
perhaps hinting to a later discrete spectrum of (composite) 
particle decay times accompanying discrete masses]. Indeed 
the meaning of mass altogether in such totally closed up or 
'interior' geometry as that of 0(3,2) remains in issue until 
that geometry is clarified as a locale of an 'exterior' large
scale geometry suited to physical observation. 

ACKNOWLEDGMENT 

My thanks go to the U.S. Department of Energy for its 
partial support of this work. 

APPENDIX 

The fundamental eigenvalue problem HI¢J = AH2¢J of 
the present work also occurs, for A = K, upon introducing6 a 
novel square root process for 

P;¢ = (Hi + ~H~)¢, 
(PT = ia jar). Namely the linearization 

I®NoPT¢ = (HI ®NI +KH2 ®N2)¢ 

is feasible in that iteration produces 

(I®No)2 P;¢ = (I®No)2(Hi + ~H~)¢, 
when N ~ = N i = N ~, and (to overcome the incompatibil
ity of HI' H2) NIN2 = 0 = N2N I. That is, the N; are suitable 
singular matrices which are nilpotent like N; = O. The anal
ysis shows6 that N; must be at least 4 X 4 and then of typical 
structureN; = niT (upon enforcing n; Hermitian and Tuni
tary) 

·r1 . 
n l = = o EllA;, 

· 1 . . 

· . . . 

n2 = . r' . = OEllA6 · · . . 1 

· . 1 . 
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Here dots stand for zeroes, ® for direct product, Ell for di

rect sum, and No = (NI + N2)1-./2 while Ti3,T22,T31,T41 = 1 
(T;j = 0 otherwise) and AI,A.6 are two of the conventional 
generators ofSU(3) [other SU(3) generators and other uni
tary T are possible, as are higher-dimensional 
n; = 0 Ell SU(N) for all N>3 but N < 3 is ruled out]. In short 
unitary spin comes forth quite directly in a fusion with Dirac 
spin, and here is not an ad hoc appendage. 

The unitary transform <P = I ® T¢ brings the linearized 
wave equation 

I ® no PT<P = (HI ® n l + H2 ® n2 )<P, (12) 

with no = (nl + n2)1-./2. Introducing <P as col(<Pa ,<Pb,<Pc,<Pd ) 

with indices tied to the n-matrices, <P a of course falls aside, 
leaving Eq. (12) as 

i<P; = HI <Pc , 

i(<P b + <P d) = HI<Pb + KH2<Pd , 

i<P; = KH2<Pc' 

where <P' = a<p jar' (r' = r-./2). It is sufficient to span uni
tary-spin space, to take i<P b = HI <Pb and i<P .1 = KH2<P d' 

leaving 

<Pc = [exp( - iHlr')]¢J = [exp( - iKH2r')]¢J, 

and requiring 

HI¢J = KH2¢J, 

as in Eq. (7). 

(13) 

Hence in the present spin ® unitary-spin scheme the 
mass parameter K is directly fixed as eigenvalue ofEq. (13), 
for example K = S = Ij + ~I forj = ;,~, ... as before. In the 
latter case, 

mJ =j(j + 1) +! = ¥,§(, .... 

This result resembles that ofBarut and Bohm8 for a so-called 
deSitter "rotator," which, however, stems not from 0(3,2) 
but from 0(4,1), and refers not to a particle but to a compos
ite system. 
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Properties of noninteracting vortices in a class of models which generalize the Ginzburg-Landau 
model of superconductivity are described. Previous results of existence and uniqueness for 
solutions to the first-order equations are extended to cover the case in which the gauge photon and 
the scalar meson become massless, when long range interactions exist. Several properties of the 
solutions are also discussed. With some assumptions, and with restrictions on the class of models, 
all finite-energy solutions of the second-order equations are shown to be solutions of the first
order equations. The second-order equations are formulated in a gauge invariant way, resulting in 
a second-order elliptic system of two coupled nonlinear equations, which completely determine 
all gauge invariant quantities. 

PACS numbers: 11.15. - q, 74.20.De 

I. INTRODUCTION 

Finite-energy solutions in field theories are of impor
tance because they serve as good starting approximations for 
the quantum field theory. For nonabelian gauge theories in 
three space dimensions these solutions are magnetic mono
poles, and detailed properties of these monopoles and their 
interactions are obtained from a study of the relevant field 
equations. The simplest of the gauge theories with nontrivial 
finite energy solutions is the abelian Higgs model in two di
mensions, for which the static equations are the Ginzburg
Landau equations of superconductivity. A detailed study of 
the static solutions (vortices) has been undertaken in Refs. 1-
3. Of particular interest is the noninteracting case when the 
coupling constant A. assumes a critical value (A. = 1); for this 
value, static solutions exist which describe vortices located 
at arbitrary positions in the plane. Evidently, the opposing 
forces due to the massive gauge photon and the scalar (Higgs) 
meson cancel exactly. 

In Refs. 4 and 5 a model has been described which gen
eralizes the Ginzburg-Landau equations by incorporating 
into the model an arbitrary nonnegative function F (It,h I) of 
the scalar field t,h. This generalization is of interest because it 
preserves the noninteracting nature of the vortices; proper
ties of the Ginzburg-Landau equations are revealed to be 
special cases of similar properties for the general system. 
Solutions can be found by solving three first order equations, 
and in Ref. 5 solutions were not shown to exist which de
scribe, as for the Ginzburg-Landau equations, vortices lo
cated at arbitrary positions in the plane. 

In this paper we extend our previous analysis of the 
generalized system. First, we strengthen results5 on the exis
tence and uniqueness to include a class of solutions of parti
cular interest. As mentioned above, in general the class of 
models we consider share features similar to those of the 
Ginzburg-Landau theory, which appears as the special case 
F(It,h 1)=1. An exception arises when F(It,h Il assumes an 

asymptotic value F (1), which is zero. The masses of the pho
ton and the scalar meson, which are equal for the noninter
acting theory, are given by the value of F(l) so that for 
F (1) = 0 we have massless particles. Insteady of the short
range interaction experienced by the massive particles, we 
now have long-range interactions, with the fields decaying to 
their asymptotic values according to an inverse power law. 
In Sec. III we demonstrate the existence and uniqueness of 
solutions to the first-order equations under very general cir
cumstances, including also the massless case, and dispensing 
with the assumptions of Ref. 5, excepting, of course, the fin
ite-energy condition. Here we draw on the results of Benilan, 
Brezis, and Cranda1l6 and recent work by Vazquez,7 which 
investigates equations of the form 

-..::1u+,8(u) 3 g on RN
, (Ll) 

where,8 (u) is a maximal monotone graph andg is a measure. 
This equation is precisely of the type which appears in Sec. 
III. Also discussed in Sec. III are several properties of the 
solutions, including asymptotic estimates. 

Now, we turn attention to the full second-order equa
tions obtained by varying the Lagrangian for the generalized 
model. We pose the question as to whether all finite-energy 
solutions of the second-order equations are also solutions of 
the first-order equations. For the Ginzburg-Landau theory 
the answer is in the affirmative,2.3 and we extend this result, 
using maximum principle type arguments, to the general 
case provided some assumptions are made on F(lt,h I). One 
assumption is a growth condition on F, which enables us to 
conclude that 1 t,h 1 is bounded, and another assumption, F> 0, 
is also necessary but excludes the massless case. A conven
ient feature ofthe abelian gauge theory under consideration 
is that the gauge covariant equations are readily expressible 
in gauge invariant form; we can write a closed second-order 
system of equations for the two gauge invariant quantities 
It,h 1 andJ, where/is the Maxwell field tensor. From the solu-
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tions for I and I tP I the gauge potential A can be constructed in 
a suitable gauge using Maxwell's equations. The gauge in
variant system is derived in Sec. IV and the equivalence of 
the first- and second-order equations demonstrated in Sec. 
V. The proofs follow the same strategy as in Refs. 2 and 3 but 
require modification, particularly with the application of the 
maximum principle. The difficulty in generalizing the proofs 
is the appearance in the field equations of a term which lies in 
L I(R2) [see Eq. (2.6)], and for which a priori estimates are 
difficult to obtain. However, first we discuss in Sec. II some 
properties of the model. 

II. THE MODEL 

Define the energy functional4.5 

E= I U(Fij)2+!F(ltP1)ID;tPI2+!W2], (2.1) 

where the integral is understood to be over R2,F(ltP Il is non
negative, and w is defined for each F according to 

w(ltP Il = t sF(s) ds. (2.2) 
JI~I 

The field tensor FA is given in terms of the gauge potential 
A = A;( x) dx; as follows (for notation see Jaffe and 
Taubes3

): 

FA = dA =! Fi" dx; Adx j = ~(V;Aj - VjA;) dx; Adx j , 
~ (2.3) 

and the covariant derivative by 

DA t/J = D;tP dx ; = (V; t/J - iA;tP ) dx ;, (2.4) 

where t/J is a complex valued function on R2. The Ginzburg
Landau energy functional is recovered by choosing F = 1, in 
which case the potential !w2 reduces to the usual t/J 4 interac
tion. Notice that we have set the electric field potential Ao' 
equal to zero. This follows in fact from the requirement of 
finite energy, E < 00, provided that F (1) > 0 (see also Julia 
and Zee8

). The particle masses m can be determined heuristi
cally by identifying the coefficients of the quadratic terms in 
the fields with m2

, and we find m2 = F(I), where m is the 
mass of both the gauge photon and the Higgs meson; these 
masses are equal provided the coupling constant A in the 
interaction AW2/2 is equal to 1, as in Eq. (2.1). For F(l) = 0, 
then, the photon and meson are massless; this is verified by 
the asymptotic estimates of Sec. III (see Proposition 3.7). 

The variational equations which follow from (2.1) are 

dl + It/J IFJ = 0, (2.5) 

*DA *(FDA t/J) + wFt/J - !F'¢ IDAt/J 12 = 0, (2.6) 

where IDA t/J 12 = *(DA t/J A * DA tP), 

1= - *FA =F21, (2.7) 

¢ = t/J /It/J I and J is the dual of the Noether current: 

(2.8) 

Equations (2.5) constitute Maxwell's equations, coupled to a 
complex scalar field t/J determined by (2.6). Notice that the 
generalization of (2.1), by including the arbitrary function 
F (It/J I), has not changed the form ofMaxweU's equations; by 

putting t/I = t/J,fE, Eqs. (2.5) take the usual form 
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(2.9) 

Observe that when F (1) = 0, rp will attain an asymptotic val
ue of zero, and that in this case there is no symmetry break
ing if we regard rp as the fundamental field. However, (2.6) is 
of a form different to that when F = 1, in particular the term 
F'¢ IDA t/J 12 on the right-hand side is new. 

The space of continuous gauge potentials with finite 
energy separates into disjoint sectors labeUed by the vortex 
number n,3.9 where 

n = _1 If, 
21T 

(2.10) 

and is an integer. In each such sector the energy is bounded 
below, 

E>21TW(0) In I. (2.11) 

This follows from the decomposition, valid for sufficiently 
smooth fields, following Bogomol'nyi,4.10 

E =! I HI ± W)2 + FIJ ± d ItP 1121 ± 21TW(0)n. (2.12) 

The lower bound is therefore attained if and only if 

1= w, J = d It/J I for n > 0, (2.13a) 

or 

1= - w, J = - d ItP I for n < O. (2.13b) 

These equations can be reduced to a single equation for ItP I, 
by eliminating the potential A (see Refs. 2-4): 

Inl 
.:i loglt/J I + w(ltP I) = 21T L 8 (x - a;), (2.14) 

;=1 

where the 2n parameters (a i
) are the locations of the n vorti

ces in R2. The gauge fields are constructed from 

A = - da + *d (loglt/J I), (2.15) 

where a( x) is a gauge parameter. Therefore, from a solution 
of (2.14), supplemented by the requirement of finite energy, 
we obtain a solution of Eqs. (2.5) and (2.6). 

Let us also make the following observations. Since solu
tions of (2.14) satisfy 

E = 21TW(0) In I, (2.16) 

we must demand that w(O) < 00. This excludes functions F 
with behavior that is too singular at It/J I = 0, as is evident 
from (2.2). This includesF= ItP 1-2

, i.e., w = -loglt/J I, for 
which (2.14) is linear. Evidently this corresponds to the free 
field case for theories of the type in Eq. (2.1), in which the 
kinetic and potential terms are related by the definition (2.2). 
This is made manifest by defining a new field u = - 10gltP I, 
and the fields A and u are then seen to be decoupled in a 
suitable gauge. 

Note also that the Hamiltonian (2.1) retains its form 
under the transformation 

(2.17) 

together with the redefinition It/J 1-4F(It/J 1-I)-F(It/J I). This 
provides a way of defining finite-energy vortices in a model 
with singular behavior at It/J I = O. For example, F = It/J 1-4 

violates w(O) < 00 but under (2.17) the Hamiltonian (2.1) is 
transformed into the Ginzburg-Landau model, with F == 1. 
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III. EXISTENCE AND UNIQUENESS OF VORTEX 
SOLUTIONS 

We have seen that vortex solutions for the models under 
consideration can always be constructed from solutions of 
Eq. (2.14). Let 

U= -logl¢l, {:1(u) = w(e- U
). (3.1) 

From the definition (2.3) for w, the condition hO, and as
suming local integrability for sF (s), {:1 is continuous mono
tone nondecreasing on R and hence maximal monotone. 
Equation (2.4) becomes 

Inl 
-Llu + {:1(u) =21T L D(x-ai ). (3.2) 

;=1 

This equation is of the form 

- Llu + {:1 (u) 3 g, (3.3) 

which is studied in Refs. 6 and 7, where{:1 is a maximal mono
tone graph in lit In Ref. 6, gEL I(R2), and in Ref. 7 results are 
extended to the case whereg E vU'(R2), the space of bounded 
Radon measures in R2, This latter result is obtained by ap
proximating g E vU'(R2) with a sequence I gn } such that 
gn E C'" (R2)nL I(R2) and using the results of Ref. 6. In order 
to state the existence results, we define first the Marcin
kiewicz space M p (R2) and then the exponential orders of 
growth of {:1: 

Definition 3.1: Let u be a measurable function on R2, 
1 <p < 00 and lip' + lip = 1. Then IlullMp 
= minlc E [O,oo]ISn lu( x)1 <c(meas fl)l/p' for all measura

ble fl C R2) . MP (R2) is the set of measurable functions u on 
R2 satisfying liuliMP < 00. 

Definition 3.2: The exponential orders of growth of a 
maximal monotone graph {:1 at infinity are defined as 

a+({:1) 

= {sup{a 'f" {:1(s)e- as ds= oo} if supD({:1)= 00 

00 otherwise, 

a-({:1) 

= {sup{a l - LX> {:1( - s)e-
aS 

ds = oo} 

00 otherwise, 

if inf D ( {:1) = - 00 

where D ({:1) is the domain of {:1. 
It is assumed for (3.3) that 

o E {:1 (O)nInt {:1 (R). (3.4) 

Observe that the condition 0 E Int {:1 (R) implies a ± >0. De
fine also the Sobolev spaces W k,p (fl), w ~~ (fl ) in the usual 
way. We need to consider only g E vU'(R2) of the form 
g = ~t= ICiD( x - ai),ai E R2, where the Ci E R are the point 
mass coefficients. We can now state: 

Theorem 3.3 (Vazquez?): Let{:1 have finite exponential 
orders and let g E vU'(R2). There exists a U E W t.;! (R2) with 
IVul EM2(R2) and a w EL 2(R2) such that w E{:1(U) a. e. and 
Ll u = w - g if and only if every point mass coefficient of g, 
ci , is such that c- <A <c+, where the critical values are de
fined by c ± = ± 41T / a ± . In addition, the solution is 
unique of{:1-I(O) = !O), or Sg#O. 
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This theorem enables us to generalize the results of Ref. 
5; we can now include the case F (1) = 0 of massless particles 
and dispense with other assumptions as well. In order to 
apply the theorem and its further consequences, we note first 
from (3.1) that 

{:1(0) = O. 

We also demand 

o <{:1 (00), 

and, because of finite energy [see (2.16)], 

{:1(00) < 00. 

A further natural requirement is 

{:1- 1(0) = ! OJ, 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

for this is equivalent to demanding that the potential term 
w2/2 in the expression (2.1) should have a unique minimum, 
which will lie at I¢ I = 1. This ensures that the symmetry 
breaking, and the asymptotic value of I¢ I, are uniquely de
fined, and excludes functions Fwhich are identically zero in 
a neighborhood of I¢ I = 1. However, solutions still exist and 
are unique even if(3.8) is violated, and the asymptotic value 
of I¢ I is then smallest I¢ I for which w( I¢ I) = O. 

Since in our application g>O, it follows that any solu
tion u satisfies u>O (Ref. 7, Proposition 2). Together with 
(3.5) and (3.6) this fact ensures that (3.4) is satisfied. Further
more, (3.7) implies that the exponential order a+ takes the 
value O. a- takes a value which depends on F; but, since 
a- >0, c- = - 41T/a- <0, and we find the conditions 
c- <ci <c+ of the theorem always to be satisfied. We con
clude therefore that a solution to Eq. (3.2) exists, and is 
unique. 

Remarks 3.4: (i) The unique solution has finite energy. 
Given I¢ I, we construct the gauge potential according to 
(2.15) and the vortex energy (2.1) is given by [using 
F = w2,IDA ¢ 12 = 2(VI¢ In 

E = f (F(VI¢ W + w2
). (3.9) 

In order to demonstrate that E < 00, we apply Lemma A.l of 
Ref. 7, which extends Lemma A.I3 of Ref. 6. Since{:1(u) 
E L I(R2) there is a k> 0 such that meas[u > k] 
< 00. Provided {:1 E C I(R), at least on [0,00 ), we can choose 

p(u) = {:1 (u)/{:1 (00); then p E C 1 (R)nL 00 (R) is nondecreasing, 
and satisfies !PI < 1. The equation 

f p'(u)IVuI 2 + f p(u).B(u)<21Tlnl (3.10) 

from Lemma A.l, Ref. 7, then shows that E < 00. In addi
tion, SLlu = 0 shows that Sw = 21Tlnl, i.e., the solution de
scribes n vortices. 

(ii) The regularity of the solution depends on the proper
ties of F. Since I¢ 1<1 (u>O), the regularity of the solution 
depends only on that of F(I¢ I) on [0,1]: 

Proposition 3.55
: If the first k derivatives of F(I¢ I) are 

bounded on the interval [0,1], then I¢ I E Ck + I (R2). 
(iii) If I¢ I E C 2(R2), an application of the strong maxi

mum principle using I¢ 1<1 shows that I¢ I < 1 (u > 0). 
(iv) Define {:1 ~ I(S) = sup( t:{:1 (t) 3s}. Then we have: 
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Proposition 3.6 (Vazquez,7 Lemma 4): Letg E ~(R2) 
have support in B R (0), R > 0 (choose R > maxi [ lai I )). Then 
u is locally bounded outside B R (0), and we have the estimate 

u( x), - 2lnllog(1 - R /Ix!) + P :;: 1(2Inl/R (21xl - R I). 
(3.11) 

Thus, if P - 1(0) = [0), u converges uniformly to 0 at infinity. 
It is of interest to improve the estimate (3.11), in particu

lar to demonstrate the different behavior of the massive 
[F(l)#O] and massless [F(l) = 0] models. The former will 
have an asymptotic dependence u - exp( - m Ix I), where m 
is the mass, while for the latter u will decay more slowly, 
u -Ix I - P for some exponent p, as is shown in the following 
estimates. Let us note that more precise asymptotic esti
mates, for P(u) of the formp(u) = ulul q 

- I have been given 
by Veron. 11 

Proposition 3.7: (i) Suppose Fis continuous on [15,1]; F' 
exists on [15,1] for some 0 <15 < 1, andF(l)#O. Then for any 
€ > 0 there exists M < 00, R (€) > 0 such that 

O<u(x)<Mexp[ -lxl(~F(I) -€)], Ixl>R(€). 
(3.12) 

(ii)SupposeF(n - II, n;;. 1, is continuous on [15, 1], andF(nl 

exists on [15,1] for some 15>0, withF(i-I I(I) = 0, i = 1, ... ,n, 
F(nl (1) # O. Then there exist 0< MI ,M2 < 00, R > 0 such that 

M l lxl- 2In ,u(x),M2Ixl- 2In , Ixl >R. (3.13) 

Proof (i) From Proposition 3.6, for sufficiently small 
15 > 0 there exists R (D) > 0 such that 0 < u < 15, for Ixl > R. 
Using Taylor's theorem for P (u) on [0,15], there exists 
S E [0,15] with 

P(u) =P(O) + uP'(s) 
= uF(e-S)e- ZS 

;;'u(F(I) - €) 

by continuity of F. Hence, for Ixl > R, 

.Ju;;,u(F(I) - €). (3.14) 

Now, since u E C 2(R2) we can apply Proposition 7.2 of Ref. 3 
to obtain the result. 

(ii) As in (i), apply Taylor's theorem toP (u) for u E [0,15]: 

P(u)=[un+lj(n+l)!]pn+l(s), SE[O,D]. (3.15) 

Hence Clun + I ,p (u),C2u
n + I, for constants 0 < CI'C2• 

Define, for Ixl ;;.R, v = M Ixl- 21n , satisfying 

(3.16) 

Now apply the strong maximum principle to u - v, to obtain 
upper and lower bounds on u( x), Ixl > R. For example, 
choosing 4M- n /n 2 ,CI , 

.J (v - u),CI(vn+ I _ un+ I) 

= C(x)(v - u), 

where 

( 
n+1 n+l) 

O,C( x) = CI V - u ELOO (R2). 
v-u 

(3.17) 

Apply the maximum principle to (3.17) on { Ixl > R J, noting 
that we can choose M sufficiently large to ensure that 
v - u Ilxl = R ;;.0, to obtain v - u ;;.0, for Ix I > R. Similarly we 
obtain the lower bound. 
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For the massless case, it is not difficult to find examples 
which allow explicit solutions. A simple example is the fol
lowing, in which the polynomial decay for the massless fields 
is evident: 

Example 3.8: 

F= 811- It,b 1
2 1. (3.18) 

The unique solution to (2.14), for n = 1, is 

(3.19) 

The gauge potential A (in the Coulomb gauge), the field!, 
and the vortex mass E are readily calculated using formulas 
such as (2.15) and (2.16), and we find 

A = - [lxlz/(1 + IxI 2
)] dO, 

/= w = 2/(1 + IxI 2
), (3.20) 

E=41T. 

IV. SECOND-ORDER EQUATIONS 

Following the existence of solutions which achieve the 
lower energy bound shown in (2.11), a natural question arises 
as to whether these solutions exhaust all finite-energy solu
tions. To answer this, we need to return to the second-order 
equations (2.5) and (2.6). By using maximum principle type 
arguments, and by modifying the proofs in Ref. 3, we find 
that, with some assumptions, no new solutions exist. First 
we simplify Eqs. (2.5) and (2.6), casting them into a gauge 
invariant form which requires us to solve only two coupled 
equations, for/and It,b I· The gauge covariance ofEqs. (2.5) 
and (2.6) implies that there are only three independent equa
tions, for I t,b I and for the two components of A. The equation 
for w(lt,b I), which follows directly from (2.6), is 

.Jw = pw - yF21t,b IZIDA t,b 12, 

where 

p=FIt,b12, 

_ (Flt,b 12)' 
y- 2F21t,b 13 

(4.1) 

(4.2) 

From Eqs. (2.5), which are second order in the potential A, 
we can derive a second-order equation for/by differenti
ation. We find [using the definition (2.8) for J] 

.J/=p/-yFz lt,b12i*(DAt,b/\ DAt,b). (4.3) 

By squaring (2.5) and using 

IJ 12 = IDA t,b 12 - (Vlt,b 1)2, (4.4) 

we find 

IV/1 2 =F21t,b 121DAt,b 12 - (Vwf. (4.5) 

Again, using the definition of J, 

(J,d It,b I) =! i*(DA t,b /\ DA t,b ), (4.6) 

and we obtain the following gauge invariant system, involv
ing only the unknowns/and It,b I: 

.J/ - p/ + 2yVfVw = 0, 
(4.7) 

.Jw - pw + y[(V/)2 + (VW)2] = O. 

The boundary conditions for (4.7) are determined by the fin-
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ite-energy requirements, which can be written as follows, 
again using (4.5): 

f 12 < 00, f w2 < 00, 

(4.8) 

f (V/)2 f (VW)2 
Flt/J IZ < 00, Flt/J IZ < 00. 

The system (4.7), (4.8) forms a closed elliptic system fori 
and It/J I, and our aim is to find all solutions ofthis system. 
Evidently, solutions can always be obtained by putting 
1= ± w, with w determined by (2.14). With the solutions of 
(4.7),(4.8) we can construct the gauge fields using Maxwell's 
equations (2.5). In order to see this, put 

(4.9) 

where a( x) is a gauge parameter, necessarily multivalued for 
nontrivial solutions.3 Equation (2.5) can be written 

A = -da - *dlfFIt/J 12. (4.10) 

Therefore, given/and It/J I as determined by (4.7),(4.8), we 
need only to choose a gauge to be able to write down the 
solution for A. Ifwe can determine that all solutions satisfy 
1= ± w, we recover Eqs. (2.15); that is,J = ± w together 
with Maxwell's equations imply the remaining first-order 
equations J = ± d It/J I, which appear in Eqs. (2.13). 

Using (4.10), the equation for I can be cast into a useful 
divergence form: 

(4.11) 

where g( x) = [V l' V z]a( x) is singular, being nonzero only at 
points where It/J I = 0. This is evident from Eqs. (4.9) and 
(4.10) since, in order that (A,t/J ) be sufficiently smooth, the 
zeros of It/J I should coincide with the points where a is dis
continuous. In the next section (Proposition 5.2) we demon
strate, following Ref. 2, that we can always choose a gauge in 
which A is smooth, provided F is sufficiently smooth and 
assuming local regularity properties of (A,t/J ). It is worth re
marking that Eqs. (4.7) and (4.11) for/and It/J I can be ob
tained as the Euler equations of the following functional 

.af(f,It/J I): 

.af(f,It/J I) = f [(V/f - (Vw)z + P - WZ - 2/g]. 
, Flt/J 12 

(4.12) 

Next we describe a virial theorem, following Ref. 3. De
fine the Maxwell stress tensor 

Tij = {ViWVjW - Vi IVj 1+ ! tJij [(V/f + (.:lw)Z] lfF It/J 12 
+! tJij(fZ - w2). (4.13) 

It follows from (4.7) that 

VjTij=O, (4.14) 

and from (4.8) that 

f ITijl < 00· (4.15) 

Proposition 4.1: Let (f,w) be a solution to Eqs. (4.7),(4.8). 
Then the stress tensor (4.13) satisfies 

(4.16) 
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Proof See Jaffee and Taubes,3 p. 31. 
As a consequence, we have the following useful rela

tion: 

(4.17) 

V. EQUIVALENCE OF FIRST- AND SECOND-ORDER 
EQUATIONS 

We now require several assumptions on the behavior of 
F, and also assume local regularity of (A,t/J ). We show then 
that It/J I is bounded, and, following Taubes,2 show that, with 
a suitable choice of gauge, (A,t/J) is smooth. This will imply 
that land ware continuous, and from (4.7),(4.8) we then 
show that w> I I I; combined with (4.17) this impliesl = wor 
1= - wand, as explained above, this is sufficient to demon
strate the equivalence of the first- and second-order equa
tions. The assumptions on Fare 

(i) F>O, (5.1) 

(ii) there exists a constant K> 1 such that for all s > K, 

F(s) + ! sF'(s»O, (5.2) 

(iii) FEe 1[0,00). (5.3) 

The first condition is used to obtain a lower bound on F, 
although it excludes the massless case. The second condition 
is used solely to show that 1It/J II 00 <X; it means that F (S)s2 is a 
nondecreasing function of s, for s > K, and is satisfied by any 
positive polynomial F and by any function Fwhich increases 
fors>K. Using (5.3), It/J I<KimpliesthatF(It/J I) is bounded 
above and below: 

(5.4) 

for finite constants k) and k2• Similarly, becauseF' is contin
uous, 

(5.5) 

The third condition (5.3) also ensures that the solutionsf, 
WEe 2(R2), and so in fact are classical solutions (see Proposi
tion 3.5). 

We also assume that the components of A belong to 
W l~(R2), and that It/J I E W~~(R2). This last assumption is 
stronger than that used by Taubes2 and has been necessary, 
in order to ensure thatl and ware sufficiently smooth, be
cause of the difficulty posed by the extra L ) term in the field 
equations (2.6). This assumption implies that It/J I is contin
uous. 

Proposition 5.1: With the above assumptions, It/J I <K. 
Proof Let 

v = t dsF(s). 
)14>1 

v satisfies the distributional equation 

(5.6) 

.1v = It/J IFw - (F Iit/J 1+ W')IDA t/J 12 + (F flt/J IHVIt/J If 
(5.7) 

DefinebR (x) = b (lxlfR), whereO<b (Ixl)< 1 isaC;' mono
tonically decreasing function with 

b (Ixl) = {I, 
0, 

(5.8) 
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Define 1] E W ~.2(B 2R (0)) by 

1] = bR max(O,It,61 - K). (5.9) 

Equation (5.7) implies 

l'R [V1]'Vv + F·It,6lw1] - (1]/It,6I)(F + !1t,6IF ')IDA t,612 

+ (1]F 11t,6I)(VIt,6 W] = 0, 

where fl2R = ! x E JR21 1t,6 I( x) > K )nB 2R (0). Observe 
that all terms are finite, due to the local regularity assump
tions and finite energy. Using definitions (5.6) and (5.9) and 
collecting terms, 

l'R bR! [(1t,6I-K)/It,6I](F+ !1t,6IF ')IDA t,612 

Let 

+ (KFllt,6 IHVIt,6 1)2 -FIt,6lw·(It,6I-K)) 

= - f [F'(lt,6I- K )VIt,6I.VbR ]. JnZR 

G(It,6I)= ( F(s)(s-K)ds. 
)I~I 

For 1t,61 >K>l, 

f'~' 
IGI<)I F(s)(s+K)ds 

f'~' «K + 1))1 F(s)sds = (K + l)lwl· 

(5.10) 

(5.11) 

(5.12) 

The integral of the left-hand side ofEq. (5.10) is nonnegative 
[using (5.2)], and with the definition (5.11) we obtain 

lR {[(It,61 - K)/It,6I](F + ~1t,6IF')IDA t,612 

+ (KF 11t,6IHVIt,6 W - Fw·It,6I(It,61 - K)) 

< f VbR.VG 
)02R 

< [ l'R G 2
] 1I211AbR ilL' 

< [(K + 1)21R ] IIAb IIL'lIwIIL" (5.13) 

where we have integrated by parts, used HOlder's inequality, 
the estimate (5.12), and the scaling properties of bR • Since 
flR c;;,flR· for R '>R we conclude thatflco has zero measure 
and hence 1It,6 II co <K. 

Next, with the above assumptions, we prove (following 
Taubes2) that it is always possible to choose a gauge in which 
the potential A is smooth. 

Proposition 5.2 (Taubes2): Let (A ,t,6 ) be a weak solution of 
Eqs. (2.5) and (2.6). Then there exists a pair (A,~) related to 
(A,t,6 ) by (A,~) = A - da,t,6eia

), where the components of 
A E C I(JR2), ~ E CO(JR2) and a E W 2

•
2(fl) for all open sets 

fl C JR2 with compact closure. 
Proof We need only outline the proof, which is to be 

found in Ref. 2. Bya weak solution A ofEqs. (2.5) we mean a 
potential A with locally integrable components, and locally 
integrable first derivatives, satisfying 

(5.14) 
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whereb has components in W 1.2(JR2) and 1t,61 E Wf~(JR2). We 
determine the gauge parameter a( x) which transforms A 
into the Coulomb gauge, in B = B2(0); that is, we choose 
a E W 2

•
2(B) as the unique solution of 

Aa = *d*A, alaB = O. (5.15) 

Then, using 1t,61 <K, the standard regularity estimates (Mor
rey, 12 Chap. 6) and the Sobolev imbedding theorem,13 we 
find that A = A - da is continuous in B. Since we have as
sumed that 1t,6 I E W 2

•
2(B) we can iterate, using FEe 1[0, 00), 

to obtain that A and its first derivatives are continuous in B. 
This means that! = - *dA is continuous in B. Further iter
ations, using also Eq. (2.6) for t,6, are possible if extra smooth
ness is assumed for F. Since the origin was chosen arbitrarily, 
we find that/, and by assumption 1t,61, are continuous in JR2. 
By a patching procedure we can also construct a such that 
a E W 2

•
2(fl) for any bounded set flCJR2. 

Let us now return to the gauge invariant formulation of 
the second-order equations (4.7). By adding and subtracting 
these equations, we obtain 

Liu-pu+r(Vu)2=0, (5.16) 

which holds for each of u = w + /, u = w - fUsing 1t,6 I <K 
we find that F 1t,612 is bounded above and hence, from (4.8), 
IIVFIIL' < 00, IIVwIIL2 < 00. This implies that/, 
WE W 1.2(JR2), i.e., u E W 1.2(JR2). A consequence of this and 
(5.16) is that u>O. This is straightforward to prove ifF is such 
that r>O, by application of the maximum principle, 14 as in 
Refs. 1 and 2. For more general r we note: 

Lemma 5.3: With the above assumptions on F, r( 1t,6 I) is 
bounded below. 

Proof From (4.2), for any E> 0, 

r> [(F')2/16F41t,612][ 16F3/(F')2 - E] - liE. 

Now, 

16F3/(F')2>k> 0, 

for some positive constant k, since by (5.4) and (5.5) IF'I is 
bounded above, and F>kl for some kl > O. Hence, by choos
ing E sufficiently small, 

r> -c, (5.17) 

for some c > O. • 
Lemma 5.4: The function (eV 

- 1) for v E W 1.2(JR2) is 
square-integrable on L 2(JR2). 

Proof See Taubes,1 Lemma 4.6. 
Using Lemma 5.3, we obtain 

Liu-C(VU)2_ pU <0. (5.18) 

Proposition 5.5: For u E W 1.2(JR2)nCO(JR), c>O,p( x»O, 
and bounded, (5.18) implies that u>O. 

Proof Define the test function v E W ~.2(B R (0)) by 

for u <0 
otherwise, 

(5.19) 

where bR is the cutoff function defined above [see Eq. (5.8)]. 
Since v is compactly supported and v>O, we can multiply 
(5.18) by v and integrate by parts: 

- f Vv·Vu - c f vlVul 2 - f puv<O. (5.20) 
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Using (5.19) and collecting terms, 

c r (VU)2- r pu(e- CU _l) 
JaR JaR 

(5.21) 

whereflR = I xEJR2Iu(x)<OjnBR (0).Aboundforthe 
right-hand side of(5.21), using Holder's inequality, is 

I LR (e-
CU 

- I)Vu·VbR I 
.;;;( IIVb 1100 /R lIlVullL,lle- cu 

- l1IL2. (5.22) 

Since u E WI.2(JR2), we have IIVullL 2 < oo,lle- cu 
- l11L' 

< 00 by Lemma 5.4. Taking lim inf R-oo, we find that fl 00 
has zero measure, i.e., u;;;,O. 

Since u can be either w + lor w - J, we find w;;;, I I 1;;;,0. 
Equation (4.17) implies, using continuity,f2 = w2

, or 
I( x) = ± w( x). Substituting into Eq. (4.11), we find 

.:llogl¢ I + w = 0, 11,6 1#0. (5.23) 

Lemma 5.6: Either w=O or w> O. 
ProofSincewehaveassumedFE C 1[0,00),11,6 I E C 2(JR2) 

(see Ref. 5, Proposition 3.5); also w;;;, I II implies 11,6 I.;;; 1. Now 
apply the strong maximum principle to (5.23) on the set 
I x 111,6 I ( x) > 0 j to complete the proof (for details, see Ref. 5, 
Lemma 5.2). 

Finally, using Lemma 5.6 and the continuity properties 
of/and was in Ref. 3, we deduce that/( x) = ± w( x) holds 
with the same sign everywhere, this sign depending on the 
sign of n by (2.10): 
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I=w if n>O, 
(5.24) 

1= - w if n<O. 

As explained in Sec. IV, Eqs. (5.24) imply the first-order 
relations (2.15), which together with an analysis of the zeros 
of 11,6 I (see Refs. 3, Chap. III) imply Eq. (3.2), which was 
investigated in Sec. III. 
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In this paper we shall construct the Lagrangian of a gravitational Poincare gauge theory using 
degeneracy in the Euler-Lagrange expressions as a primary restriction. Such a generalization of a 
Lorentz gauge theory requires the addition of not only a translation gauge connection, but also a 
Goldstone field. The intractability of the field equations is lessened somewhat by means of a 
particular choice of gauge which acts like a Higgs mechanism. With one further assumption a 
complete reduction to the corresponding Lorentz theory can be made, and the Einstein vacuum 
field equations with cosmological term are recovered. 

PACS numbers: 11.30.Cp, 11.l5.Kc, 12.25. + e, 04.20.Fy 

1. INTRODUCTION 

Several authors 1 have sought to show how their gravita
tional field equations can be characterized as those of a 
unique Poincare theory. In most instances the Poincare 
transformations involved are actually coordinate transfor
mations with parameters from the Poincare group and not 
true internal gauge transformations. 

It was shown in an earlier paper2 how the Einstein vacu
um field equations with cosmological term could be derived 
as a consequence of the Euler-Lagrange equations of a Lor
entz gauge theory which is in some sense unique. Since the 
Lorentz group is a subgroup of the Poincare group, we could 
also say we have a Poincare gauge theory. Nonetheless, the 
absence of any reference to the translation subgroup in the 
determined Lagrangian should stop us from using this ter
minology. The aim of this paper is to construct a true Poin
care gauge theory by generalizing the Lorentz theory. 

We shall make use of the formalism developed in two 
previous papers. 2

,3 Thus, a Poincare gauge transformation is 
characterized by associating at each point of the space-time 
manifold M (local coordinates Xi, i = 1,00.,4) an element 
u = U(Xi) of the connected component of the identity of the 
Poincare group. The coordinates of U(Xi) relative to a canoni
cal chart of the first kind4 are uaP (Xi) = - upa(xi) and ua(xi), 
a,f3 = 1, ... ,4. 

To generalize the Lorentz gauge theory to a true Poin
care gauge theory, we shall introduce not only a translation 
gauge connection A f, but also what turns out to be a Gold
stone field5 cP a. As was shown in Ref. 2, the inclusion of A f 
in the formulation of the variational principle without cP a is 
futile since the invariance identities eliminate A f when the 
Lagrangian is actually constructed. The insertion of cp a 

leads to only one additional term to the Lorentz Lagrangian, 
viz., 

d ijkh I' a I' P 
e 'TJaPJi jJk h' 

where d is an arbitrary constant, ~jkh is the four-dimensional 
Levi-Civita symbol, 

'TJaP=diag( - 1, - 1, - 1,1) 

and/; aj is defined in terms of the Poincare gauge curvatures2 

FaP. and Fa. as 
l} l J 

I'a -FaP Ihr+Fa Ji j= i j'TJpr'V i j' 

A simplification of the resulting field equations is ob
tained by means of a particular choice of gauge which acts 
like a Higgs mechanism. 5 In this gauge cp a vanishes and A f 
is no longer regarded as a translation gauge connection but 
as a set of vectors. 

To check the validity of the theory, we find that we can 
reduce it to the Lorentz theory by imposing 

cp alii = Kh f, 
where a double bar signifies the double covariant deriva
tive, 2,3,6 K is an arbitrary constant, and the h f are the compo
nents of the orthonormal tetrad (or vierbein). 

2. PRELIMINARIES 

With a true gauge theory the gauge potential should be 
a connection in a principal fiber bundle,7 In particular, the 
group acts freely on the fiber, i.e., only the action of the 
identity leaves each element of the fiber invariant. Thus we 
violate this condition when the action of the Poincare group 
is restricted to being 

(2.1a) 

where a~ is a Lorentz matrix and a prime indicates the 
gauge-transformed quantity. 

We need to introduce an additional object in the man
ner of Pilch8 whose components cp a undergo the Poincare 
gauge transformation 

cpP=a~ cp,a+aP, (2.1b) 

where aP characterizes a translation. A coordinate transfor
mation leaves cp a invariant. When a canonical chart of the 
first kind is used, the gauge transformation laws (2.1) can be 
expressed2 as 

h 'a i = .?'P h f 
and 

cp la = .?'P cpP - .?'PI~ ur, 

where 

.?'P=exp( - uar'TJrp) 

and 

(2.2) 
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In addition to (/J a, we shall also make use of the object 
with components 

(/Ji h~ (/Ja, 

which enables us to put the transformation laws (2.2) into the 
form 

[~l = [_:j~:y ~] [~l (2.3) 

where h ~ is the inverse of h f and ~ denotes the inverse. The 
purpose of this is to take advantage of the formalism intro
duced in a previous paper3 where we now make the identifi
cation 

Under a coordinate transformation Xi = xi(xi) with 

Ji=JX
i 

1 Jxj 

and 

J -detJj >0, 

we have 

[ h~]=[J;{jt ?] [h~] 
(/J I 0 J j (/Jl ' 

where we have used a horizontal bar to denote the corre
sponding quantity in the new coordinate system. 

Since pA transforms linearly and homogeneously under 
both Poincare and coordinate transformations, it is possible 
to take its double covariant derivative2,3.6 and obtain 

h ~lIa = h ~.a + L i a lh~ - A ~Yh P 1J ya 

and 

(/J Iia = (/J i.a + L i a l (/Jj + A ~h~, 

where L i a l is the Christoffel symbol of the second kind and 
A ~y is the Lorentz gauge connection. The corresponding 
commutation laws3 for the second derivatives are then 

h i hi - R i h j F py hi allab - allba - jab a - a b p1Jya 

and 

where Rj iab is the Riemann curvature tensor. It is also possi
ble to show that 

and 

m.y m.y -I'Y-FYP m.w+FY 
'P lIab - 'P IIba - Ja b= a b 1Jpw 'P a b' (2.4) 

Note that the gauge transformation law for (/J Ylla is the same 
as for h ~, i.e., 

(/J 'Ylla = 2'~ (/J '"lla' 

and we also have 
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3. DEGENERACY 

In Ref. 2 it was found that 

L - ijkh F ap F yw + ...ijkh F ap F yw 
- alE EafJyw i j k h a2~' 1Jay 1Jpw i j k h 

+ b hh i h j 1JI-'Y1JW"E F.afJ, 
1 J.lV a{3YW1J 

+ b2hh ~h~ FiaPj + ch, 

where ai' a2 , b l , b2 , and c are arbitrary constants, Eapyw is a 
four-dimensional Levi-Civita symbol, and 

h det h f, 
is the most general Lagrangian of the form 

L = L (h f; A ffJ; A f.1; A f; A f.j)' 
which has the transformation laws 

L=JL 

and 

L'=L, 

(3.1) 

and is degenerate in the sense that its Euler-Lagrange ex
pressions 

Ek=~_~(~) 
GT- JA ar Jxh JA GT 

k k.h 

and 

are such that 

(3.2) 

JEk JEk 
__ G __ O, and __ G_-O. 
JA ':'P

h 
JA a

h It} I.} 

We shall now generalize this result to a Lagrangian which 
includes (/J i, i.e., 

L = L (h ,:,. (/J i;A aP. A aP. A a. A ':'.) 
I , I' 't)' I , 't} 

and demand the same transformation laws (3.1) and degener
acy (3.2). The construction of the Lagrangian follows closely 
that of Ref. 2 to which the reader should refer constantly. 
Also, several lemmas were proved in Ref. 2 which are re
quired here and are listed in the Appendix. 

To simplify our calculations, we shall use upper case 
Greek letters to represent all ten gauge indices, so that, for 
example, A f, ~ = 1, ... ,10, signifies the ordered pair 
(A fP.A f). The degeneracy condition (3.2) can then be ex
pressed as 

JE1 
---0. 
JA 1j h 

As in Ref. 2, this condition, together with the invariance 
identity corresponding to (4.5) in Ref. 3, implies that J 2L / 
JA 1j JA fh is totally antisymmetric in its Latin indices. 
Thus, 

(3.3) 
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where we have made use of the transformation laws of L AI 

inherited from a 2 L / aA tj aA f.h and the invariance identity 
corresponding to (4.6) in Ref. 3. Upon integrating (3.3) twice 
with respect to A tj while noting the appropriate invariance 
identities we obtain 

L - l-ijkhL F I FA + IT ij (hfL'<Pa\J;'.A 
- gt:. AI k h ; j ~ A a' ~ I , 

+ Lo(h~;<pa), 

where L ~ and Lo transform in the same way as aL faA tj 
and L, respectively. When we return to lower case Greek 
indices, we can express the above as 

L = ~jkh 1 afJyw(h ~;<pa)F; aPj Fk YWh 

+ ~jkh 1 (h fL.<p a\J;'.afJF Y apy a' ~ I , k h 
+ ~jkhLaP(h ~;<P a)F; aj FkPh 
+ 1~p(h~;<pa)FtPj +L~(h~;<pa)F;aj +Lo(h~;<pa). 

It is actually more convenient to express L in terms of/;aj 

rather than F; aj , whereby the Lagrangian becomes 

All that remains in the construction is to determine the 
structure of the various concomitants of h ~ and <p a as a 
consequence of their symmetry properties and transforma
tion laws, viz.: 

(i) Lapyw = - Lpayw = - L apwy , 

L apyw = L apyw ' 

L ~vaT1~ 1p1~1: = LaPyw; 

(ii) Lapy = - L pay , 

L apy = L apy , 

L~va1~1p1~ = L apy ; 

(iii) LaP = LaP' 

L ~v1~1p = LaP; 

(I'V) L ij - Lj; - L ij ap - - ap - - pa' 
Lij JaJb- JLab ap ; j - ap, 
L,ij 1fL 1 v = L ij . fLV a pap, 

(v) L~ = -L~, 

Lij rJb= JL ab 
a 'J a' 

L,ij 1fL =Lij· 
f.l a a' 

(vi) Lo = JLo. 

Lo =Lo· 

We begin by considering the quantity 

Bo = Bo(h ~;<P a) = LoIh, 

which has the transformation laws 

Bo=Bo 

and 

Bo =Bo· 

Expansion of (3.5) gives 
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(3.5) 

B o(1~h~;<pa - h p/~ u4» = Bo(h~;<pa). 

By taking the derivative with respect to uY and evaluating at 
the identity transformation, we obtain 

_ aBo h a = 0 
a<p a y 

and thus 

aBo = o. 
a<p a 

Lemma A 1 of the Appendix then yields 

Bo=c, 

where c is an arbitrary constant and hence 

Lo =ch. 

In a similar manner the remaining quantities are all 
independent of <p a, and we have: 

(i) L apyw = al€apyw + !a2(1Jay1Jpw -1Jaw 1Jpy), 

by Lemma A2 of the Appendix; 

(ii) L apy = 0, 

by Lemma A3 of the Appendix; 

(iii) LaP = d1JaP' 

by Lemma A4 of the Appendix; 

(iv) L ~p = hh ~h~ ifY1JvW[ bl€apyw 

+ !b2(1Jay 1Jpw - 1Juw 1Jpy)] , 

by applying Lemma A2 of the Appendix to 

Dapyw-(lIh )1JYfL h r1Jwv h i L ~p; 

(v) L~ =0, 

by applying Lemma A3 of the Appendix to 

Dapy =(lIh )1JafL h r1Jpv h iL~; 

where ai' a2 , bl , b2, and d are all arbitrary constants. 
We have thus established the following: 
Theorem 3.1: If a Lagrangian of the form 

L = L (h u.<p;. A aP;A aP. A a. AU) 
I , , I 'tj' I , It} 

has the transformation laws 

L=JL 

and 

L'=L, 

and is degenerate in the sense that its Euler-Lagrange ex
pressions satisfy 

Ek = Ek (h u·h U .'<p;.<p;. A uP;A aP;A a;A a.) 
UT err " I.}' , ,), , I,) I l,j 

then L is restricted to being 

L - -ijkh F ap F yw + -ijkh F ap F yw 
- alt:· €aPYw ; j k h a 2t:· 1Jay 1Jpw ; j k h 

+ b hh ; h j flY YW F ap + b hh ; h j F ap + h I fL Y 1J 1J €apyw ; j 2 a 13 ; j C 
··kh I' P 

+ dE" 1JaPJtj !k h' (3.6) 

where a I' a2, hi' h2' c and d are arbitrary constants. 
Remark 1: There is only one additional term due to the 
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presence of (/> j in the Lagrangian, viz., the coefficient of d. 
Remark 2: It was shown in Ref. 2 that the coefficients of 

a l and a2 are divergences, and thus their Euler-Lagrange 
expressions are identically zero. 

The Euler-Lagrange expressions for the Lagrangian 
(3.6) take the form 

and 

3's - aL b h (h S h j hj,..,J-Ly vw F ap 
.p = ah.p = I .p I" v'l TJ €aPyw i j 

S 

- 2h S hi h j ,..,J-LYTJvw€ F.aP.) I" .p v'l apyw,} 
+b2h(h~ h~h~ FiaPj -2h~ h~h~FiaPj) 

+ chh ~ + 2d *fi/Fi apjTJp.p (/> s, 

E.= aL - 4d *'fa b hI" )- a(/>j - I" IIba j' 

E~ = - 4d *fsa tilt' 

E~p = bl tK~p + b2K~p - 2d (TJpy (/> Y *ra t)lIt 

(3.7) 

(3.8) 

(3.9) 

+ 2d (TJay (/> y *r/)lIt' (3.10) 

where 

*'fi j=~jkhTJ I' P a - apJk h' 

K~{3- - 2h (h [a h p ))11" 

tK~p=K~v rfY TJvw€aPyw' 

and square brackets around indices denotes antisymmetriza
tion. It should be noted that Ej and E ~ are not independent. 
In fact, even for a Lagrangian which is not degenerate, one of 
the conservation laws corresponding to (4.8) in Ref. 3 is 

Ej = - hjE~lIa' 

4. A CHOICE OF GAUGE 

The lack of independence of the Euler-Lagrange ex
pressions suggests that perhaps a particular gauge transfor
mation could simplify the field equations while reducing the 
degrees of freedom. Such a transformation is given by 

uaP = 0 

(4.1) 
and 

in which case the transformed field variables (signified by a 
dot), are 

hi =hi a a 

and 

(Pi = O. 

Thus, (/> i can be thought of as a Goldstone field. 
Even though 

(pa=o 

and 

Pi aPj = Fi aPj , 

and hence 
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the double covariant derivative of (p a does not vanish; in 
fact, 

(4.2) 

Thus any reference to (/> a and its derivatives can be eliminat
ed from both the Lagrangian and the field equations. 

We still have the freedom to perform any Lorentz gauge 
transformation. It is then possible to say that we have ob
tained a Lorentz gauge theory from a Poincare gauge theory 
by means of a Higgs mechanism. The Lagrangian is of the 
form 

L = L (h a;A' aP. A aP. A a. A a) 
I " J,j' I , I,}' 

and A f is no longer regarded as the translation gauge con
nection, but as a set of vector fields which transform in the 
same way as h f. The Lagrangian (3.6) can then be expressed 
in this gauge as 
L - a ,.ijkhc F ap F yw + ,.ijkh F ap F yw 

- I c· "'apyw i j k h a2c· TJayTJpw i j k h 

+ blhh ~h~rfYTJvw€aPyw F/Pj + b2hh ~h~ FiaPj + ch 
ijkh . a . P 

+ 4dE" TJapA ilUA kIIh' (4.3) 

where we have made use of(2.4) and (4.2) and it is now legiti
mate to consider the double covariant derivative of A f. 

Corresponding to (3.7)-(3.10), we have the Euler-La
grange expressions 

cbs _ b h (h S h i hj,..,J-LY vw F ap o .p - 1 .p I" v'l TJ €apyw i j 

- 2h ~h ~h~ rfYTJvw€apywFi ap
j ) 

+ b2h (h ~h ~h~ FiaPj - 2h ~h ~h~ Fi apj ) + chh~, 
(4.4) 

E· S = 8d,.stij A' P a - C TJaP ilUt 
4d,.stij A' YF pw 

- C TJapTJyw i j " (4.5) 

and 

E· S -b tKs +bK s +4d ,.stij;'w A' y (4.6) ap- I ap 2 ap TJy[aTJp)w c .t':Iilli t· 
Note that we have no Euler-Lagrange expression corre
sponding to (3.8) due to the elimination of (/> i. 

It should be stressed that we do not have a true Lorentz 
gauge theory here, but one that has been obtained from a 
Poincare gauge theory through symmetry breaking involv
ing a Higgs mechanism. The fields A f do not arise in a true 
Lorentz gauge theory without sources. 

5. COMPLETE REDUCTION TO LORENTZ 

In the particular gauge (4.1) where only subsequent 
Lorentz transformations are allowed, the ordered pair (A fP, 

A n can be regarded as the restriction to the Poincare sub
group of a generalized affine connection as defined by Ko
bayashi and Nomizu.9 Furthermore, if we assume 

(5.1) 

then we have a Poincare restriction of their affine connec
tion. In doing so, we have completed a reduction9

•
10 of the 

Poincare theory to a Lorentz theory by means ofsoldering7 
in addition to the use of a Higgs mechanism. The fields A f 
have now been eliminated. 

Some authors8
•
11 regard the assumption (5.1) as essen

tial, while others l2 feel that it is not absolutely necessary to 
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perform such a reduction in all Poincare gauge theories. 
When discussing this point few authors stress the fact that it 
is possible to identify the translation connection and the vier
bein only under this choice of gauge where tJ> a vanishes and 
just Lorentz transformations are then allowed. The two 
quantities transform differently under a general Poincare 
transformation, and it does not make sense to take the dou
ble covariant derivative of A f except under this choice of 
gauge when we consider that we have just a Lorentz theory. 

The above difficulties are overcome by assuming 

tJ> alii = h f (5.2) 

instead,s.1I which reduces to (5.1) under our particular 
choice of gauge. This effectively completes the reduction by 
combining the Higgs mechanism and the soldering into one 
process. A particular choice of gauge is not required. 

To see what effect a complete reduction has on our 
Poincare gauge theory, we shall generalize (5.2) to 

tJ>alli = Kh f, (5.3) 

where K is a constant. This yields the more useful relation 

//j = tJ> a llij - tJ> a llii = K(h ~u - h illi)' (5.4) 

There are actually two ways to impose (5.3). A priori we can 
substitute (5.3) and (5.4) into the Lagrangian (3.6) and there
by reduce the number of field variables. A posteriori it is 
possible to adjoin (5.3) to the Euler-Lagrange equations cor
responding to (3.7)-(3.10). The results are not always the 
same. 13 

When (5.4) is substituted into (3.6), the coefficient of d 
becomes 

_.2 --kh /3 
4K E'J 1] a/3 h ~u h kIIh , 

which can be expressed as 
__ 2 "kh /3 _.2 "kh /3 

(4,.---E'J 1]a/3 h fh k IIh )llj - 4K E'J 1]a/3h fh k 1Ihj' 

By virtue of the commutation law 

h~lIhj -h~PJh = -Rkahjh~ +h'kFh/3Yj 1]y", 

and the identities 

and 

~jkh = _ hh i h j h kh h ".,a/l-".,/3v ".,YU".,WT€ 
a /3 y ill" " '/ '/ Jl.VUT' 

the coefficient of din (3.6) takes the form 

(4~~jkh1]aph fh ~llh )lIj + ~hh ~hjv ifY1]vw€a/3Y", F//3j. 

Since the first term is a divergence and the second term is 
proportional to the coefficient of bl in (3.6), the effective re
duced Lagrangian is 

L = (b l + ~d )hh ~h~ ifY1]a"'€aPyw Fi aPj 
+ b2hh ~ h ~Fi aPj + ch. 

Therefore, the Euler-Lagrange equations yield2 the Einstein 
vacuum field equations with cosmological term, i.e., 

b2 Rij = !cgij' 

provided 

(b l + 2~df + b/#O. 

In a similar, but more tedious, manner, the a posteriori 
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imposition of (5.3) in addition to the Euler-Lagrange equa
tions of(3.6) also yields the Einstein vacuum field equations 
with cosmological term, subject to the same restriction on 
the constants. 

6. DISCUSSION 

We have constructed the Lagrangian of a true Poincare 
gauge theory whose Euler-Lagrange equations can be sim
plified by means of a Higgs mechanism. In this form the 
translation subgroup is manifested only in the translation 
connection A f. The usual interpretation of such A f in a 
gauge theory using a Higgs mechanism is that they are re
garded as a set of vector bosons.5 Thus the generalization of 
the theory from Lorentz to Poincare gives rise to an interac
tion of a set of vector bosons with the gravitational field. An 
interesting feature of the Lagrangian (4.3) is that minimal 
coupling arose without having to impose it. 

In this paper complete reduction of the Poincare theory 
to the Lorentz theory is regarded merely as a check that the 
Einstein vacuum field equations can be obtained in some sort 
of limit. Complete reduction eliminates all aspects of the 
translation subgroup, and thus we no longer have a Poincare 
gauge theory. Therefore, complete reduction should not be 
required. 
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APPENDIX 

The following lemmas which are used in the body of the 
paper were proved in Ref. 2: 

Lemma AI: Ifa quantity Bo = Bo(h f) is a scalar under 
both coordinate and Poincare gauge transformations, i.e., 
Do = Bo and B b = Bo' then 

Bo=c, 

where c is an arbitrary constant. 
Lemma A2: If a quantity Ba/3y", = Bapyw (h f) has the 

antisymmetries 

B apy", = - B payw = - B a{3",y 

and the transformation laws 

and 

then 

where a and b are arbitrary constants. 
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Lemma A3: If a quantity B a{3r = B a{3r (h f) has the anti
symmetry 

B{3ar = - B a{3r 

and the transformation laws 

B a{3r = B a{3r 

and 

then 

Ba{3r=O. 

Lemma A4: If a quantity B a{3 = B a{3 (h f)has the trans
formation laws 

and 

then 
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where b is an arbitrary constant. 
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Models for systems of relativistic particle dynamics are reviewed in terms of a geometrical setting 
for constraint dynamics. They are derived from the same grand abstract space by means of a 
common reduction procedure and are put in correspondence with invariant subgroups of the 
Poincare group. A new model corresponding to the identity subgroup is also discussed. 

PACS numbers: 11.80. - m, 1l.30.Cp, 02.20.Rt 

I. INTRODUCTION: ON THE DESCRIPTION OF 
BECOMING 

Dynamics is the expression of flow by stringing togeth
er sequences of configurations together each labelled by a 
time evolution parameter according to an explicit rule. The 
collections of configurations so strung together in a well
ordered sequence constitute trajectories of the system, and 
each trajectory has certain configurational functionals char
acterizing them. These would be the constants of motion. In 
this account the configurations are the conventional coordi
nate space together with the velocity fibers: whatever consti
tutes the initial specification to make use of Newton's formu
lation of the equations of motion. 

When such ideas are to be implemented for a relativistic 
system, we do encounter some new problems. Traditionally, 
we consider clock time as the time evolution parameter, and 
a configuration is defined by considering simulataneous spe
cification of coordinates and velocities. In relativistic theory 
this poses a problem since distant simultaniety is not relati
vistically invariant. Ifwe insist, nevertheless, on using clock 
time and a canonical formalism, the no-interaction theorem 
tells us that the only relativistically invariant descriptions 
could be for noninteracting systems only . We must therefore 
be prepared to consider other alternatives. 

A satisfactory alternative is to consider a time evolution 
parameter defined dynamically rather than kinematically. 
Dynamical evolution is with respect to a temporal parameter 
that has different significance in different states of motion. 
The dynamical evolution is self-referring and "the time" is 
independent of the external reference frames. 

It turns out that the temporal parameter so defined, 
being Lorentz-invariant, must have a generator of dynami
cal evolution which is also Lorentz-invariant, and is differ-

al supported by the U.S. Department of Energy under Contract DE-AC02-
76ERO 3533. Permanent address: Physics Department. Syracuse Univer
sity, Syracuse, NY 13210. 
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ent from any of the ten generators of the Poincare group. In 
this 11 parameter generator formalism it has been found pos
sible to construct interacting relativistic systems with invar
iant world lines. 

The natural mechanism for bringing about such a de
scription is to make use of the Dirac constraint formalism 
starting with a system with excess degrees of freedom and 
systematically reducing them by imposing constraints. 
Among those constraints we include one which explicitly 
depends on a parameter 7, which then gets identified with 
being the evolution parameter. We have thus the curious 
situation in which motion is generated by constraints. 

In the recent literature there have been a number of 
such models constructed; they are of three kinds depending 
upon how the initial configuration and phase spaces are cho
sen. Each such group made use of a primary set of dynamical 
variables and a set of constraints. In the first kind of models 
each individual particle is described by four pairs of canoni
cal variables. A system of2N constraints are then imposed to 
produce 3N pairs of canonical variables and an evolution 
parameter to describe N particles in motion. In the second 
kind of model a pair of 4-vectors represent spacetime specifi
cation of a uniformly moving "center" of the system and the 
total4-momentum of the system, respectively. The con
straints then relate these quantities to the particle configura
tions. In the third kind of model the new collective variables 
introduced are a Lorentz matrix and its canonical conjugate 
carrying the burden of the inertial frame. Constraints can 
then be used to obtain interacting relativistic particles de
scribing world lines. 

Each of these kinds of models has its own number of 
starting variables and judiciously chosen constraints. It 
would be desirable to have a systematic method of dealing 
with all three models and to see if there are other possibilities 
of a similar kind. 

The present paper is devoted to this task. We start with 
grand abstract configuration space 1 consisting of the semi
direct product of the Lorentz group with the product of N 4-
vectors. This configuration space thus has 4N + 10 dimen
sions. The phase space has twice this dimension. We then 
take an invariant subgroup G of the Poincare group P and 
take the equivalence classes. 

.I=lIG 

as the configuration space of a model. It turns out that by 
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choosing G to be P itself, the Lorentz subgroup a, and the 
translation subgroup T4, respectively, we get the three kinds 
of models mentioned above. By choosing the identity sub
group of P we are able to generate another kind of model. 

Much of our previous work as well as that of other auth
ors are stated in traditional language of canonical mechan
ics. For making the ideas accessible to a wider group of peo
ple to whom modern differential geometry is a standard tool 
as well as to expose the essential geometric aspects of the 
developments, we have carried out our formulation in the 
language of differential geometry. 

The plan of the paper is as follows: Sec. II recapitulates 
the essential background to establish notation and provide 
the setting. The world line condition is formulated in its gen
eral form in Sec. III. The grand configuration space is intro
duced in Sec. IV along with the equivalence classes which 
realize the four kinds of formalisms. In Sec. V we construct 
the phase spaces and the choice of constraints to build up a 
suitable family of sections of the fiber bundle for each of the 
models. Some remarks in Sec. VI conclude the paper. 

II. A GEOMETRICAL SETTING FOR CONSTRAINT 
DYNAMICS 

In dealing with constraint dynamics, the situation we 
are presented with is the following. 

On a given 2n-dimensional manifold I r = T *.I a set of 
realfunctionsK1, ... ,Kk is given. By choosing a value for each 
one of them a hypersurface M in r is determined. We consid
er the smooth map 

K: r~lRk, 

r~(Kdr),···,Kk(r)), 

and by fixing a value, say OElRk 
, we get 

M=K-l(O) = IrEl':K1(r) = ... = Kk(r) = OJ. 
We assume M to be a submanifold of r, of codimension k. If 
OElRk is a regular value for K, then M is a submanifold. 

By means of the symplectic structure UJ on r we can 
define Poisson brackets and associate vector fields with func
tions. The vector field XI associated with the functionfis 
defined by the relation 

Lxfi= lJ,gJ 
for any function g. An equivalent definition is given by 

iXfUJ = df 

if UJ is the symplectic form of r. 
A set of vector fields X1, ... ,xr spans a tangent subspace 

for each point of r on considering span I X1(r), .. ·,xr (r) J. 
Such spaces will constitute the tangent space of a submani
fold if and only if the relations. 

[X;,Xj ] =C;jXm (2.1) 

are satisfied, with the C;j being functions on r. This is the 
Frobenius theorem. 

A vector field X can be evaluated at points of M. If it 
turns out that X (m) is tangent to M for any mEM, we will say 
that X is tangent to M. 

With the above set of functions we will associate the 
vector fields X K

j 
and inquire about the relation (2.1). It is 
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simple to prove that they satisfy the condition of the Froben
ius theorem if and only if the following relations hold: 

d I K;, K j J = c7j dKm· 

The c7j will then be functions of the K;. We say in this case 
that the K; form a function group. Such a situation leads to a 
foliation on r and the relevant analysis has been carried out 
in Ref. 2, to which we will refer extensively in what follows. 

Here we do not require the K; to form a function group; 
nevertheless, we shall show how, starting with the vector 
fields X K, restricted to M, we can generate a set of vector 
fields tangent to M and satisfying the condition for the Fro
benius theorem. 

If 

i:M~r 

is the identification map, we can consider the 2-form i*UJ on 
M, which is the pullback of UJ by i. In general, i*UJ is degener
ate. If its rank is constant the vector fields on M annihilated 
by it constitute an involutive distribution !iJ, i.e., they obey 
the Frobenius theorem. We will prove that they are combi
nations (with coefficients functions onM) oftheXK . evaluat
ed on M. (Notice that in general the X K, are not t~gent to 
M.) They will be denoted by Y, and the hypothesis is that 
they satisfy 

iy(i*UJ) = O. 

This implies that 

(iyUJ)IM = 0 

and therefore one can write 

iyUJ = C; dK; (summed on i) 
or 

Y=c;XK , 

with the C; being functions on M. (Here there is an abuse of 
notation, as Y is actually a vector field on M, but we do 
consider it as a vector field on r.) 

Such an expression for Y implies 

c;IK;,KjJ =0 onM foranyj= 1, ... ,k. 

When a relation involving Poisson brackets is true only 
when evaluated on M, it is customary to replace the equality 
sign = with the sign ::::; and it is said to be true in a weak 
sense. Thus our relations can be written as 

c;(K;, K j J::::;O for anyj = 1, ... ,k. (2.2) 

It is useful to define the antisymmetric matrix A: 

A;j = IK;, K j J (2.3) 

related to i*UJ by 

rank A (m) = rank(i*UJ)(m), mEM. 

The set of (c;) can now be considered as nullvectors of 
A 1M and the number of independent nonvanishing vector 
fields satisfying (2.2) turns out to be 

d = codimM - rank A 1M' 

If rank A 1M is to be a constant on M, the vector fields Y define 
an involutive distribution !iJ on M with the above dimen
sion. This allows us to foliate M and to consider 

./f/=M /!iJ. 
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In physics it is customary to assume ff to be a manifold 
having the property that 

1T:M-ff 

is a submersion. It can be proved that ff inherits a symplec
tic structure p, which allows us to call it the "reduced phase 
space" or "the frozen phase space.,,3 

But so far no dynamics has been defined at all. This is 
done by introducing a one-parameter family of sections 

(T 

ffXH-M. 

From a global point of view this assumes that a section for 
'IT 

M_ff does exist. (If the vector fields Y integrate to a Lie 

group f§ , such that the leaves of the submersion 1T: M_ff 
are diffeomorphic to f§ , the existence of such a section re
quires the f§ -bundle to be trivial.) It is on u(ffX lR) CM that 
dynamics will be defined, not on M itself. The leaves of 1T are 
d-dimensional, and it turns out that k + d is an even number. 
Therefore, 

dimff= 2n - (k +d) 

is even, and 

dim[u(ffXlR)CM] = 2n - (k +d) + I, d>O. 

Of course, if d = 0, then ff = M, dim u(ffX lR) = 2n - k, 
and our procedure generates a dynamics (the trivial one), i.e., 
a one-parameter group of transformations on M, which is 
independent of K; . But in general this is not the case and the 
set of K; has a further role. All possible dynamics that can be 
defined in such a fashion, corresponding to different choices 
of u, have the property that the manifolds of states of motion 
are all diffeomorphic among themselves. 

If Y\, Y2 , ... , Yd are a basis of vector fields which span 
ker j* each dynamical vector field L1 can be expressed as 

L1 = a;Y; 

with a; functions on M. All this is restricted to the submani
fold u(ffXH)CM. This vector field L1 is tangent to the sub
manifold. 

But another way to build up dynamics and the appro
priate submanifold is commonly used in dealing with con
straint dynamics. Besides the K; functions, another set of d 
real functions X\, ... ,xd is chosen to constitute the smooth 
map 

X:rXH_Hd, 

(y,r)_X'" (y). 

The requirement on the X is that they are functionally inde
pendent and together with the K; define for each value of the 
parameter l' a [2n - (k + d )]-dimensional surface in r on 
which (i) turns out to be nondegenerate. To put it differently, 
the equations 

cm! Sm, Sn J :::::0 

(m,n = 1, ... ,k + d) (summed on m) 

(whereSm stands for K\, ... ,Kk ;X\, ... ,xd) do not have nontri
vial solutions. Then for each 1'EH the surface generated by 

lKXXT
: r_Hd+ k 

by taking the inverse image of OEHd + k is of dimension 
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2n - (k + d). In this way one recovers what was earlier 
called u(ffX H), as will be seen in the next section. 

From the previous discussion it is clear that different X; 
define different dynamical systems even if all of them have 
diffeomorphic spaces of trajectories. Their carrier spaces 
may be different. 

In many physical situations, the starting space r carries 
a symplectic action ~ of some Lie group G, i.e., G acts on r 
via canonical transformations. We ask ourselves what hap
pens to such an action with respect to the constraint surface 
M. It is obvious that only that part of G which maps M onto 
itself is relevant as far as dynamics is concerned. If all the 
infinitesimal generators.xa for ~ happen to satisfy the rela-· 
tions 

(ixG dK; )IM = 0 (i = I, ... ,k) 

then the action carries over to the manifold M. Furthermore, 
as the action of G onM preserves i*(i), it happens thatff also 
will carry a G-action, ~, which is symplectic with respect to 
the symplectic structure p. This statement follows from the 
fact that the vector fields Y defined by 

iy(i) = d (c;K; ) 

when restricted to M coincide with 

Y=C;XKi • 

Since (~)*(i) = (i) and M is invariant under ~, we have also 

(~)*.@ =.@. 

In fact (~)*(ix(i)) = ifW. (i), if X is a vector field on r. 4 

As we have already said, a dynamics is specified only 
after we have a section 

u:ffXH-M 

and it will be a dynamics on u(ffX H). The submanifold 
u(ffx ! 0 J) C u(ffX R) can be thought of as the set of all 
possible Cauchy data for our dynamics. Furthermore, the 
projected action of G on ff gives an action of G on 
u(ffX ! 0 J ) by setting 

~*( g)u(n,O) = u(~( g)n,O), nEJY', gEG. 

This can be extended to u(ffXH) by the relation 

~*( g)u(n,r) = u(~( g)n,r). 

It is obvious that ~* is equivariant with respect to the pro
jection 1T: M_ff restricted to u(ff X lR)-ff. It is also clear 
that it depends on the section u: ffX R-M. Moreover, it is 
canonical with respect to the Poisson brackets on u(ffX R) 
defined by the symplectic form ~ p the pullback of the sym
plectic form p on ff by the map 1T T: u(ff.! l' J )-ff. This 
coincides with the usual action generated by Dirac brackets 
defined on all r and restricted to u(ffX ! l' J ). 

But, to connect all this with the evolution of physical 
objects, it will be necessary to properly define the physical 
variables, namely positions and momenta in spacetime. In 
the following sections, maps ¢a and tPa will be introduced, 
respectively, for the position and momentum 4-vectors of the 
ath particle. As the group G involved will be the Poincare 
group, it will have the usual action on them. We will denote it 
by ~reg. 

We remark that as both dynamics and states of motion 
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are given by the choice of a section u, it is the above action 
Yi* of the Poincare group that is the physically relevant one. 

In the following sections we are going to apply the 
above procedure to some specific models. 

In some of the models the starting functions K satisfy 
the relations 

(Ku K j ) = C;j Km (i,j,m = l, ... ,k), 

i.e., 

fKi,KjJ;::::O. 

They are then said to form a first class set of constraints. The 
additional functions X, meeting the previously stated re
quirements, are said to form, together with the K, a second 
class set of constraints. We have 

rank A 1M = 0, d = k, 

and the determinant of the matrix 

Bm.n = {5m,5n JIM 

reduces to (detl (Ku Xj) 1)2. The Poisson brackets are evalu
ated on (IKXX)-I(O). 

In other models the structure of the matrix B allows us 
to carry out the reduction procedure through intermediate 
steps. For them A 1M is singular and has nonzero rank r. A 
nonsingular submatrixA " of even rank r, is then formed by a 
subset of the K, which are a second class system of con
straints to begin with, so that Dirac brackets can be comput
ed relative to them only. To have the final set of second class 
constraints, one adds to the remaining K an equal number of 
X satisfying the requirement 

det B #0. 

III. WORLD LINE CONDITION 

With the spaceff we can associate dynamics according 
to Sec. II. There we have seen that this dynamics is defined 
on u(ffX R) eM, not on M itself. As already stated, in each 
model a map CPa: r --spacetime will be introduced to denote 
the position 4-vector of particle a. By restricting CPa to 
u(JflX R), with each trajectory we associate a world line on 
spacetime. The physical interpretation of such world lines 
requires that this association has a definite Poincare-covar
iant property. It is this requirement that is usually called the 
world line condition (WLC). The formal statement of this 
condition is as follows. 

The association 

nEJY f---+u( n,R) 

defines a line in u(ffx R) for each n. On such a set oflines we 
had defined a Poincare group action Yi* by setting 

Yi*( g)ou(n,R) = u(~( g)n,R), gEG. 

We can now state the WLC 

CPa oYi*( g)ou(n,lJl) = Yi reg ( g)ocpa ou(n,R), 

where Yi reg is the usual action on the four-dimensional vec
tor space of spacetime positions. 

For computations it is convenient to express the WLC 
in a more explicit way in terms of parametrized lines. Recall 
the one parameter family of section u"T, introduced in Sec II. 
By varying T, a line on M is described for each n. Such a line 
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is in turn projected for each a onto R! by CPa, thus yielding 
the world line of particle a: 

C:(T) = CPa ouT(n). 

The WLC becomes in this context the requirement that the 
actions Yi reg defined on each R4 and &i on ff are physically 
consistent, in the sense that if n' = &i( gIn, then there is aT' 
such that 

(3.1) 

Here T' can depend on T, g, and a. This obviously poses con
ditions on u T

• 

To satisfy the WLC, we construct a section of 1T: M __ ff 
in terms of the real functions X of the previous section, and 
choose the X suitably. We consider the subsets 
(r)-I(O)=N" er. A first requirement is that 

NTnM#O. 

A second is that N 1M be transversal with respect to the fibers 
of 1T: M __ JV. This condition is satisfied if no vector field 
exists in !iJ with a flow tangent to N IM . 

While the first demand is met in all cases by requiring 
that the components ofXT constitute additional constraints 
not identically vanishing on M, the second one needs some 
elaboration. 

Referring to Sec. II, a vector field lying in !iJ was seen to 
be x.,. , with ¢ being such that 

"'1M 

(3.2) 

[¢,KjJIM =0, 'r/j= 1, ... ,k. (3.3) 

Hence 

Lx",Kj = Ci (KuKj) = O. (3.4) 

We proceed to determine the functions Ci • Equation 
(3.4) can be written as 

(Ac)IM = 0, (3.5) 

where C = (c1"",Ck) and A is the matrix (2.3). We recall that 
in all the models 

rank A = r<k. 

This allows us to choose rcomponents oflK in terms of which 
the submatrix A ' of nonzero determinant can be built. They 
will be denoted K i (/ = 1, ... ,r) and the remaining ones K;; 
(h = 1, ... ,d) so that 

¢=c;Ki +c;;K;;. 

There are 00 d solutions of (3.5): the c" can be arbitrarily 
chosen and the c' are then computed as the unique solution 
of a linear inhomogeneous system of dimension r. A set of 
independent solutions is obtained by starting with each K ;; 
in turn. We denote it by, ¢h: 

¢h =K;; - (A ')/~I[Ki,K;;IKi'· 

The ¢h constitute a basis for first class constraints. 
Returning now to the transversality condition, this can 

be formulated as the requirement that the equations 

(b h [ ¢h ,X h' J) = 0 
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with bh real functions on r, have only the trivial solution 
bh = 0. This is possible iff 

detl!tPh,xh.IIMI¥=O. (3.6) 

We note at this point that 

!tPh,Xh' 11M = !K;'Xh' I i'M, (3.7) 

the bracket on the right-hand side being the Dirac bracket, 
relative to the K' only. 

When 

rank A 1M = 0, 

there are no second class constraints (i.e., no K '), and Eq. 
(3.6) reduces to 

detl!Kj'XIII¥=O, j,j' = 1, ... ,k. (3.8) 

In all the schemes considered X r are chosen so that all 
but one, say X~, are r-independent and constitute a Poin
care-invariant set. The Xi (i = 1, ... ,d - 1) define a line on 
each fiber and ~ 1M simply permutes these lines among 
themselves. Thus the WLC is satisfied because in this action 
on lines ~IM and!:!l?* agree. 

Further imposing X ~ = ° then puts a parameter r on 
each line which is not necessarily preserved under the ~ 1M 

action. However, this leads us to define a value for r' in terms 
of r, g and other variables such that the WLC in the form 
(3.1) is satisfied. 

IV. THE CHOICE OF THE VARIABLES 

In this section we will discuss the variables used in each 
model to describe systems of N interacting particles. 

The physical positions and momenta, in spacetime, will 
be denoted by 4-vectors q!: and P!: for the ath particle 
(a = 1, ... ,N). They transform under the action !:!l? reg of 9 
defined by 

!:!l?reg = (L,b )qa, = Lqa + b 

and 

!:!l? reg (L,B)Pa = LPa, 

where L is a 4 X 4 Lorentz matrix and b a translation 4-
vector. Let .!.t' denote the Lorentz group! L I and T4 the 
translation group ! b I. 

We start with an abstract space.1, on which proper 
actions of 9 will be defined. We will then show how the 
various models equipped with such qa andpa emerge. 

Let us define 

.1 = 9 XIo. 

9 is the Poincare group and Io = ® a = I, ... ,N R!. Elements 
of.1 will be denoted [(A,a),(x)], in which (A,a)E9 and (x) 
stands for X1, ... ,xN' Xa being a vector in R!. The following 
action of 9 is defined: 

!:!l?(1)(L,b H(A,a),(x)] 

= [(A ,a)(L,b ) -I ,(L,b )(xj], 

where on the right-hand side the right action on 9 is given 
by group multiplication and the left, on (x), is the !:!l? reg on 
each R4, i.e., 

(L,b)xa =!:!l? reg (L,b)xa = LXa + b. 
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Endowed with such an action,.1 has the structure of a fiber 
bundle associated with the trivial principal bundle 9. It is 
therefore possible to consider equivalence classes with re
spect to !:!l?(1) and obtain distinct spaces 

I =.1 /!:!l?(1)( g) (4,1) 

corresponding to distinct subgroups g of 9, 

r= Y*I, 

such that the basic (abstract) variables are taken and the 
analysis of the previous section starts. 

Another action of 9 on.1 commuting with !:!l?(1) can be 
defined to make.1 a trivial principal 9 -bundle. This is 

!7l(Z)(L,b )[(A,a),(x)] = [(LA,La + b ),(x)]. 

Going to the quotient as in (4.1), it gives rise to an action !7l 
on I, which in turn can be lifted to r. The symplectic mani
fold r therefore carries a symplectic action ~ of 9.5 

Maps will be seen to exist from r to spacetime for the 
physical positions, i.e., 

q!: = ifJ !:(r), rEF, 
with the property that 

ifJa O~(L,b) = !7l reg (L,b )oifJa 

and, analogously, for the momenta, i.e., 

P!: = t/J!:(r), rEF, 

tPa o~(L,b ) = !7l reg (L,b )°tPa· 

The above physical maps need not be defined on the 
whole of rbut rather on the part u(ffX R), where dynamics 
operates, i.e., where all the constraints are satisfied. Further
more, it is there that the generalized mass shell relations 

(4.2) 

will hold. 
In what follows we will consider four models. Each of 

them corresponds to an invariant subgroup of 9 with re
spect to which the quotient (4.1) is taken. Four such sub
groups are considered, namely 9 itself, the Lorentz group 
.!.t', the translations T4, and the identity. 

A. The model 18-11 

The equivalence classes are taken with respect to 9, 
i.e., 

I =.1 /!:!l?(1)( 9) 

and each of them can be represented by a set of N 4-vectors 
(z), so that 

I ~(R4)" N • 

In fact, the class to which [(A,a),(x)] belongs contains also 
[(L,O),(A,a)(x)] and if 

(z) = (A,a)(x) 

this can be denoted I (z) I. 
The other variables in r = T* I are (1]), the canonical 

conjugates to (z). So a point in r is represented by I (z);(1]) I. 
The action ~ can be seen to be 

~(L,b H (z);(1])j = ! (Lz + b );(L1]) I. 
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This allows us to identify these variables with the phys
ical spacetime positions and momenta. The relations (4.2) 
will enter in the definition of M. 

B. The modellpo.11 

Here the subgroup to be taken in (4.1) is the Lorentz 
group .!f and 

~ = 1 /~(I)(.!f). 
Since 

~(I)(L,O)[(A,a),(x)] = [(AL -1,a),(Lx)], 

one sees that [(A,a),(x)] is equivalent to [( l,a),(Ax)]. Thus the 
elements of ~ can be denoted! Q,(z) I, the Q and Za 
(a = 1, ... ,N) being 4-vectors, Z = Ax, so that 

~~(R4)"(N+ I). 

The additional variables for r = T'" ~ will be Rand ('YJ), the 
canonical conjugates to Q and (z). A point of r may be writ
ten! Q,(z);R,('YJ) I. The action of ~(L,b ) on it gives 
! LQ + b,(Lz);LR,(L'YJ) I. The physical variables 

qa = Q + Za' Pa = R + 'YJa 

transform with ~ reg but are not canonically conjugate. The 
relations (4.2) are satisfied once all the constraints on r have 
been imposed, i.e., when the sections (7 have also been intro
duced. 

C. The model 11112 

The equivalence classes are taken with respect to the 
translation group T4, i.e., 

~ = 1 /~(1)(T4). 
Since 

~(l)(1,b )[(A,a),(x)] = [(A,a - Ab ),(x + b)], 

we have 

[(A,a),(x)] = [(A,O),(x + A -Ia)]. 

This allows us to denote a point of ~ by ! A,(z) I where 

Za =Xa +A -Ia. 

This gives 

~~.!.t' X(R4)"N. 

The variables for r = T'" ~ include those for ~ and the 
"momentum" variables Spv = - Svp and ('YJ), which are 
conjugate to A ~ and (z), respectively. The nonvanishing 
Poisson brackets are 

!zap,'YJbvl = DabDpv, 

IA~,SaPI =gvpA~ -gvaA~, 

! Spv,SaP J = gpaSvp - gvaSpp + gppSav - gvpSap' 

As far as ~ is concerned, we see that 

~(2)(L,b )[(A,O),(x + A -Ia)] 

= [(LA,b ),(x + A -Ia)] 

~[(LA,O),(x + A -Ia + (LA )-Ib)] 

so that 

~(L,b )!A,(z);S,('YJ)J = {LA,(z + (LA )-Ib );LSL -I,('YJ)J. 
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The position variables in spacetime are defined as 

qa =Aza, 

and these transform by means of the action on r as under 
~reg· 

The physical energy-momenta are 

PI: = A j'YJ~ + A H m~ + Va (z) + l1a 'l1a ] 112. 

This allows us to satisfy the relations (4.2). Such Pa trans
form properly as 

Pa-LPa 

since the Va (z) will be chosen to be functions of the differ
ences Zb - Zc . 

D. The model IV 

The equivalence classes are taken with respect to the 
identity subgroup so that 

~=1=~oX9. 

The variables of ~ are then A, Q, and (z), where A E.!.t' and Q 
and (z) are vectors in R4. The variables of T * ~ are those of ~ 
and the "momentum" variables Spv = - Svp, R, ('YJ). Here 
Rp is conjugate to Qp and 'YJap is conjugate to zap in the usual 
sense while Spv is the four-dimensional "angular momen
tum" conjugate to A ~. The Poisson brackets are the same as 
for model III with the addition of 

I Qp ,Rv I = Dvp. 

The physical position and momentum variables are given by 

qa = AZa + Q, Pa = A 'YJ. 

The action of the physical (geometrical) Poincare group 
is given by ~ reg' Under this action qa and Pa transform as 
they should: 

~ reg (L,b )qa = Lqa + b, 

~ reg (L,b)pa = Lpa· 

Note thatza and 'YJa are invariant under ~ reg' The mass shell 
relations (4.2) will hold as a consequence of the definition of 
M. 

V. REDUCED PHASE SPACES AND SECTIONS 

To see how the four models fit within the geometrical 
setup of Sec. II, we will construct the reduced phase spaceff 
for each of the four models following the procedure outlined 
before. The additional step will be to consider the choice of 
the constraints X to build up a family of sections of the bun
dle 1T: M_ff. 

The dimension of the J1/'s turns out to be always 6N; 
this is another reason to call them phase spaces. Another 
common feature is that the map lK is taken to be invariant 
under the Poincare group, which therefore renders M invar
iant. 

A. The model I 

The phase space r is of dimension 8N. The 9 -invariant 
submanifold M is constructed by introducing the set of N 
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real-valued functions on r, 
K= (Ka}. 

Ka = P!:Paf.t - m~ - Va' a = 1, ... ,N, 
having the following properties: 

- the zero value is in the image of each of them; 
-(dKIA .. ·AdKN)(m)=!O 't/ mEM=K-I(O) 

(i.e., zerois a regular value for K); 
- each of them is 9-invariant. 

B. The model" 

The phase space r has dimension SN + S. The con
struction of the 9-invariant submanifold M is made by in
troducing 2N + 5 functions: 

K~) =P'Za, 
2) a = 1, ... ,N, 

K~ =P'7Ja, 
N 

K\3) = I 7Jai' i = 1,2,3, 
M =K -1(0) is then a submanifold of r. Since dim r = SN, 
we have dim M = 7N. 

a=1 

N 

K(4) =,fi>Z - I (m~ - 7J~ + Va )1/2, 
The Va satisfy the requirement&-9 0=1 

[Ka,Kb J = 0, a,b = 1, ... ,N. 

Therefore, the matrix A vanishes; and 

d=dim~ =N. 

The vector fields Xa which generate ~ are then defined 
through the relations 

M=K-1(0). 

iXaw = dKa· 

The dimension of each leaf is N; hence 

dim ff = dim M / ~ = 6N. 

The "potentials" Va are taken to be 9-invariant functions of 
Zb - Zc and 7J b' Only 2N + 4 of them are functionally inde
pendent as, for instance, K (5) is a combination of the K \3) due 
to the K~) vanishing; however, 

A point in each leaf, depending on a parameter 'T, is 
obtained by imposing the constraints (dK\I) A .. · AdKWAdK\2) A 

Xa = (btl Pb }(qa +1 - q), a = 1, ... ,N - 1, 

XN = ( £ Ph).ql - 'T. 
b=1 

... AdKWAdK\3) A .. · AdK(4) AdK(5))(m)=!0 

for all mEM. We have 

codim M = 2N + 4. 

As shown in the references quoted, they form, together with 
the Ka a second class system of constraints; therefore, 

Again the zero value is regular and Mis 9-invariant 
since ~ either leaves the components of K invariant or per
mutes them among themselves. 

detl(Ka,XbJIMI=!O, a,b= 1, ... ,N. 

Since A 1M = 0, our transversality condition (3.S) coincides 
with the above. 

The (2N + 5)-dimensional antisymmetric matrixA, the 
elements of which are the Poisson brackets of components of 
K, has the form 

A= 

173 

K(3) 
I 

K(4) 

K(5) 

KII) 
a 

K(2) 
a 

K(S) 

c o 
o 

o c ' X 
• I I N I 

........................................................... ~ ...................................................................... -. ........................................................ ... _I ... .................................. ... 

, , 

-c o o o o 
o 

o -c . , 
........................................................... ~ ................................................................... .I ........................................................ ...... ' ........................... ' .............. ... 

-PI ...... . . 
-P2 

... . . 
-P3 

.. . . . . 

I I I I 

0 
0 
0 

• ••••••••••••• I 

,..,. •••••••• ,. •• I •• ,.,. •••• , 
.,.,.,.,. .. ,. ........ ,. ..... ,. ...... . 

, , 

, 0 

....................................................... ~ .................................................................... __ ............ - - - .. - ........ - ........ .. ' ............... - I. _ ........ .. 

I I " 

o ............. I·· , , , , 
.......................................................... , .................................................................. ... -,- ......... .......................................................................................... ... 

o 
, , 

•••••••••••••• I •••••••••••••••••••• I •••••••• I , 
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where 

c = PI' PI" 

Xa = [p'Za ,K(4)}, 

xa+N = [P·1Ja,K(4)j. 

To compute the latter matrix elements and then to evaluate 
them on M, use is made of the 9 invariance of the Va' This 
means that both Xa and Xa + N are combinations of terms 
each of which hasP,z2 or P'1Ja as factors; then they vanish on 
M. 

To compute the rank of A on M, we note that its minor 
A " formed by the first 2N rows and 2N columns, is nonsingu
lar. We then act on the remaining rows and columns, adding 
to the elements of a line those of other parallel lines multi
plied by suitable constants, to transform A on M into a new 
matrix A having the same rank: 

o 

A' 

o 

o 

the rank of which cannot be 2N + 1 it being anti symmetric. 
Since det A 'i= 0, we conclude that 

rank A = 2N; 

dim g; = codim M - rank A = 4. 

Since 
dim M = 8(N + 1) - (2N + 4) = 6N + 4, 

we have 

dim JV = dim M / g; = 6N. 

The set of constraints K ' leading to the nonsingular ma
trix A ' is made up of the K ~I) and K~) (a = 1 , ... ,N). 

The four remaining functionally independent K form 
the K " set. To these are added four constraints X to form a 
second class set. (The explicit form for X is discussed in Ref. 
11.) The transversality condition (3.7) involves the Dirac 
bracket ! K " ,x 1* relative to the K ' constraints only. This is 
satisfied as a previous analysis of this model shows. II 

C. The model III 

The phase space F has dimension 8N + 12. Here 
2N + 5 functions are introduced to construct the 9 -invar
iant submanifold M They are 

K~) = z~ - z~ + I' 
(2) _ 0 0 a = 1, ... ,N - 1, 

K a - 1Ja - 1Ja + I' 
N 

K}3) = I 1J~, i = 1, ... ,3, 
a=l 

N 

K\4) =! EjklSkl + I (Za ""'a)i, 
a=l 

N 

K(S) = 1J? + v(.Jz) + I (m~ + ",2 + Va )1/2. 
a=l 
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They are either invariant or transformed into each other un
der 9. 

Furthermore the wedge product of their differentials is 
a (2N + 5)-form which does not vanish on M =K -1(0). This 
is therefore a 9 -invariant submanifold of dimension 
6N+7. 

The antisymmetric matrix A of dimension (2N + 5) has 
the following form: 

KI31 

K (4 ) 

KI21 KI31 

o Alii o 

KI41 

o 

K ISI 

1 
o 

.............. <- .............. -:- .............. -:- .............. ~ ............ .. 

o o o 
----- -- .. '-- -.-----'-- -------,-------_! .. _-----" , 

o o o A 121 : 
, . 

.. .. .. .. .. .. .. .. -: ................ -: ................ -I" .............. ~ ............ .. 

o o : _ A (2): A 131 : 

................. -: .................................. -," .............. ~ ............ .. 

K1SI - 1 0 

Here 

2 0 

2 0 

o 2 o 
A (1) = 

0 2 0 
0 1 2 

0 2 

0 K~) -K~I 

A(2)= -K~I 0 K\31 

K~I _K\31 0 

and 

0 K(41 
3 -Ki41 

A (3)= K(41 
- 3 0 K(41 

I 

Ki41 _K\41 0 

Evaluated on M, 

rankA<2(N - 1) + 1. 

A further reduction to 

rankA<2(N - 1) 

is obtained since an antisymmetric matrix of odd order has 
vanishing determinant. Direct computation shows 
det A (I) i= O. Therefore, 

rank A = 2(N - 1). 

In this case g; has dimension (2N + 5) - 2(N - 1) = 7 and 
again dim JV = 6N. 

The set of K' is formed by the 2(N - 1) K~) andK~). 
Imposing only these constraints means restricting the analy
sisto a subset M ' ofF havingdimension6N + 14. IfiM , isthe 
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identification map 

iM,:M'-+r, 

then the original symplectic form (LP, 
N 3 

w = L L dz!: I\d'T/a/l- + w', 
a~ I /I-~O 

when pulled back to M I gives 
N 3 

l"t,W = L L d~ I\d'T/~ - N dZlOl\d'T/lO + w', 
a= 1;= 1 

where w' pertains to the variables A ; and S/l-Y' This 2-form 
on M I is seen to be nondegenerate as a consequence of the K I 

being second class. Introducing new variables to replace Z 10 
and'T/IO' 

Q = ,ffiZIO' R =,ffi 'T/IO' 

we can write 
N 3 

l"t,W = L L d~ I\d'T/~ - dQ I\dR + w', 
Q= 1 i= 1 

This is actually the starting symplectic form for the model 
described in Ref. 12 since the relation between a symplectic 
form 

w = ! w/l-v( s) ds /1-1\ ds v 

and its associated Poisson brackets 

I J, J - oIW ( f:) af ag 
l ,g - ~ as /I- asv 

is given by 

W/l-VWYA = {Jr. 
To form the section u(JY"X R) we need to make specific 
choice of X as described in Ref. 12. 

D. The model IV 

The dimension of T· ~ is 8N + 20 so that a second class 
system of 2N + 20 constraints is required to obtain 
dim JY" = 6N. We may choose them to be the following: 

N 

K (I)-R ~ 
/I- - /I- - ~ Pa/l-' /l,V = 1'00',4, 

a=1 

N 

K~~ = (QI\R )/l-Y +S/l-Y - L (qa I\Pa)/l-Y' 
a=1 

K~) = 'T/~ - m~ - Va' a = 1,00.,N, 

X~) =Zla -Z2a' 

X~)=Zla -Z3a' 

X(4) = ZIO - Z40' 

X~)=R·(qa -qN)' 

i 5
) = R·qN - 7. 

ctl Ea = 1, Ea >0)' 
a<2, 

a<l, 

a = 1, ... ,N -1, 

Here we choose Va in K~) to be functions only of the 
internal variables Za and 'T/a' We choose them to be also in
variant under the "Poincare" group with generators}; 'T/a' 
}; (za 1\ 'T/a) and adjust their functional dependence so that 
the K ~) form a first class set. (This is always possible.9

) With 
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such a choice K (1), K (2), and K (3) together form a first class set 
of (N + 10) constraints. 

The remaining constraints X turn this first class set into 
a second class set. Of these, X (1) to X (4) are generalizations of 
those in model III. The functions Ea are functions only of the 
internal variables (z) and ('T/) and are thus invariant under the 
physical Poincare group. In the free particle limit va-+O, 
they become the "renormalized energies" so that the usual 
free particle trajectories are recovered as in Ref. 12. The 
conditions X (2) to X (4) are designed to fix a Lorentz frame, and 
thus they are conjugate to K 121. For N <3 they are clearly 
inadequate: They must then be replaced by some other 
"frame fixing" condition. Conditions X (5) are the familiar 
constraints conjugate to K(3). 

Since K (1) to K (3) form a first class set K. and the 
(N + 10) X (N + 10) matrix of their Poisson brackets with 
the constraints X is by construction nondegenerate, it is clear 
that the (2N + 20) X (2N + 20) matrix of Poisson brackets is 
nondegenerate. That is, the constraints K. and X form a sec
ond class set. To be precise, there are degeneracies in these 
matrices whenever X (2) to X (4) fail to fix a frame, for instance, 
when ZI' Z2' and Z3 are parallel. Such situations have to be 
handled as in Ref. 12, 

Thus M = K. -1(0) has dimension 7 N + 10 and the dis
tribution g; has dimension N + 10 and is formed by the 
vector fields X K' The transversality condition for the (T de
fined in terms of X reduces to (3.8) and is satisfied as K and X 
form a second class set. 

We note the following. The constraints K (1) and K (2) en
sure that in the reduced phase space the generators of the 
physical Poincare group have the desirable expressions}; Pa 
and}; qa I\Pa. Also, by virtue of the constraints X (I), Q be
comes the weighted average}; Eaqa as in other models. 10.12 

VI. DYNAMICS AS A GATHERING OF MANY INTO A 
SYSTEM 

In the present paper we have started with a grand con
figuration in which we have a private world to each particle 
with a 4-vector all to itself and a Lorentz matrix describing 
the inertial frame, At this stage we had no particles and no 
motion, no interaction, and no dynamics: We need to gener
ate some togetherness and some self-referral mechanism to 
introduce evolution. Interaction comes from togetherness. 

To form a system, this "preparticle" collection has to 
give up part of its free-wheeling style and subject themselves 
to some constraints. It is from such constraints that the dyn
amical system specification and even the notion of dynami
cal evolution and the evolution parameter emerge. 

In this paper we show many alternate patterns to the 
same goal and how the intermediate stage formulations ap
pear drastically different. We also see in the course of time 
that not all constraints are on the same footing. Some are 
gauge constraints which change only the language of de
scription; but some are essential constraints. Changing the 
latter means changing the physical system. 

It is fairly straightforward to make choice of the con
straints so that the world line condition is satisfied thus ful
filling one of the elementary requirements on relativistic in
teracting systems. But it was essential to go beyond the 
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ten-parameter descriptions to the generalized II-parameter 
form of Dirac's relativistic dynamics. 

In all this discussion the question of separability for 
systems with more than two particles has not been answered. 
We have addressed ourselves to this question elsewhere. 13 

In conclusion, we wish to stress the unifying power of 
geometry allowing us to view different models for relativistic 
interacting particles from a common perspective. The em
phasis on the role of geometry in description of nature goes 
back to Plato, and this point of view has been enriched over 
the centuries by many illustrious scholars. 14 We hope that 
our work is in keeping with this tradition. 

IWe refer to R. Abraham and 1. E. Marsden, Foundations of Mechanics 
(Addison-Wesley, Reading, Mass., 1978) for the theory and notation of the 
calculus on manifolds. 

2G. Marmo, E. 1. Saletan, and A. Simoni, Nuovo Cimento B 50,1 (1979). 
3Peter G. Bergman and Arthur Komar, "The Hamiltonian in Relativistic 
Systems ofInteracting Particles," Syracuse University, 1980; F. Rohrlich, 
Phys. Rev. D 25,2576 (1982). 

"Ref. 1, p. 116. 
'Ref. 1, p. 180. 
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care 27, 407 (1977); Phys. Rev. D 19, 702 (1979). 
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8alachandran et at. 176 



                                                                                                                                    

A smooth transonic flow in the plane 
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The implicit function theorem is used to study a symmetric exterior problem for the gas dynamics 
equation-an equation of mixed type. The existence of families of smooth C I solutions is 
demonstrated. These solutions are families of smooth transonic flows in the plane and are of 
applied interest. Some of these results have appeared in the literature with an incorrect derivation 
using the Hodograph mapping. This mapping is not invertible in the transonic case. The methods 
of this paper do not use the Hodograph mapping and extend to general (e.g., plasma) flows. 

PACS numbers: 47.40.Hg, 02.30. + g 

INTRODUCTION 

Recently L. M. and R. J. Sibner have constructed a 
family of smooth transonic flows on a symmetric torus. I 
Smooth transonic flows are interesting because of the tran
sonic flow controversy (see Bers2), but a physicist might ob
ject that flows constrained to a torus are not physical. In this 
paper the method of Ref. 1 is extended to construct families 
of smooth transonic flows in an exterior plane domain, 
showing that the above objection is unfounded. 

The extension of their method is necessary because of 
technical difficulties: In a limiting case of our plane flow, 
certain derivatives, which are always finite in toroidal flow, 
become infinite. Also our flow domain is not compact. To
gether, these two facts require the modification of certain 
Arzela-Ascoli arguments in Ref. 1. The new arguments use 
Dini's theorem on the convergence of monotone function 
sequences instead of the Arzela-Ascoli theorem. 

In the toroidal flows shock solutions may also occur. In 
plane flows, when the polytropic constant y = 3, we show 
that shocks do not occur. Our proof uses the Prandle-Ran
kine-Hugonant relations for shocks in a polytropic gas. The 
author conjectures that shocks do not exist for any value of 
y> 1. 

Our construction of smooth transonic flows is interest
ing because it never uses the Hodograph mapping, a map
ping which may not be invertible in transonic flow. See 
Bers,2 for a discussion of the inapplicability of the Hodo
graph method in transonic flow, and Courane for the Hodo
graph approach. 

1. DESCRIPTION OF THE PROBLEM 

We seek an irrotational, stationary polytropic flow in 
the exterior of the unit circle considered as a domain in the 
Euclidean plane. This flow is assumed to have a constant 
angular speed, i.e., to be independent ofthe polar angle. We 
show, directly from the defining differential equation, that 
there are three flows of this type: purely rotational vortex 
flow, purely radial source flow with constant mass flow 
through the circle, and spiral flow with constant mass flow 
through the circle. The most interesting flow is the spiral 

alSUpported in part by NSF Grant MeS 77-18723 A04. 

flow because this case includes a family of smooth transonic 
flows. 

Our results follow from a complete analysis of the mass 
flow-circulation problem below: 

The mass flow-<:irculation problem 

Consider the exterior of the unit circle as a domain in 
the Euclidean plane: Show that, in this domain, there exists 
an irrotational, stationary, polytropic flow that is indepen
dent of the polar angle, that has prescribed circulation about 
the circle, and that has prescribed radial mass transport 
through the circle. 

Remark: The data for the mass flow-circulation prob
lem must lie in certain ranges determined later. The reader 
will find a complete statement of the results in Sec. 4. 

2. THE DIFFERENTIAL EQUATION 

We now describe the model of polytropic flow used in 
this discussion. This model was developed by Sibner and 
Sibner4

•
5 to describe stationary irrotational polytropic flow 

on a Riemannian manifold. 
In this model a flow is described by its velocity field 

given as a differential I-form lU that satisfies the equations 
below: 

dlU = 0, 

8p(Q (lU))tU = 0, 

where Q (lU) = tjlUjlUj is the square speed and 

(2.1a) 

(2.1b) 

p = (1 - !(y - l)Q(lU))I/(Y~ lly> 1 is the polytropic density 
function (see Bers2). We require thatp be nonnegative which 
forces O<Q (lU)<2!(y - 1). 

Remark: Physically, Eq. (2.la) is the irrotationality of 
flow, and Eq. (2.1b) is the conservation of mass. These equa
tions are a mixed quasilinear system. When O<Q (lU) < 2! 
(y + 1), this system is elliptic and the flow is subsonic; hence, 
2/(y + 1) is the square sonic speed; when Q(lU) = 2!(y + 1), 
the system is parabolic; when Q (lU) > 2!(y + 1), the system is 
hyperbolic, and the flow is said to be supersonic. This system 
is the prolongation of the gas dynamics equation to the co
tangent bundle of a Riemannian manifold. See Ref. 4 for 
details. 
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For flows exterior to the unit circle in the Euclidean 
plane, it is convenient to use polar coordinates Rand e. With 
these coordinates gil = 1, gn = R 2, and gl2 = g21 = O. 

Equation (2.la) reduces to 

(A) alJ = B R , where IiJ = a dR + (J de. (2.2) 

Equation (2.lb) reduces to 

(B) ~[Rpa] + ~[~(J] = o. 
aR ae R 

In the next section, we show that solutions of (A) and (B), 
which are independent of e, satisfy a nonlinear algebraic 
equation. Compare Ref. 1. 

3. THE MASS-FLOW RELATION 

From now on we consider only flows in the exterior of 
the unit circle, which are independent of the polar angle. 
These flows have constant angular velocity (hence (J is con
stant) and are radial, rotational, or spiral flows. 

We show that such flows satisfy a conservation law giv
en by a nonlinear algebraic equation-the mass flow rela
tion. 

Consider Eqs. (A) and (B). In combination they tell us 
that any solution IiJ = a dR + (J de, which is independent of 
e, must satisfy 

a a ( 1 ] BR = alJ-(Rpa) + - -p(J = o. 
aR ae R 

(3.1) 

Since (J is constant, this implies that a = aIR ) is a func
tion only of R. Recall that, in this geometry, gil = I, 
g22 = R 2, gl2 = g21 = O. Since Q (1iJ) = gijliJ;liJj 

= a2 + (J21R 2, we see that Qis independent ofe. Moreover, 
because p2 = (1 - ~(y - I)Q )2!(y - 1), we also see that the 
density p is independent of e. 

Thus the partial differential equation above becomes 
the nonlinear algebraic equation 

R 2p2a 2 = K, for some nonnegative const K, (3.2) 

and, since Q = a2 + (J 21 R 2 with (J constant, we obtain the 
mass flow relation (MF) R 2p2(Q - (J 21 R 2) = K with (J con
stant and K a nonnegative constant. 

The mass flow relation has physical as well as math
ematical importance. Physically, it says that the mass flow 
through the circle is zero in rotational vortex flow and con
stant in both radial and spiral flow. Mathematically the mass 
flow relation is (for fixed values of K and(J ) a relation for Q (1iJ) 
as a function of the radius R and this relation determines a 
from Q = a 2 + (J 21 R 2. 

In any case, a flow satisfying the mass flow relation is 
presented by two parameters: (J (which determines the circu
lation C = 21T(J) and K (which determines the radial mass 
flow). 

4. A DESCRIPTION OF PLANE FLOWS EXTERIOR TO 
THE UNIT CIRCLE-A LIST OF THE RESULTS 

This section describes all the solutions to the mass flow
circulation problem. These solutions are symmetric, station
ary flows, with fixed circulation 21T(J: Purely radial (source) 
flow, purely rotational (vortex) flow and spiral flow. Both 
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Q 
Axis 

R=l 

FIG. I. Radial flow. 

R Axis 

vortex and spiral flow include solution families that are ever
ywhere smooth and transonic. 

Purely radial (source) flow 

Here (J is zero. The speed is given by Q = a 2(R ) and the 
mass flow relation reduces to K = R 2p(a2)a2. 

The constant K parametrizes the solutions. If K is too 
large, there is no flow at all. Any smaller value K corre
sponds to two flows. The first flow is everywhere supersonic 
with a limiting square speed of 2!(y - 1) at infinity. We de
note this flow by Q +. The second flow is everywhere sub
sonic with a limiting speed of zero at infinity. We denote this 
flow by Q -. See Fig. 1. 

Since p2(R ) = (1 - !(y - I)Q )2(y - 1), we see that if 
Q = 2!(y - 1), the density vanishes. Thus Q = 2/(y - 1) is 
the square vacuum (or cavitation) speed. Since Q + = 2! 
(y - l)atinfinityandK = R 2p(a2)a2

, bothQ + andQ - have 
no mass flow at infinity. 

When the initial speed is sonic, i.e., Q (1) = 2!(y + 1), 
corresponding to the largest value of K for which there is 
flow, the two flows bifurcatefrom R = 1. See Fig. 1. We call 
such flow critical flow and K = Kc critical mass flow. Both 
critical solutions Q / and Q c- are everywhere smooth (C I), 
except when R = 1, where d [Q +]ldR is infinite. 

Remark: Shock flow-that is, flow that starts on the 
Q + curve and finishes on the Q - curve labeled by the same K 
(see Figs. 2 and 3)-might occur. However, we show in Sec. 
n that, when y = 3, shocks never occur. 

Purely rotational (vortex) flow 

This is a trivial case. This flow is a vortex with constant 
angular speed parametrized by (J. The streamlines are cir
cles, concentric and exterior to the unit circle. There is no 
radial mass transport (K = 0). 

R=RS 

FIG. 2. Shock in critical flow. 
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FIG. 3. Shock in noncritical flow. 

Since in this case Q = /3 21 R 2, the flow is everywhere 

subsonic when /3> ~2/(y + 1) and otherwise smooth tran
sonic. The limiting speed is zero. 

Spiral flow 

This is the most interesting flow. It combines the bifur
cation feature of radial flow with the smooth transonic flow 
feature of spiral flow. 

In this case the flows are parametrized by K and /3. 
Physically this says the flows are parametrized by mass flow 
(K) and circulation C (C = 21T/3). 

Just as in the case of purely radial (source) flow, in spiral 
flow we have two solutions corresponding to each value of K, 
up to a critical value Kc of K. and then no solutions if K > Kc . 

However, in spiral flow the critical mass flow constant 
Kc depends on/3.1t is a consequence of this dependence that 
spiral flows have families of everywhere smooth transonic 
flows. 

To see this, we must think in terms of bifurcation 
points. In purely radial flow, bifurcation occurred at R = 1 
when K = Kc and Q c± (1) = 2/(y + 1), the sonic speed. But 
in spiral flow bifurcation occurs at R = 1 when K = Kc ' and 
K depends on/3. Because of the mass flow relation Kc deter
mines Q c± (1) [just let R = 1 in (MF)] and this means that 
bifurcation occurs when R = 1 and 

Q(I)=Q(I)= [2/(y+ 1)](1 +/3 2
). (4.1) 

The new bifurcation point is called the critical speed. 
The critical speed is generally larger than the sonic speed (if 
/3> 0) and replaces the sonic speed as a bifurcation point in 
spiral flow. See Fig. 4. 

Since k determines Q (1) from the mass flow relation, we 
could also parametrize the Q ± flows by /3 and Q ± (1). 

In spiral flow shocks might occur (although the author 
conjectures that they do not). When y = 3, we show in Sec. 
11 that shocks never occur. 

However, we do have families of smooth transonic 
flows. To see this, consider the Q_ flows, with/32 < 21 

A 

(y - 1), and with 2/(y + 1) < Q -(1)<Q(I). These flows are a 
family of everywhere smooth transonic spiral flows with 
zero limiting speed at infinity. 

5. TWO EQUIVALENT PROBLEMS 

We reformulate the mass flow-circulation problem as 
an initial value problem. 
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R=l 

FIG. 4. Spiral flow. 

2 
Q = y+l 

R Axis 

Consider the following two problems: 
Problem I: Massflow-circulation problem: Find C 1 

functions Q ± (R ), satisfying R 2p2(Q - /3 21 R 2) = K, where 
R> 1, K> 0,0</3 2 < 2/(y - 1),K, and/3are prescribed con
stants, and where p2 = (1 - !(y - I)Q )2/(y - 1). 

Probelm II: Initial value problem: Find C 1 solutions 
Q ± (R ) with prescribed/3, 0 </3 2 < 2!J:~ - 1), with prescribed 
initial data Q +(1» Q(1) or Q -(I)<Q(I) satisfying 

R 2p2(Q _ /3 21R 2) = K = p2[Q ± (1) - /3 2]. (5.1) 

These problems are equivalent. More precisely, we 
have: 

Proposition 5.1: Solutions of I satisfy II and vice-versa 
provided that K = p2(Q± (1))(Q± (1) - /3 2) in I. 

Which follows from: 
Proposition 5.2: Solutions of either I or II satisfy the 

algebraic mass flow relation 

(MF) R 2p2(Q ±)(Q ± -/3 2IR 2) = K, 

and C 1 solutions to the relation (MF) satisfy problems I and 
II for noncritical K and noncritical initial value Q ± (1) such 
that p2(Q ± (1 ))(Q ± (1) - /3 2) = K. 

Proof The relation p2(Q ± (1 ))(Q ± (1) - /3 2) = K is 
simply the mass flow relation (MF) when R = 1. The two 
problems are equivalent since Problem II is a Problem I with 
this relation used to replace K by Q ± (1). 

6. LOCAL EXISTENCE THEORY 

We seek a local solution Q = Q (R ) of the initial value 
problem: 

R 2(Q - /3 21R 2)P2 = K on [R 1,R2]C[I, 00), 

K a positive constant, Q (R d = QI' and/3 21R i < QI < 2/ 
(y-l). 

Dejinition:Q (R) = [2/(y + 1)](1 + fPIR 2) is called the 
critical curve. A solution that lies above Q is called supercri
tical and is denoted by Q +. A solution that lies below Q is 
called subcritical and is denoted by Q - . 
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K 

FIG. 5. Dependence of K on Q. 

Theorem 6.1: There exists a critical value of K, K = Kc' 
such that for givenR), Q), andK, whereO<K <Kc(R)), there 
is an interval [R ),R 2] in which there exist two local C) solu
tions Q + and Q - of the initial value problem above. 

Moreover, Q + and Q - satisfy: 
(i)K=R 2(Q± -/l2/R2)[I-~(r-l)Q± ]2/(r-l); 
(ii) {32/R 2 <Q - <Q<Q + <2/(r - 1); 
(iii)(a) Q + (resp. Q -) is a monotone increasing (decreas

ing) function of K, (b) K increases monotonically as a func
tion of increasing Q -, (c) K decreases monotonically as a 
function of increasing Q +; (6.1) 

(iv) Q - /' Q and Q + '" Q as K-Kc' see Fig. 5; 
(v) Kc(r l )<K(r2) ifrl <r2; 

(vi) ifQ± (R) satisfyingQ± (Rd = QI can be continued 
to R = R2 then Q (R 2) is an increasing function of Q (R I)' 

Proof These results are proved for toroidal flow in Ref. 
1, p. 372. Our theorem follows identically with the substitu
tion R = f The proofs in Ref. 4 follow by application ofthe 
implicit function theorem to the function 

thus, 

and 

F(R,Q) = R 2(Q - {32/R 2)P2 - K; 

dQ_ -FR _ -8 I{Q[I-~(r-l)Q]} 
dR --p;-- r+ 1 R Q-Q . 

The conclusions follow from arithmetic consideration 
of these expressions. Note that dQ / dR is infinite if Q = Q. 
This is the analytic meaning of Q. 

Remark: (vi) tells us that the local solutions are mono
tone increasing as functions of their initial values. In other 
words, if Q a+ (1»Q b+ (1), then Q a+ (r»Q b+ (r) for any r> 1. 
When we have found that global solutions of the mass flow
circulation problem (vi) will also tell us that these solutions 
Q ± are also monotone increasing functions of their initial 
data. 

The formula for dQ / dR above tells us that each solution 
Q + is monotone increasing and that each solution Q - is 
monotone decreasing as functions of the radius R. The same 
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facts hold for global solutions of the mass flow-circulation 
problem. 

The considerations of this remark are an important tool 
in the proof of convergence to the critical solutions of Sec. 9. 

7. SOME LOCAL LEMMAS 

We state some necessary technical lemmas that are al
most identical to the corresponding technical lemmas of Ref. 
1. Indeed the proofs in Ref. 1 apply to our case with just a 
change in notation and domain. We need these technical 
lemmas in the global existence theory. 

Recall Problems I and II of Sec. 5. Let R> 1 as usual. 
Proposition 7.1: Let Q ± (R ) be a solution of the initial 

value problem II on some interval [Rmin' Rmax ] for which 
qJ (R ) = [Q (R ) - Q ± (R W is positive. Then qJ (R ) has a 
unique minimum at R = R min . 

The proof of this proposition follows from this lemma: 
Lemma 7.1: (a) The function (Q - Q± f satisfies the 

differential equation 

~ [Q - Q ± F = !g(R,Q ±(R)), (7.1) 

where 

g(R,Q± (R)) = [l/(r+ I)HQ± (R )[1- ~(r- I)Q± (R)] 

/'- + (/32/R 2)[Q± (R) - Q(R )]). (7.2) 
(b) If [Q (R ) - Q (R )] > ° on an interval [Rmin' Rmax ], 

then g(R,Q (R )) > C (K) > 0, where 

C(K)= 1 +--2 ( {32) 
(r + 1)2 R ~ax 

[
. K (r - 1 K ) 2/

IY- 11] X mm -2-' -- -2-

Rmax 2 Rmax 
(7.3) 

is a monotone increasing function of the mass flow constant 
K. 

Proof With the substitution R = land by replacing the 
torus with the interval [Rmin' Rmax] as domain, the proof is 
identical to that of Lemma 5.2 of Ref. 4. 

Pro%/Proposition 7.1: In Ref. 1 the second derivative 
test was used, but here it does not apply since the minimum 
now occurs on the left end point. 

We see this because the derivative of the function in 
question is positive and this function is continuous on a com
pact set. Here, the minimum occurs on the left end point. 

Corollary 7.1: If Q - is a solution of Problem II in some 
interval [Rmin' Rmax] in which Q + (R ) - Q - (R ) > 0, then 

Q +(R) - Q(R »Q +(Rmin) - Q(Rmin»O. (7.4) 

We also have: 
Lemma 7.2: Let N = [Rmin' Rmax ] be an interval con

tained in [1,(0). There exists a unique C 1 subcritical (resp. 
critical) solution Q - (resp. Q +) of Problem II (equivalently 
of Problem I) with noncritical data on N. 

Proof This follows just like Theorem 5.1 in Ref. 1 with 
the substitution of N for the torus and R for f 

Remark: The above supercritical solutions Q + are 
monotone increasing, and the above subcritical solutions Q -
are monotone decreasing because of the differential equation 
above: The sign of the derivative of Q ± depends on whether 
'" Q - Q ± is positive or negative. 
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8. GLOBAL EXISTENCE THEORY FOR NONCRITICAL 
FLOWS 

We establish the global existence and uniqueness of 
noncritical flow solutions of the mass flow--circulation prob
lem. The method of proof is somewhat different from the 
method of Ref. I because of complications due to the non
compact nature of our domain. 

We now state and prove the main theorem of this sec-
tion. 

Theorem 8.1: Let 0</]2 <2!(y - I) and O<,K<Xc' 
where Kc is the critical mass flow constant, corresponding to 
{3. There exists a unique C supercritical (resp. subcritical) 
flow Q + (resp. Q -) with mass flow constant K and circula
tion 21T'{3 about the unit circle. 

At no loss of generality, we carry out the proof in the 
supercritical Q + case. 

Proof First, we show uniqueness. 
Suppose that we have two solutions. We show that the 

set S on which they are equal is nonempty and open and 
closed in the relative topology that S inherits as a subset of 
[1,00). Then, because [1,00) is connected, S is [1,00). 

We start by showing that S is nonempty. Any solution 
of the mass flow--circulation problem (Problem I) is also a 
solution of the initial value problem (Problem II) with initial 
data Q (1) determined by K. Since both solutions have the 
same mass flow constant K, they have the same initial value 
Q(I). Thus they agree at R = 1, andS is nonempty. 

We now show that S is relatively closed and open. Any 
solution of the mass flow--circulation problem must satisfy 
the mass flow condition (MF) at every point of [1, 00). This 
condition is a continuous algebraic functional relation on Q. 
Thus S is closed. The implicit function theorem shows that S 
is open. 

Thus S is [1,00), and the two solutions are equal-uni
queness is proved. 

Remark: We used the noncritical nature of K, when we 
envoked the implicit function theorem. Because K is noncri
tical dF I dQ is nonzero and noninfinite. See Sec. 6 for the 
formula giving DF IdQ. 

We now show existence by construction. Let N = [I ,R ] 
and M = [I ,R ] be subintervals of[ 1,00 ) such that N C M. The 
local existence theorem (Theorem 6.1) gives us C I solutions 
Q + N andQ + M of Problems I and II on NandM. We show 
that Q + M is the unique continuous extension of Q + to M 
that is a solution of Problems I and II on M. 

Let S be the set of points where Q + Nand Q + M agree. 
Clearly SCN. We show that S is nonempty, and also closed 
and open in the relative topology that N inherits as a subset 
of M. The proof is very similar to the uniqueness proof 
above. 

Sis nonempty because Q + Nand Q + M have the same 
initial value at R = I as solutions of Problem II. S is closed 
because Q + Nand Q + M both satisfy the algebraic mass 
flow relation (MF), which is a continuous algebraic func
tional relation on Q. Finally, S is open by the implicit func
tion theorem since K is noncritical and 0 < dF I dQ < 00. 

Thus S = Nand Q + M is the unique continuous exten
sion of Q + N as a solution of Problem I. 

181 J. Math. Phys., Vol. 25, NO.1, January 1984 

Now let R-+oo. The local solution Q + M tends to a 
global solution Q + of Problem I. QED 

The argument for Q - is identical. 
Corollary 8.1: Q + is monotone increasing as a function 

of R with limiting speed 2/(y - I) at infinity. Q - is mono
tone decreasing as a function of R with limiting speed zero at 
infinity. 

Proof The monotonicity follows from the sign of 
dQ ± Idr (see Sec. 6), now that we know that Q + and Q -
exist. We see the limiting speed behavior by looking at the 
algebraic mass flow relation (MF). Both Q + and Q - must 
satisfy (MF). Let R'--'I 00. Because K I R 2 then goes to zero, 
either p(Q",) or Q", must vanish. 

Since Q + is monotone increasing, this forces the limit
ing square speed to be the square cavatation speed 2/(y - I), 
similarly, because Q - is monotone decreasing its limiting 
speed at infinity must be zero. QED 

We also have two more corollaries. 
Corollary 8.2: The global C I solutions Q ± satisfy the 

differential equation 

~ [Q _ Q ±]2 = !g(R,Q(R)), (8.1) 

where g is the same as it was in Lemma 7.1. 
Proof Q ± exist. The conclusion of this corollary is a 

local condition on Q ± which was proved in Lemma 7.1. 
QED 

Corollary 8.3: The global C I solutions Q ± satisfy the 
integral equation: 

Q ± =Q± {[Q(l)-Q(lW 

+ iR 

(81t )g(t,Q (t)) dt } lIZ. (8.2) 

Proof Integrate the differential equation of the previous 
corollary. QED 
9. CONVERGENCE TO THE CRITICAL SOLUTIONS 

We show that as K approaches its critical value Kc ' the 
solutions Q + and Q - approach limiting functions Q c+ and 
Q c- that solve the mass flow--circulation problem when 
K=Kc· 

Slightly abusing terminology, we call Q c+ and Q c- sub
critical. The two critical solutions Q / and Q c- satisfy the 
critical mass flow relation: 

(MFC) Kc = R 2(Q c± -{32IR 2)P2(Q c±). (9.1) 

Q c+ is monotone increasing as a function of R with a limiting 
square speed 2(y - 1) at infinity, Q c- is monotone decreas
ing as a function of R with a limiting square speed of zero at 
infinity, and Q c+ and Q c- bifurcate at R = 1 with vertical 
slope. See Fig. 4. 

Although the critical solutions Q c± satisfy the algebraic 
relation (MFC), we cannot prove local existence using the 
implicit function theorem alone because the required deriva
tive is infinite at R = I (compare Sec. 6). We prove local and 
global existence and uniqueness using convergence argu
ments. 

These convergence arguments construct Q c± as the lim
it of noncritical solutions Q ± as K approaches its critical 
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value K = Kc. The convergence arguments are more deli
cate than one might at first suspect because our domain is not 
compact, and thus we do the convergence arguments in care
ful detail. 

We now state and prove the theorem. 
Theorem 9.1: There exist unique solutions Q c+ and Q c

to the mass flow-circulation problem with critical mass flow 
K=Kc· 

These solutions are C I when R > 1 and satisfy: 
(a) Q c+ is monotone increasing as a function of R with 

limiting square speed 2!(r - 1) at infinity. 
(b) Q c- is monotone decreasing as a function of R with 

zero limiting sReed at infinity. 
(c)Q c+ > QwhenR > 1 (we say then that Q + issupercri-

A 

tical) and Q c- < Q when R > 1 (we say then that Q - is subcri-
tical). 

(d) Q c+ and Q; bifurcate from R = 1 with infinite 
slope at R = 1. 

(e) Let Q it denote solutions of the mass flow-circula
tion problem with noncritical mass flow K. Then as K ap
proaches the critical value K = K c ' Q f approach Q c± 
pointwise. In fact, Q -: '-Q c+ and Q K /' Q c- uniformly on 
any compact subinterval of [1, 00). 

(t) Q c+ and Q; also solve the initial valu~'problem 
(Problem II) with critical initial value Qc (1) = Qc (1). 

(g) Let Q ~ denote solutions of the initial value problem 
with noncritical initial value Q(I) = QI' Then, as the)nitial 
values QI approach the critical initial value Qc(l) = Q(I), 
Q ~ approach Q c± . In fact, Q J; '-Q c+ and Q Q. /' Q c- and 
the convergence is uniform on any compact subinterval of 
[1,00). 

(h) The critical solutions satisfy the critical mass flow 
relation 

Kc = R 2(Q! - (J21R 2)Vi(Q c±))' 

(i) They satisfy the integral equation 

Q c± (R ) = Q (R ) ± { [Qc (1) - Q! (1)] 2 

+ i R 

g(t, Q ± c (t )) dt } 112. 

(j)They have derivatives for R > 1 given by 

dQc± = dQ _J..~ (RQ ±(R)) 
dR dR 2 R

g 
c 

X { [Qc ( 1) - Q c± ( 1 ) ] 2 

(9.2) 

(9.3) 

+ IR (81t )g(t,Q ± (t)) dt} - 112. (9.4) 

Proof: We prove the theorem for Q +. The prooffor Q -
is identical. 

Proof of Uniqueness: Let Q cj and Q c;z be C I (when 
R> I) global solutions of the mass flow-circulation problem 
with critical mass flow constant K = Kc' Then, Q C;I and 
Q c;z satisfy the critical mass flow relation 

(MFC) [Q/(R) -{J2IR ]p2(Qc+)R 2 =Kc' 

Let S be the set of points where Q cj = Q c;Z. Then because 
these solutions have the same initial value, Sis nonempty 
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(i.e., K = lES). Because (MFC) is algebraic and thus contin
uous as a function of Q c+ , the set S is closed. When R > 1, the 
initial value theorem implies the local solvability of the rela
tion (MFC) and thus S is relatively open in [1,00 ). Therefore, 
S is all of [I, 00) and Q cj = Q c;Z. Now, we prove the exis
tence of a global critical solution that is C I when R > 1. 

We now construct the supercritical solution Q c+ . 
Consider a sequence (Q :..) of solutions to Problem I 

corresponding to a sequence of noncritical mass flow values 
Kn (for (J fixed!) converging to the critical mass flow value 
Kc' Since K determines Q (1) from the mass flow relation at 
R = 1, the remark at the end of Sec. 6 (and Theorem 6.1) 
imply that at each point x of [1,00 ) the sequence (Q it.) is 
monotone decreasing and bounded from below (by zero); 
hence it has a limit point Q c+ (x). Thus the function sequence 
(Q it.) converges pointwise to a limit function Q c+ . More
over, a standard interlacing sequence argument shows that 
the limit function Q c+ is independent of the choice of the 
sequence (Kn)' 

The limit function Q c+ is continuous, as can be easily 
proved by a standard "three epsilon" argument. More is 
true: Because the sequence (Q it.) is monotone, Dini's 
theorem (Ref. 6, p. 248, Ex. 9.9) assures us that the conver
gence is uniform on any compact subset of [1,(0). 

Each member (Q it.) of the sequence satisfies the mass 
flow relation 

(9.5) 

Because p is continuous as a funciton of Q, the sequential 
continuity of this relation implies that Q / satisfies the criti
cal mass flow relation 

(MFC) Kc =R2(Qc+ -(J2IR2)P2(Qc+), (9.6) 

which proves (h). 
We now show that Q c+ is C I whenR > 1. We do this by 

computingdQc+ IdR . Along the way, we establish (i) and (j). 
By Corollary 8.3 each element (Q it.) of the sequence 

globally satisfies the integral equation 

Q it. (R ) = Q (R ) + { [ Q (1) - Q it. (1)] 3 

+ i R 

(81t )g(t,Q it.) dt r2

, 

where g is given by 

(9.7) 

g(R,Q(R)) = [1!(r+ 1)]!Q(R )[1- ~(r- I)Q(R)] 
+ (fJ21R 2)[Q(R) - Q(R )]J. (9.8) 

Because g(R,Q ) is continuous as a function of Q, and 
because the convergence of Q:" to Q c+ is uniform on com
pact sets by Dini's theorem, we have that Q / satisfies the 
integral equation 

Qc+ =Q(R)+{[Q(I)-Qc+(1)] 

(R }1/2 (9.9) 
+ JI (81t )g(t,Q c+) dt . 

Now by the fundamental theorem of calculus we can 
differentiate this relation at any interior point of [I, 00) to 
obtain 

P. D. Smith 182 



                                                                                                                                    

A 

dQ/ dQ 
--=-

dR dR 

{[Q(1) - Q /(1)]2 + iR 

(8It)g(t,Q c+) dt r2

' 

(9.10) 

Thus Q c+ is C I if R > 1. These last two equations have many 
consequences. A 

Fron;.. the equation for Q / we see that Q (1) = Q c+ [and 
similarly Q(I) = Q c-]; thus Q c+ (1) = Q c-(I) = Q(I), show
ing that Q / and Q c- bifurcate from R = 1. Also from this, 
we see that Q / solves initial value problem II as well as 
mass flow-circulation problem 1. 

From the above expression for dQ c+ I dR we see that 
Q c+ is monotone increasing as a function of R (similarly Q c

is monotone decreasing as a function of R ) and also that 
dQ / IdR is infinite when R = 1. 

From the integral equation above for Q c+ it follows by 
algebra that: 

d~(Q- Qc+)2 =~(R,Q/), (9.11) 

where 

g(R,Q / (R)) = [I1(y - 1)] 

X ! Q / (R l[ 1 - ~(y - l)Q c+ (R )] 

+ (f321R 2)[Q/(R) - Q(R)] J, (9.12) 

from which, repeating the proof of Corollary 8.1, it follows 
that Q c+ is supercritical. Similarly, Q c- is subcritical. 

Finally the critical mass flow relation implies that at 
infinity Q + = 2/(y - 1) (the square cavitation speed) and 
Q- =0. QED 

10. THE CASE OF y = 3 

When y = 3, the mass flow relation becomes quadratic 
and Q ± satisfy a quadratic equation. Compare Ref. 1. 

In this case we have 

Q ±' - 2Q (R )Q ± + (f3 2 + K )/ R 2 = 0, (10.1) 

and Q ± satisfy 

Q ± = _ Q(R) ± [Q2(R) _ (f32 + K)/R 2] 112, (10.2) 

where Q (R ) = ~(I + /3 21 R 2). The discriminate vanishes 
when K = Kc and R = 1, which shows that Kc 
=!(l +/3 2

)2 -/3 2
• 

11. SHOCK SOLUTIONS 

Consider Figs. 2 and 3. Each figure shows a flow that 
starts out on the Q + curve and drops to the Q - curve at 
R = Rs. Such a flow is a possible solution of the mass flow
circulation problem because Q + and Q - have the same mass 
flow constant K. 

These solutions ae called shocks. In Ref. 1 such solu
tions also occurred. There because of the periodic nature of 
the flow, it was shown that shocks were possible only for 
critical mass flow and indeed must occur there. 

In our problem the flow is not periodic, so shocks might 
also occur if K is not critical. See Fig. 3. However, they might 
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not occur at all. In fact, when r = 3, we give a proof that 
shocks do not exist. 

The proof is based on the Prandle-Rankine-Hugonant 
condition below for shocks in a polytropic gas. See Ref. 3. 

Prandle-Rankine-Hugonant condition 

Let a shock occur at R = Rs. Let Vnl be the velocity 
normal to the shock ahead of the shock and let Vn2 be the 
velocity normal to the schock behind the shock. Then: 

Vnl Vn2 = 2/(y + 1) (11.1) 

We now show: 
Theorem 11.1: Let y = 3. There are no shock solutions 

to the mass flow-circulation problem. 

Proof We first show that the shock is oblique and nor
mal toR atRs. 

SinceQ +(Rs)andQ -(Rs )sharethesamevalueof/3, the 
8-velocity is invariant across the shock. So, the 8 direction is 
tangent to the shock. See Fig. 6. 

We now show that Rs < 1, which proves shocks are im
possible since our flows are exterior to the unit circle. 

Recall that when y = 3, Q + and Q - satisfy the quadrat
ic equation 

Q ±' - (1 + /3 21 R 2)Q ± + (f3 2 + K)/ R 2 = O. (11.2) 

Let 

Q +(Rs) = Q/, a+(Rs) = a/, 

Q -(Rs) = Q s-' a-IRs) = a s-' 

Then, 

(11.3) 

(11.4) 

Q s±' - (1 + /3 21 R ;)Q!, + (f3 2 + K )/ R ; = O. (11.5) 

Thus 

Q/ +Qs- = 1 +/3 2IR;, 

Q s+ Q s- = (f3 2 + K )/ R ;. 

In terms of a/ and as+ we have 

(11.6) 

(11.7) 

as+'+as-'= [Qs+ -/3 2IR;] + (Qs- -/3 2IR;) 
(11.8) 

or 

a+'+a-'=1-/32/R 2 
s s s 

and also 

(a+ 2 + /3 21R ;)(a-2 + /3 21R ;) = (f3 21R ;) 

= (f32+K)/R; 

Shock 
tangent to e. 

FIG. 6. Oblique shock. 
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or, equivalently, 

a,+'as-' + {as+ +as-')/32/R; 

+ (/32/R;f = (/32 + K)/R;. 

Since a+ 2 + a- 2 = 1 - rp/R;, we have 

a s+ 'as-' + (1 - rP/R ;){PR; 
+ (/3 2/ R ; f = (/3 2 + K )/ R ;. 

(11.11) 

( 11.12) 

Consider a s+ 'as-'. Because the shock is normal to Rat 
R = Rs> a s+ = Vnl , and a s- = Vn2 • Thus by the Prandle
Randkine-Hugonant condition above, a s+ 'a s-' = 2/ 
(r + 1) =!. 

Thus we have 

! + (1 - /3 2/R ;)/32/R; + (/32/R;f = (/32 + K)/R;. 
(11.13) 

At present let K = Kc. When r = 3, we showed in the 
previous section that 

/3 2+Kc=!(1+/3 2). (11.14) 

The last two equations give the equation below for Rs . 

~R: + (¥J2 - !)R; + (/32 - /3 4) = 0, (11.15) 

which has roots 

(11.16) 

Thus, 

R ; < 1 (when /3 = 0, Rs = 1Iv'2). (11.17) 

So, if K = Kc' shocks do not occur. Now if K =/=Kc' then 
K < Kc and K + /3 2 </3 2 + Kc <!( 1 + /3 2). Replacing the 
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quadratic above by a quadratic inequality proves that again 
Rs < 1. QED 

We have thus proved that if r = 3, shocks do not occur. 
When r =/= 3, the author conjectures that shocks also do 

not occur. A proofproabably would involve Prandle's condi
tion and careful estimates based on the integral equation for 
Q±. 

12. CONCLUSION 

We have demonstrated a family of smooth transonic 
flows in the plane. The method also can be used to analyze 
other transonic plane flows (e.g., Ringleb flow3

), previously 
incorrectly treated by the Hodograph method. In addition, 
the author has also treated certain three-dimensional flows 
by this method (e.g., pipe flow), and here too, smooth tran
sonic families occur. 
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Symmetry of the complete second-order conductivity tensor in a Vlasov 
plasma 

Jonas Larsson 
Department of Plasma Physics, Umed University, S-901 87 Umea, Sweden 

(Received 22 June 1983; accepted for publication 2 September 1983) 

This paper has two purposes. The first is to consider the origin of a recently derived symmetry 
property including the pole contributions of the second-order conductivity. The second is to show 
how certain general formulas for the conductivities easily lead to much more convenient 
expressions than those used in the above-mentioned derivation of the symmetry. 

PACS numbers: 52.25.Fi, 02.30. + g 

The second-order conductivity tensor for a plasma de
scribed by the Vlasov-Maxwell equations can be expressed 
in terms of an integral involving poles due to resonant wave
particle interaction. The nonresonant particles determine 
the principal part of the integral while the resonant particles 
give pole contributions. Neglecting the pole contributions, 
we obtain the very well-known symmetry leading to the 
Manley-Rowe relations. Recently a symmetry relation was 
found I involving also the pole contributions. The derivation 
was a straightforward but lengthy calculation resulting in a 
very extensive formula for the second-order conductivity 
tensor in an un magnetized relativistic plasma. 

In this paper we observe that previously derived2
--4 gen

eral formulas for the conductivities directly lead to symme
tries involving both the principal parts and the pole contri
butions. The symmetries are valid for a relativistic plasma 
also in the magnetized case. It will be shown below that the 
symmetry in Ref. 1 is included. 

It is convenient to consider the quantities V, related to 
the second-order conductivity as4 

Via, 1,2)= V(ko,Eo,kl,El'k2,E2) 

= (2i/cuo)Eo·(T~I,k, (E I,E2 ), 

where k) = (cu) ,k)), j = 0,1,2 and 

CUo + CUI + UJ2 = 0, ko + k1 + k2 = a 

(la) 

(Ib) 

and Ej are arbitrary vectors used as arguments in (Ia). Now 
V may be writen as4 

V(0,I,2) 

= f fo(v)A (ko,Eo,kl,EI,k2,E2,V)leV 

= J fo(v)A (0,I,2v)d 3v, (2) 

where A is symmetric in the indices (0,1,2), i.e., 

A (0,I,2,v) =A (a,,B,y,v) for (a,,B,y) = [0,1,2), (3) 

There are, however, poles in the integrand of (2) due to de
nominators (cuj - kj.v) for an unmagnetized plasma and (UJj 

- k jz Vz - ncue) for a magnetized plasma, These poles must 
be treated properly. Let us introduce operators P and R

j
, 

where P stands for the principal part and Rj stands for pole 
contribution of the denominators containing UJj mentioned 
above treated according to the prescription cuj + i1], 
1] -+ ° + ' Then we have4 

V(a,I,2) = PV - Ro V + RI V + R2V, (4) 

In (4) we have for brevity not indicated the arguments on the 
right-hand side since the symmetry (3) implies 

pV(a,I,2) = PYla, /3,y), Rj V(0,I,2) = Rj V(a,,B,y) 

for (5) 

[a,/3,yl = [0,1,21· 

It is clear from (4) that V(0,I,2) does not have the correspond
ing symmetry, A calculation of V(0,I,2) naturally means a 
calculation of each term in (4). Then we have determined not 
only V(0,I,2) but also all Via, /3,Y), where 
( a, /3, y J = f 0, 1,2 J. More substantial symmetries may be 
obtained in situations where some of the pole contributions 
may be neglected. 

Considering resonant wave interaction between two 
high-frequency waves ko and kl with the low-frequency 
wave k2, we may sometimes take Ro V = R I V = 0. Then 
V(0,I,2) = V(I,0,2) = PV + R2V, while 
V(2,0,I) = PV - R2 V. The coupled mode equations, in 
which we now may omit the linear damping of wave ° and I, 
are then simplified. Different particular forms of these equa
tions are considered in Ref. 5. 

Let us now compare with the symmetry result (26) in 
Ref. 1. We may write it in the form 

V(0,I,2) = (P+R 1 +R2)S(I,0,2) 

+ (P + RI - Ro)S(1,2,0), 

where S is related to the tensor Sij/ in Ref. 1 as 

S(0,I,2)=S(ko,Eo,kl,EI,k2,E2) 

(6) 

= - iq(21T)4(CU#IUJ2)-ISij/( - ko,kl,k2)Eo;Elj E 2l , 

together with (Ib). We also have 

V(0,I,2) = S(0,I,2) + S(0,2,I). 

It follows directly from (I) in Ref. 1 that 

(7) 

(8) 

R2S(I,0,2) = R2 V(I,0,2), RoS(I,2,0) = Ro V(I,2,0), 
(9) 

and we may thus rewrite (6) as 

V(0,I,2) = PV(I,0,2) + R t V(I,0,2) 

+ R 2 V(1,0,2) - RoV(I,2,0). (10) 

But (10) follows directly from (4) and the derivation is thus 
completed. 
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We finally give a formula for the second-order conduc
tivity tensor in an unmagnetized relativistic plasma. It is a 
particular case of the general formula3 rewritten in more 
familiar notations and is clearly much more convenient to 
use than the formula which one obtains by straightforward 
calculations. \ The result is 

V(O, 1,2) = - _1_' f Fo(v) 
m~ 

X---------------------------------
(cuo - ko·v - i7])(cu\ - k\·v + i7])(CU2 - k2·v + i7]) 

X (ko.Fo - (qcuolc2
!v.Eo (F\.F

2 
_ q2c-2V.E

1
v.E

2
) 

CUo - ko·v - 17] 

+ even permutations of (0,1,2)) (1 - v2/c2)d 3v, 

where 

( kXE) Fj= q Ej+vX~ and 7]---+0 +. 

(11) 

(12) 

The property (3) is manifest in (11). The tensor Sijl i~ explicit
ly obtained from (7) and (11) by substituting Ej = xj , where 
(xo,x I>X2 ) are our orthonormal unit vectors. 

The expression (11) is a good example of the usefulness 
of the general current response formulas2

•
3 and it may sim

plify future application of them if we consider the notational 
change needed to obtain (11). From (2.11) and (2.13 )-(2.15) in 
Ref. 3 we obtain in the notation of that paper 

iU·Ka oXa = oua, 

iU'KaOUa = i( qlmoc
2

) KaA ¢a 'U, 

¢o·A ~I.K,: ¢I ¢2 = !ic3mo 1./o(U)[Ko.OX(0)OU(I).OU(2) 

( 13) 

(14) 

+ even permutations of (0,1,2)] du, (15) 
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where Ka = (cualc)eo + ka and U = uO(eo + vic) so that 

U'Ka = - (u°lc)(cua - ka·v), (16) 

where UO = (1 - v2lc2)-1f2. 

In (15) the 4-vectors ¢a are arbitrary. If we take ¢a 
related to Ea as the 4-potential is related to the electric field 
in Fourier space we obtain 

¢o·A ~/.K, : ¢ I ¢2 = - (icl cuo)Eo·d;'l.k, [E1,E2] (17) 

and 

KaA ¢a'u = - iuo 

(18) 

Finally we need the relation between the distribution func
tions/o(u) and Fo(v). The 4-current is 

qc 1./o(U)U du = q f(ceo + v)Fo(v)d 3v. (19) 

Taking the eo-part of (19) we get the correspondence 

/o(u)UO du = Fo(v)d 3V• (20) 

Or in more exact words, when we make the variable change 
U ---+ v defined by the relation cu = uO(ceo + v), then (20) is 
valid. From (la), (13)-(18) and (20) we now obtain (11). 

ACKNOWLEDGMENT 

I thank the referee for checking all the equations above 
by rederiving them and for pointing out a number of typo
graphical errors. 

IH. E., Brandt, J. Math. Phys. 24, 1332 (1983). 
2J. Larsson, J. Math. Phys. 20, 1321 (1979). 
3J. Larsson, J. Math. Phys. 20,1331 (1979). 
4J. Larsson, J. Plasma Phys. 21, 519 (1979). 
'J. Weiland and H. Wilhelmsson, Coherent Non-Linear Interaction of 

Waves in Plasmas (Pergamon, New York, 1977). 

Jonas Larsson 186 



                                                                                                                                    

ERRATA 
Erratum: Some remarks on the classical vacuum structure of gauge field 
theories [J. Math. Phys. 22, 179 (1981)] 

M. Asorey 
Departamento de Ffsica Teorica, Facultad de Ciencias, Universidad de Zaragoza, Spain 

(Received 12 October 1983; accepted for pUblication 28 October 1983) 

PACS numbers: l1.1O.Np, 02.40.Vh, 99.10. + g 

N 
(1) Page 182 left column: Delete 

AfU(l)= {(expiA. 1, ... ,explil.N )EU(I)"': 
AjE[O, 21T), A1';;;"'';;;A N , (1I21T) ,LAjEN}. 

j= \ 

N (2) Page 182 left column: Delete 
AjE[O, 21T),A\';;;"'<AN _ P (1I21T),LAjENj, 

;=1 

and replace it by 

~V~k, ;::::U(1);::::~9~k' ;::::SO(2);::::r~j~s' ;::::U(I), 

and replace it by 

A f U( 1) = {(exp iA \,. .. ,exp iA. N )EU( 1 )N: r~V~k,;:::: [0, 1T); r~9~k, ;::::SO(2);::::r~1~s' ;::::U(I). 

Erratum: Splines and the projection collocation method for solving integral 
equations in scattering theory [J. Math. Phys. 24, 177 (1983)] 

M. Brannigan 
Department of Statistics and Computer Science, University of Georgia, Athens, Georgia 30602 

D. Eyre 
National Research Institutefor Mathematical Sciences of the CSIR, P. O. Box 395, Pretoria 000], Republic of 
South Africa 

(Received 6 October 1983; accepted for publication 19 October 1983) 

PACS numbers: 24.10. - i, 02.30.Rz, 25.10. + s, 02.60.Nm, 99.10. + g 

1. The line after Eq. (2.1) should read " ... space of con
tinuous functions .... " 

ever, convergence for this method is shown in our subse
quent paper [J. Math. Phys. 24, 1548 (1983)]. 

2. Since the integral operator Y, containing the princi
pal value integral, is not bounded on a space of continuous 
functions then our proof of convergence is not valid. How-

We are indebted to Ian H. Sloan for calling our atten
tion to these points. 

Erratum: Splines and the Galerkin method for solving the integral equations 
of scattering theory [J. Math. Phys. 24, 1548 (1983)] 

M. Brannigan 
Department of Statistics and Computer Sciences, University of Georgia, Athens, Georgia 30602 

D. Eyre 
National Research Institutefor Mathematical Sciences of the CSIR, P. 0. Box 395, Pretoria OOOl, Republic of 
South Africa 

(Received 6 October 1983; accepted for publication 19 October 1983) 

PACS numbers: 03.80. + r, 02.30.Rz, 05.30.Jp, 99.10. + g 

I. On page 1553 the scattering energy should read 
(klkB)2 = 0.64. 

2. Table II shows the square of the L 2-norm. 
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